
Dynamic Replica Placement for Scalable Content
Delivery

Yan Chen, Randy H. Katz and John D. Kubiatowicz
Department of EECS, University of California at Berkeley

Abstract— In this paper, we propose the dissemination
tree, a dynamic content distribution system built on top of
a peer-to-peer location service. We present a replica place-
ment protocol that builds the tree while meeting QoS and
server capacity constraints. The number of replicas as well
as the delay and bandwidth consumption for update prop-
agation are significantly reduced. Simulation results show
that the dissemination tree has close to the optimal number
of replicas, good load distribution, small delay and band-
width penalties for update multicast compared with the
ideal case: static replica placement on IP multicast.

I. INTRODUCTION

The efficient distribution of Web content and stream-
ing media is of growing importance. The challenge is to
provide content distribution to clients with good Quality
of Service (QoS) while retaining efficient and balanced re-
source consumption of the underlying infrastructure. Cen-
tral to these goals is the careful placement of data replicas
and the dissemination of updates.

Previous work on replica placement involves static
placement of replicas – assuming that clients’ distribution
and access patterns are known in advance[21, 10]. These
techniques ignore server capacity constraints and assume
explicit knowledge of the global IP network topology.

Actual Web content distribution requires dynamic or
online replica placement. Most current Content Distri-
bution Networks (CDNs) use DNS-based redirection to
route clients’ requests [16, 17, 18, 19]. Due to the na-
ture of centralized location services, the CDN name server
cannot afford to keep records for the locations of each
replica. Thus the CDN often places many more repli-
cas than necessary and consumes unnecessary storage re-
sources and update bandwidth.

For update dissemination, IP multicast has fundamental
problems for Internet distribution [15]. Further, there is no
widely available inter-domain IP multicast. As an alter-
native, Application Level Multicast (ALM) tries to build
an efficient network of unicast connections and to con-
struct data distribution trees on top of this overlay struc-
ture [15, 13, 1, 8, 12]. Most ALM systems have scalabil-

Fig. 1. Architecture of a dissemination tree.

ity problems, since they utilize a central node to maintain
state for all existing children [1, 8, 4, 13], or to handle all
“join” requests [12]. Replicating the root is the common
solution [8, 12], but this suffers from consistency prob-
lems and communication overhead.

There are two crucial design issues that we try to ad-
dress in this paper:

1) How to dynamically choose the number and place-
ment of replicas while satisfying QoS requirements
and server capacity constraints.

2) How to disseminate updates to these replicas with
small delay and bandwidth consumption.

Both must be addressed without explicit knowledge of the
global network topology. Further, we would like to scale
to millions of objects, clients, and servers.

To tackle these challenges, we propose a new Web con-
tent distribution system: dissemination tree (in short, d-
tree). Figure 1 illustrates a d-tree system. There are
three kinds of data in the system: sources, replicas, and
caches. The d-tree targets dynamic Web content distribu-
tion; hence there is a single source on the Web server. A
replica is a copy of source data that is stored on the over-
lay server and is always kept up-to-date, while a cache
is stored on clients and may be stale. These compo-
nents self-organize into a d-tree and use application-level
multicast to disseminate updates from source to replicas.

Coherence of caches is maintained dynamically through
approaches such as [9]. We assume that d-tree servers
are placed in Internet Data Centers (IDC) of major ISPs
with good connectivity to the backbone. These servers
form a peer-to-peer overlay network called Tapestry [3],
to find nearby replicas for the clients. Note that Tapestry
is shared across objects, while each object for dissemina-
tion has a hierarchical d-tree.

We make the following contributions in the paper:
� We propose novel algorithms to dynamically place

close to minimum number of replicas while meeting
the clients’ QoS and servers’ capacity constraints.� We self-organize these replicas into an application-
level multicast tree with small delay and bandwidth
consumption for update dissemination.� We leverage Tapestry to improve scalability.
Tapestry permits clients to locate nearby replica
servers without contacting a root; as a result, each
node in a d-tree maintains state only for its parent
and direct children.

