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ABSTRACT
The Peer-to-Peer (P2P) architectures that are most preva-
lent in today’s Internet are decentralized and unstructured.
Search is blind in that it is independent of the query and is
thus not more effective than probing randomly chosen peers.
One technique to improve the effectiveness of blind search
is to proactively replicate data.

We evaluate and compare different replication strategies
and reveal interesting structure: Two very common but very
different replication strategies – uniform and proportional –
yield the same average performance on successful queries,
and are in fact worse than any replication strategy which
lies between them. The optimal strategy lies between the
two and can be achieved by simple distributed algorithms.

These fundamental results offer a new understanding of
replication and show that currently deployed replication strate-
gies are far from optimal and that optimal replication is
attainable by protocols that resemble existing ones in sim-
plicity and operation.

Categories and Subject Descriptors
C.2 [Communication Networks]; H.3 [Information Stor-
age and Retrieval]; F.2 [Analysis of Algorithms]

General Terms
Algorithms

Keywords
replication; peer-to-peer; random search

1. INTRODUCTION
Peer-to-peer (P2P) systems, almost unheard of three years

ago, are now one of the most popular Internet applications
and a very significant source of Internet traffic. While Nap-
ster’s recent legal troubles may lead to its demise, there are
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many other P2P systems that are continuing their meteoric
growth. Despite their growing importance, the performance
of P2P systems is not yet well understood.

P2P systems were classified by [9] into three different cate-
gories. Some P2P systems, such as Napster [6], are central-
ized in that they have a central directory server to which
users can submit queries (or searches). Other P2P sys-
tems are decentralized and have no central server; the hosts
form an ad hoc network among themselves and send their
queries to their peers. Of these decentralized designs, some
are structured in that they have close coupling between the
P2P network topology and the location of data; see [12, 10,
11, 15, 2] for a sampling of these designs. Other decentral-
ized P2P systems, such as Gnutella [3] and FastTrack [13]-
based Morpheus [5] and KaZaA [4], are unstructured with
no coupling between topology and data location. Each of
these design styles – centralized, decentralized structured,
and decentralized unstructured – have their advantages and
disadvantages and it is not our intent to advocate for a par-
ticular choice among them. However, the decentralized un-
structured systems are the most commonly used in today’s
Internet. They also raise an important performance issue
– how to replicate data in such systems – and that perfor-
mance issue is the subject of this paper.

In these decentralized unstructured P2P systems, the hosts
form a P2P overlay network; each host has a set of “neigh-
bors” that are chosen when it joins the network. A host
sends its query (e.g., searching for a particular file) to other
hosts in the network; Gnutella uses a flooding algorithm
to propagate the query, but many other query-propagation
approaches are possible. The fundamental point is that in
these unstructured systems, because the P2P network topol-
ogy is unrelated to the location of data, the set of nodes re-
ceiving a particular query is unrelated to the content of the
query. A host doesn’t have any information about which
other hosts may best be able to resolve the query. Thus,
these “blind” search probes can not be on average more
effective than probing random nodes. Indeed, simulations
in [9] suggest that random probing is a reasonable model for
search performance in these decentralized unstructured P2P
systems.

To improve system performance, one wants to minimize
the number of hosts that have to be probed before the query
is resolved. One way to do this is to replicate the data on
several hosts.1 That is, either when the data is originally

1For the basic questions we address, it does not matter if
the actual data is replicated or if only pointers to the data



stored or when it is the subject of a later search, the data can
be proactively replicated on other hosts. Gnutella does not
support proactive replication, but at least part of the current
success of FastTrack-based P2P networks can be attributed
to replication: FastTrack designates high-bandwidth nodes
as search-hubs (super-nodes). Each supernode replicates the
index of several other peers. As a result, each FastTrack
search probe emulates several Gnutella probes and thus is
much more effective.

It is clear that blind search is more effective when a larger
index can be viewed per probe, but even though FastTrack
increased per-probe capacity, it basically uses the same repli-
cation strategy as Gnutella: The relative index capacity ded-
icated to each item is proportional to the number of peers
that have copies.