Note that all these are achieved with limited local network
topology knowledge only.

The rest of the paper is organized as follows: We for-
mulate the replica placement problem in Sec. II and in-
troduce Tapestry in Sec. III. Sec. IV describes the proto-
cols for building and maintaining a d-tree. Evaluation and
results are given in Sec. V, and finally conclusions and
future work in Sec. VI.

II. PROBLEM FORMULATION

There is a big design space for modeling Web replica
placement as an optimization problem and we describe it
as follows. Consider a popular Web site or a CDN hosting
server, which aims to improve its performance by push-
ing its content to some hosting server nodes. The prob-
lem is to dynamically decide where content is to be repli-
cated so that some objective function is optimized under
a dynamic traffic pattern and set of clients’ QoS and/or
resource constraints. The objective function can either
minimize clients’ QoS metrics, such as latency, loss rate,
throughput, etc., or minimize the replication cost of CDN
service providers, e.g., network bandwidth consumption,
or an overall cost function if each link is associated with
a cost. For Web content delivery, the major resource con-
sumption in replication cost is the network access band-
width at each Internet Data Center (IDC) to the backbone
network. Thus when given a Web object, the cost is lin-
early proportional to the number of replicas.

As Qiu et al. tried to minimize the total response
latency of all the clients’ requests with the number of

9598

4432

3598

2218

0325

B4F8

9098

CE42

7598
0128

1010

4432
4598

4432

1212

L2
L2

L1

L1

L2

L3

L4

Replica−1
L1

Replica−2

Root

L2

L1
L1L1

L2L1

L1

L4

L4

3A40

Surrogate of client

Fig. 2. The Tapestry Infrastructure: Nodes route to nodes one digit at
a time: e.g.

���������
	�������
���������������������������
. Objects are

associated with a particular “root” node (e.g.
�������

). Servers publish
replicas by sending messages toward root, leaving back-pointers (dot-
ted arrows). Clients route directly to replicas by sending messages to-
ward root until encountering a pointer (e.g.

����������	���������������
).

replicas as constraint [21], we tackle the replica place-
ment problem from another angle: minimize the num-
ber of replicas when meeting clients’ latency constraints
and servers’ capacity constraints. Here we assume that
clients give reasonable latency constraints as it can be
negotiated through a service-level agreement (SLA) be-
tween clients and CDN vendors. Thus we formulate the
Web content placement problem as follows. Given a net-
work G with C clients and S server nodes, each client ���
has its latency constraint � � , and each server �! has its
load/bandwidth/storage capacity constraint " ! . The prob-
lem is to find a smallest set of servers #�$ such that the
distance between any client ��� and its “parent” server &%(') #�$ is bounded by �*� . More formally, find the minimum
K, such that there is a set #�$,+ S with -.#/$(- = K and 0
c
)

C, 12 3%) # $ such that distance(� , &%) 45�6% . Mean-
while, these clients 7 and servers #�$ self-organize into an
application-level multicast tree with 7 as leaves and 08 9�) #�$, its fan-out degree (i.e., number of direct children)
satisfies :�;< ��(=�4>"?� .

III. PEER-TO-PEER LOCATION SERVICES: THE

TAPESTRY INFRASTRUCTURE

Networking researchers have begun to explore decen-
tralized peer-to-peer location services [3, 11, 6, 2]. Such
services offer a distributed infrastructure for locating ob-
jects quickly, with guaranteed success and locality. Rather
than depending on a single server to locate an object, a
query in this model is passed around the network until it
reaches a node that knows the location of the requested
object. Our dissemination tree is built on top of Tapestry
[3] and takes advantage of two features: distributed loca-
tion services and search with locality.

Tapestry is an IP overlay network that uses a dis-
tributed, fault-tolerant architecture to track the location of
objects in the network. In our architecture (Figure 1), the
d-tree servers (i.e., CDN edge servers) and multicast root
server (i.e., Web source server) are Tapestry nodes. Each
client talks to its nearby Tapestry node (the surrogate) to
send object requests.

A. Tapestry Routing Mesh

Figure 2 shows a portion of Tapestry. Each node joins
Tapestry in a distributed fashion through nearby gateway
and surrogate servers and set up neighboring links for
connection to other Tapestry nodes [3]. The neighboring
links are shown as solid arrows. Such neighboring links
provide a route from every node to every other node; the
routing process resolves the destination address one digit
at a time (e.g., ***8 � � **98 � � *598 � � 4598, where
*’s represent wildcards). This routing scheme is based on
the hashed-suffix routing structure originally presented by
Plaxton, Rajaraman, and Richa [5].

B. Tapestry Distributed Location Service

Tapestry employs this infrastructure for data location.
Each object is associated with a Tapestry location root
through a deterministic mapping function. This root is
for location purposes only and has nothing to do with the
multicast root server (such as the Web content server in
Figure 1). To advertise an object � , the server storing
the object sends a publish message toward the Tapestry
location root for that object, depositing location pointers
in the form of � Object-ID(�), Server-ID() � at each hop.
These mappings are simply pointers to the server where
� is being stored, and not a copy of the object itself. A
node that keeps location mappings for multiple replicas
keeps them sorted in the order of distance from .

Figure 2 shows two replicas and the Tapestry root for
an object. Location pointers are shown as dotted arrows
that point back to replica servers. To locate an object, a
client sends a message toward the object’s root. When
the message encounters a pointer, it routes directly to the
object. It is shown in [5] that the average distance traveled
in locating an object is proportional to the distance from
that object in terms of the number of hops traversed. Our
experiments in [14] prove that for any node � that requests
object � , Tapestry can route the request to the statistically
closest node that contains a replica of � .

IV. DISSEMINATION TREE PROTOCOLS

A. Replica Placement and Tree Construction

In this section, we present an algorithm that dy-
namically places replicas and organizes them into an

application-level multicast tree with only limited knowl-
edge of the network topology. This algorithm attempts
to satisfies both client latency and server capacity con-
straints. Our goal is to minimize the number of repli-
cas deployed and to self-organize the servers with replicas
into a load-balanced tree. We contrast static solutions that
assume global knowledge of clients and topology.

1) Dynamic Replica Placement: We consider two al-
gorithms: naive placement and smart placement, for com-
parison. We describe these as procedures for a new client
c to join the tree of object o, possibly generating new repli-
cas in the process. Following the notations in Sec. II, the
latency constraint of c is � % and the capacity constraint of
 is "�� . We define the following notations: current load
of : " ��� ; remaining capacity of : �9�	� = "�� - " ��� ; overlay
distance on Tapestry: ��
 ��������������� and IP distance: ��
 ����� .
As periodically there are “refresh” messages going from a
child server to its parent for soft state management, we as-
sume that each parent server knows the current remaining
capacity of each child server.

Naive placement: Client � sends the request for object �
through Tapestry and is routed to server . For the naive
approach, s only considers itself to be � ’s parent server,
i.e., whether �9���� 0 and ��
 	� ��� (�� �) 4 �*% are satisfied. If
unsatisfied, it will try to place a replica on the overlay path
server that is as close to � as possible (see Algorithm 1).
Note that given the limited search, the naive approach may
not always find the suitable parent server for every client,
even when such a parent exists.

Smart placement: Essentially, the smart approach (Algo-
rithm 2) attempts to optimize the “best” parent selection
for � in a larger set: including , its parent, siblings and
its other server children. Among qualified candidates, �
chooses the one with the lightest load as parent. If none
of them meet the client’s latency and server’s load con-
straints, will try to place a replica on the overlay path
server that is as far from � as possible. We call it lazy
placement. All these steps aim to distribute the load with
the greedy algorithm to reduce the number of replicas
needed while satisfying the constraints.