Thus, current approaches to replication are largely im-
plicit. We consider the case where one designs an explicit
replication strategy. The fundamental question we address
in our paper is: given fixed constraints on per-probe capac-
ity, what is the optimal way to replicate data?2

We define replication strategies that, given a query fre-
quency distribution, specify for each item the number of
copies made. The main metric we consider is the perfor-
mance on successful queries, which we measure by the re-
sulting expected (or average) search size A. We also consider
performance on insoluble queries, which is captured by the
maximum search size allowed by the system.

Our analysis reveals several surprising fundamental re-
sults. We first consider two natural but very different repli-
cation strategies: Uniform and Proportional. The Uniform
strategy, replicating everything equally, appears naive, whereas
the Proportional strategy, where more popular items are
more replicated, is designed to perform better. However,
we show that the two replication strategies have the same
expected search size on successful queries. Furthermore, we
show that the Uniform and Proportional strategies consti-
tute two extreme points of a large family of strategies which
lie “between” the two and that any other strategy in this
family has better expected search size. We then show that
one of the strategies in this family, Square-root replication,
minimizes the expected search size on successful queries.

Proportional and Uniform replications, however, are not
equivalent. Proportional makes popular items easier to find
and less popular items harder to find. In particular, Propor-
tional replication requires a much higher limit on the max-
imum search size while Uniform minimizes this limit and,
thus, minimizes resources consumed on processing insolu-
ble queries. We show that the maximum search size with
Square-root strategy is in-between the two (though closer
to Uniform), and define a range of optimal strategies that
balance the processing of soluble and insoluble queries. In-
terestingly, these optimal strategies lie “between” Uniform
and Square-root and are “far” from Proportional.

Last, we address how to implement these replication strate-
gies in the distributed setting of an unstructured P2P net-
work. It is easy to implement the Uniform and Propor-

are replicated. The actual use depends on the architecture
and is orthogonal to the scope of this paper. Thus, in the
sequel, “copies” refers to actual copies or pointers.
2Our analysis assumes adaptive termination mechanism,
where the search is stopped once the query is resolved. See
[7] for a discussion of a different question related to replica-
tion in P2P networks without adaptive termination.

tional replication strategies; for Uniform the system creates
a fixed number of copies when the item first enters the sys-
tem, for Proportional the system creates a fixed number of
copies every time the item is queried. What isn’t clear is
how to implement the Square-root replication policy in a
distributed fashion. We present several simple distributed
algorithms which produce optimal replication. Surprisingly,
one of these algorithms, path replication, is implemented, in
a somewhat different form, in the Freenet P2P system.

These results are particularly intriguing given that Pro-
portional replication is close to what is used by current P2P
networks: With Gnutella there is no proactive replication; if
we assume that all copies are the result of previous queries,
then the number of copies is proportional to the query rate
for that item. Even FastTrack, which uses proactive replica-
tion, replicates the complete index of each node at a search
hub so the relative representation of each item remains the
same. Our results suggest that Proportional, although in-
tuitively appealing, is far from optimal and a simple dis-
tributed algorithm which is consistent in spirit with Fast-
Track replication is able to obtain optimal replication.

In the next section we introduce our model and metrics
and present a precise statement of the problem. In Sec-
tion 3 we examine the Uniform and Proportional replication
strategies. In Section 4 we show that Square-root replica-
tion minimizes the expected search size on soluble queries
and provide some comparisons to Proportional and Uniform
replication. Section 5 defines the optimal policy parameter-
ized by varying cost of insoluble queries. In Section 6 we
present distributed algorithms that yields Square-root repli-
cation and present simulation results of its performance.

2. MODEL AND PROBLEM STATEMENT
The network consists of n nodes, each with capacity ρ

which is the number of copies/keys that the node can hold. 3

Let R = nρ denote the total capacity of the system. There
are m distinct data items in the system. The normalized
vector of query rates takes the form q = q1 ≥ q2 ≥ · · · ≥ qm

with
�
qi = 1. The query rate qi is the fraction of all queries

that are issued for the ith item.
An allocation is a mapping of items to the number of

copies of that item (where we assume there is no more than
one copy per node). We let ri denote the number of copies
of the i’th item (ri counts all copies, including the original
one), and let pi ≡ ri/R be the fraction of the total system
capacity allotted to item i:

� m
i=1 ri = R. The allocation

is represented by the vector p = (r1/R, r2/R, . . . , rm/R).
A replication or allocation strategy is a mapping from the
query rate distribution q to the allocation p.

We assume R ≥ m ≥ ρ because outside of this region the
problem is either trivial (if m ≤ ρ the optimal allocation
is to have copies of all items on all nodes) or insoluble (if
m > R there is no allocation with all items having at least
one copy).

Our analysis is geared for large values of n (and R = ρn)
with our results generally stated in terms of p and ρ with
n factored out. Thus, we do not concern ourselves with
integrality restrictions on the ri’s. However, we do care
about the bounds on the quantities pi. Since ri ≥ 1, we

3Later on in this section we explain how to extend the def-
initions, results, and metrics to the case where nodes have
heterogeneous capacities.



have pi ≥ ` where ` = 1
R

. Since there is no reason to have
more than one copy of an item on a single node, we have
ri ≤ n and so pi ≤ u where u = n

R
= ρ−1. Later in this

section we will discuss reasons why these bounds may be
made more strict.

We argued in the introduction that performance of blind
search is captured well by random probes. This abstraction
allows us to evaluate performance without having to con-
sider the specifics of the overlay structure. Simulations in [9]
show that random probes are a reasonable model for several
conceivable designs including Gnutella-like overlays. Specif-
ically, the search mechanism we consider is random search:
The search repeatedly draws a node uniformly at random
and asks for a copy of the item; the search is stopped when
the item is found. The search size is the number of nodes
drawn until an answer is found. With the random search
mechanism, search sizes are random variables drawn from
a Geometric distribution with expectation ρ/pi. Thus, per-
formance is determined by how many nodes have copies of
any particular item. For a query distribution q and an allo-
cation p, we define the expected search size (ESS) Aq(p) to
be the expected number of nodes one needs to visit until an
answer to the query is found, averaged over all items. It is
not hard to see that

Aq(p) = 1/ρ( �
i

qi/pi) . (1)

The set of legal allocations P is a polyhedron defined by
the (m−1)-dimensional simplex of distributions on m items,
intersected with an m-dimensional hypercube, which defines
upper and lower bounds on the number of copies of each
item:

m

�
i=1

pi = 1 (2)

` ≤ pi ≤ u . (3)

The legal allocation that minimizes the expected search
size is the solution to the optimization problem

Minimize
m

�
i=1

qi/pi such that p ∈ P .

One obvious property of the optimal solution is mono-
tonicity

u ≥ p1 ≥ p2 ≥ · · · ≥ pm ≥ ` (4)

(If p is not monotone then consider two items i, j with qi >
qj and pi < pj . The allocation with pi and pj swapped is
legal, if p was legal, and has a lower ESS.)

In the next section we explore the performance of two
common replication strategies, Uniform and Proportional.
However, we first discuss refinements of our basic model.

2.1 Bounded search size and insoluble queries
So far we have assumed that searches continue until the

item is found, but we now discuss applying these results in
a more realistic setting when searches are truncated when
some maximal search size L is reached. We say an item is
locatable if a search for it is successful with high probability.
Evidently, an item is locatable if the fraction of nodes with
a copy ρpi is sufficiently large with respect to L. Clearly,
truncated searches have some likelihood of failing altogether.
The probability of failure is at most 2−C if pi ≥ C/(ρL).

Thus, if C = O(log L) then the failure probability would be
polynomially small in L.

In order to compare two allocations under truncated search,
we set the relation between L and ` such that the same base
set of items is locatable. We now argue that when all m
items are locatable, Expression (1) constitutes a close ap-
proximation of the expected truncated search size. The dis-
tribution of search sizes under truncated random searches
is a Geometric distribution with parameter pi, where val-
ues greater by L are truncated by L. Thus, Expression (1),
which models untruncated search, constitutes an upper bound
on the truncated expected search size. The error, however,
is at most mini

�
j≥1(1− ρpi)

L+j = mini(1− ρpi)
L/(ρpi) ≤

exp(−C)/(ρ`) = (L/C) exp(−C). In the sequel, we assume
that ` is such that ` > lnL/(ρL) and use the untruncated
approximation (1) for the expected search size (it is within
an additive term of exp(−`ρL/ lnL) < 1). Also note that
the likelihood for an unsuccessful search for a locatable item
is at most exp(−`ρL) < 1/L. Thus, even though each lo-
catable item can have some failed searches, these searches
constitute a very small fraction of total searches for the item.