Note that we try to use the overlay latency to estimate
the IP latency in order to save “ping” messages. Here the
client can start a daemon program provided by its CDN
service provider when launching the browser so that it can
actively participate in the protocols. The locality property
of Tapestry naturally leads to the locality of d-tree, i.e.,
the parent and children tend to be close to each other in
terms of the number of IP hops between them. This pro-
vides good delay and multicast bandwidth consumption
when disseminating updates, as measured in Sec. V. The

procedure DynamicReplicaPlacement Naive(� , �)
1 � sends a “join” request to s with o through Tapestry,

piggybacks the IP addresses, �
 ����� � � � ��� ; � �� $ = and
�9� � � , for each server 3$ on the path

2 if �9� � � 0 then
3 if ��
 ��������� � ��� (� ,) 4 �6% then becomes � ’s par-

ent, exit.
else

4 pings � to get �
 	� ��� (, �)
5 if �
 	����� (s, c) 4 � % then becomes � ’s par-

ent, exit.
end

end
6 From the closest one to � , foreach server $ on the

path do
search for � that satisfies �&��� � 0 and
�
 	��������� � ��� (� � �) 4 �*%

end
7 puts a replica on � and becomes its parent, � be-

comes � ’s parent
8 � publishes � in Tapestry, exit.
9 foreach path server 3� whose �9�� ' � 0 do �� pings �

to get ��
 � ��� (�� , �)
10 � chooses � which has the smallest �
 	� ��� (� � �) 4>�6%
11 Same as steps 7 and 8.

Algorithm 1: Dynamic Replica Placement (Naive)

tradeoff between the smart and naive approaches is that
the smart one consumes more “join” traffic to construct a
tree with fewer replicas, covering more clients, with less
delay and multicast bandwidth consumption. We evaluate
this tradeoff in Sec. V.

2) Static Replica Placement: The replica placement
methods given above are unlikely to be optimal in terms of
the number of replicas deployed, since clients are added
sequentially and with limited knowledge of the network
topology. In the static approach, the root server has com-
plete knowledge of the network and places replicas after
getting all the requests from the clients. In this scheme,
updates are disseminated through IP multicast. Static
placement is not very realistic, but may provide better per-
formance since it exploits knowledge of the client distri-
bution and global network topology.

The problem formulated in Sec. II can be converted to
a special case of the capacitated facility location problem
[20] defined as follows. Given a set of locations i at which
facilities may be built, building a facility at location i in-
curs a cost of :&� . Each client j must be assigned to one
facility, incurring a cost of � ! ��� ! where � ! denotes the de-
mand of the node j, and ��� ! denotes the distance between i

procedure DynamicReplicaPlacement Smart(� , �)
1 c sends a “join” request to s with o through Tapestry
2 s sends c’s IP address to its parent p and other server

children sc if �9�� % � 0
3 p forwards the request to s’s siblings ss if �9� ��� � 0
4 , � , and 3� send c its �9� if its �&� � 0
5 if c gets any reply then
6 c chooses the parent � which has the biggest �9�

and ��
 	� ��� (� � �) 4 �6% , exit.
else

7 c sends a message to s through Tapestry again
and the message piggybacks the IP addresses,
�
 ������� � ����� ; � �� $ = and �9� � � for each server $ on
the path

8 From the closest one to , foreach server $ on
the path do

search for � that satisfies �&��� � 0 and
��
 ��������������� (� � �) 4>�6%

end
9 Same as steps 7, 8 and 9 in procedure Dynami-

cReplicaPlacement Naive.
10 � chooses � which has the biggest �
 	� ��� (� � �) 4

�*%
11 Same as step 11 in procedure DynamicRepli-

caPlacement Naive.
end

Algorithm 2: Dynamic Replica Placement (Smart)

and j. Each facility can serve at most " � clients. The objec-
tive is to find the number of facilities and their locations
yielding the minimum total cost.

To map the facility location problem to ours, we set :*�
always 1, and set ��� ! 0 if location
 can cover client � or
� otherwise. The best approximation algorithm known
today uses the primal-dual schema and Lagrangian relax-
ation to achieve a guaranteed factor of 4 [20]. However,
this algorithm is too complicated for practical use. In-
stead, we designed a greedy algorithm which has a log-
arithmic approximation ratio. We omit the algorithm de-
tails due to the space limitations.

We consider two types of static replica placement: with
only overlay path topology vs. with global IP topology.
For the former, to each client c, the root only knows the
servers on the Tapestry path from c to root which can
cover that client (in IP distance). On the other hand, the
latter assumes the knowledge of global IP topology and
gives close-to-optimal bound on the number of replicas.

B. Soft State Tree Maintenance

The liveness of the tree is maintained using a soft-state
mechanism. Periodically, we send “heartbeat” messages

Fig. 3. Number of replicas deployed (top) and load distribution
on selected servers (bottom) (500 d-tree servers).

from the root down to each member. We assume that all
the nodes are loosely synchronized through the Network
Time Protocol (NTP) [7]. Thus if any member (except
the root) gets the message within a certain threshold, it
will know that it is still alive on the tree. Otherwise it
will time out and start rejoining the tree. Meanwhile, each
member will periodically send out a “refresh” message to
its parent. If the parent does not get the “refresh” message
within a certain threshold, it will kick out the child’s entry.

V. EVALUATION

In this section, we evaluate the performance of our
d-tree algorithms. We use the GT-ITM transit-stub model
to generate five 5000-node topologies [22]. The results
are averaged over the experiments on the five topologies.
A packet-level, priority-queue based event manager is im-
plemented to simulate the network latency.

We utilize two strategies for placing d-tree servers. One
selects all d-tree servers at random (labeled random d-
tree). The other preferentially chooses transit and gateway
nodes (labeled backbone d-tree). This approach mimics
the strategy of placing d-tree servers strategically in the
network.

We couple the server placement with four different
replica placement techniques: overlay dynamic naive
placement (od naive), overlay dynamic smart placement
(od smart), overlay static placement (overlay s), and
static placement on IP network (IP s). 500 nodes are cho-
sen to be d-tree servers with either “random” or “back-
bone” approach. The rest of nodes are clients and join the
d-tree in a random order. We randomly choose one non-
transit d-tree server to be the multicast source and set as

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 S

ou
rc

e
to

 M
em

be
r

pa
irs

RDP

od_naive, 500 random servers
od_smart, 500 random servers

od_naive, 500 backbone servers
od_smart, 500 backbone servers

Fig. 4. Cumulative distribution of RDP with various ap-
proaches (500 d-tree servers).

Fig. 5. Bandwidth consumption when multicast 1MB update
data (500 d-tree servers).

50KB the size of data to be replicated. Further, we assume
the latency constraint is 50ms and the load capacity is 200
clients/server.

In the following, we consider three metrics:
� Quality of Replica Placement: Includes number of

deployed replicas and degree of load distribution,
measured by the ratio of the standard deviation vs.
the mean of the number of client children for each
replica server. A smaller ratio implies better load dis-
tribution.� Multicast performance: We measure the relative
delay penalty (RDP) and the bandwidth consumption
which is computed by summing the number of bytes
multiplied by the transmission time over every link
in the network.� Tree construction traffic: We count both the num-
ber of application-level messages sent and the band-
width consumption for constructing the d-tree.

Figure 3 shows the number of replicas placed and the
load distribution on these servers. Od smart approach
uses only about 30% to 60% of the servers used by
od naive, is even better than overlay s, and is very close
to the optimal case: IP s. Also note that od smart has bet-
ter load distribution than od naive and overlay s, close to
IP s for both random and backbone d-tree.

In Figure 4, od smart has better RDP than od naive,
and 85% of od smart RDPs between any member server
and the root pairs are within 4. Figure 5 contrasts
the bandwidth consumption of various d-tree construc-

Fig. 6. Number of application-level messages (top) and total
bandwidth consumed (bottom) for d-tree construction (500 d-
tree servers).

tion techniques with optimal IP placement. The results
are very encouraging: the bandwidth consumption of
od smart is quite close to the optimal IP s and is much
less than that of od naive.

The performance above is achieved at the cost of d-tree
construction (Figure 6). However, for both random and
backbone d-tree, od smart approach produces less than
three times of the messages of od naive and less than six
times of that for optimal case: IP s. Meanwhile, od naive
uses almost the same amount of bandwidth as IP s while
od smart uses about three to five times that of IP s.

In short, the smart dynamic replica placement has a
close-to-optimal number of replicas, better load distribu-
tion, and less delay and multicast bandwidth consumption
than the naive approach, at the price of three to five times
as much tree construction traffic. Usually, tree reconstruc-
tion is a much less frequent event than Web data access
and update. Further, its performance is quite close to the
ideal case: static placement on IP multicast. Hence, the
“smart approach” is more advantageous.

Due to the limited number and/or distribution of
servers, there may exist some clients who cannot be cov-
ered when facing the QoS and capacity requirements. In
this case, our algorithm can provide hints as where to
place more servers. And the experiments show that the
naive scheme has many more uncovered clients than the
smart one, due to the nature of its unbalanced load. Fur-
thermore, compared with DNS-redirection based CDN,
the overlay smart approach only uses a small fractional
number of replicas (6-8%) and less than 10% of band-
width for disseminating updates.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we explore techniques for building the
dissemination tree, a dynamic content distribution net-
work. First, we propose and compare several replica
placement algorithms which reduce the number of repli-
cas deployed and self-organize them into a balanced dis-
semination tree. Second, we use Tapestry, a peer-to-peer
location service, for better scalability and locality. In the
future, we would like to continue evaluation with more
diverse topologies and workloads, and investigate how to
build a better CDN with other peer-to-peer techniques.

REFERENCES

[1] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast.
In Proceedings of ACM SIGMETRICS, June 2000.

[2] A. Rowstron et al. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In Proc. of Mid-
dleware 2001.

[3] B. Zhao et al. Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. UCB Tech. Report UCB/CSD-01-
1141.

[4] D. Pendarakis et. al. ALMI: An application level multicast in-
frastructure. In Proceedings of 3rd USITS, 2001.

[5] G. Plaxton et. al. Accessing nearby copies of replicated objects
in a distributed environment. In Proc. of the SCP SPAA, 1997.

[6] I. Stoica et al. Chord: A scalable peer-to-peer lookup service for
Internet applications. In Proceedings of ACM SIGCOMM, 2001.

[7] J. Guyton et al. Experiences with a survey tool for discovering
network time protocol servers. In Proc. of USENIX, 1994.

[8] J. Jannotti et al. Overcast: Reliable multicasting with an overlay
network. In Proceedings of OSDI, 2000.

[9] P. Rodriguez et al. Spread: Scaleable platform for reliable and
efficient automated distribution. In Proceedings of WWW9, 2000.

[10] S. Jamin et al. Constrained mirror placement on the internet. In
Proceedings of IEEE Infocom, 2001.

[11] S. Ratnasamy et al. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM, 2001.

[12] S. Zhuang et al. Bayeux: An architecture for scalable and fault-
tolerant wide-area data dissemination. In Proc. of NOSDAV,
2001.

[13] Y. Chawathe et al. RMX: Reliable multicast for heterogeneous
networks. In Proceedings of IEEE INFOCOM, 2000.

[14] Y. Chen et al. Quantifying network denial of service: A location
service case study. In Proceeding of Third International Confer-
ence on Information and Communications Security, 2001.

[15] P. Francis. Yoid: Your own internet distribution. Technical re-
port, ACIRI, http://www.aciri.org/yoid, April, 2000.

[16] Akamai Technologies Inc. http://www.akamai.com.
[17] Digital Island Inc. http://www.digitalisland.com.
[18] Mirror Image Internet Inc. http://www.mirror-image.com.
[19] Speedera Inc. http://www.speedera.com.
[20] K. Jain and V. Varirani. Approximation algorithms for metric

facility location and � -median problems using the primal-dual
schema and lagrangian relaxation. In Proc. of FOCS, 1999.

[21] L. Qiu, V. N. Padmanabhan, and G. Voelker. On the placement
of web server replicas. In Proceedings of IEEE Infocom, 2001.

[22] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an
internetwork. In Proceedings of IEEE INFOCOM, 1996.