The maximum search size parameter L is also important
for analyzing the cost of insoluble queries; that is, queries
made to items that are not locatable. In actual systems,
some fraction of queries are insoluble, and search performed
on such queries would continue until the maximum search
size is exceeded. The cost of these queries is not captured by
the ESS metric, but is proportional to L and to the fraction
of queries that are insoluble.

When comparing replication strategies on the same set of
locatable items, we need to consider both the ESS, which
captures performance on soluble queries and L, which cap-
tures performance on insoluble queries. In this situation we
assume that the respective L(p) is the solution of mini pi =
lnL/(ρL). Thus, if fs is the fraction of queries which are
soluble and (1 − fs) is the fraction of insoluble queries, the
performance of the allocation p is

fsAq(p) + (1 − fs)L(p) . (5)

2.2 Heterogeneous capacities and bandwidth
So far we consider a homogeneous setting, where all copies

have the same size and all nodes have the same storage and
the same likelihood of getting probed. In reality, hosts have
different capacities and bandwidth and, in fact, the most
recent wave of unstructured P2P networks [5, 4] exploits this
asymmetry. For simplicity of presentation we will keep using
the homogeneous setting in the sequel, but we note that all
out results can be generalized in a fairly straightforward way
to heterogeneous systems.

Suppose nodes have capacities ρi and visitation weight vi

(in the homogeneous case vi = 1, in general vi is the factor
in which the visitation rate differs from the average). It is
not hard to see that the average capacity seen per probe is
ρ =

�
i viρi. The quantity ρ simply replaces ρ in Equation 1

and in particular, the ESS of all allocations are affected by
the same factor; thus all our findings on the relative perfor-
mance of different allocations also apply for heterogeneous
capacities and visitation rates.

An issue that arises when the replication is of copies (rather
than pointers) is that items often have very different sizes.
Our subsequent analysis can be extended to this case by
treating the ith item as a group of ci items with the same



query rate, where ci is the size of item i. As a result we
obtain altered definitions of the three basic allocations we
consider:

• Proportional has pi = ciqi/
�

j cjqj (proportional to

query rate and size).

• Uniform has pi = ci/
�

j cj (proportional to item’s

size).

• Square-root has pi = ci
√
qi/

�
j cj

√
qj (proportional

to size and to the square-root of the query rate).

3. ALLOCATION STRATEGIES

3.1 Uniform and Proportional
We now address the performance of two replication strate-

gies. The Uniform replication strategy is where all items are
equally replicated:

Definition 3.1. Uniform allocation is defined when ` ≤
1/m ≤ u and has pi = 1/m for all i = 1, . . . ,m.

This is a very primitive replication strategy, where all items
are treated identically even though some items are more
popular than others. One wouldn’t, initially, think that such
a strategy would produce good results.

When there are restriction on the search size (and thus on
`), Uniform allocation has the property that it is defined for
all q for which some legal allocation exists: Any allocation
p other than Uniform must have i where pi > 1/m and j
where pj < 1/m; If Uniform results in allocations outside
the interval [`, u], then either 1/m > u (and thus pi > u) or
1/m < ` (and thus pj < `).

An important appeal of the Uniform allocation is that it
minimizes the required maximum search size, and thus, min-
imizes system resources spent on insoluble queries. It follows
from Equation (5) that when a large fraction of queries are
insoluble, Uniform is (close to) optimal.

Another natural replication strategy is to have ri be pro-
portional to the query rate.

Definition 3.2. Proportional allocation is defined when
` ≤ qi ≤ u. The Proportional solution has pi = qi for all i.

Some of the intuitive appeal of Proportional allocation is
that it minimizes the maximum utilization rate [9]. This
metric is relevant when the replication is of copies rather
than of pointers; that is, when a successful probe is much
more expensive to process than an unsuccessful probe. The
utilization rate of a copy is the average rate of requests it
serves. Under random search, all copies of the same item
i have the same utilization rate qi/pi; when there are more
copies, each individual copy has a lower utilization. To avoid
hot-spots, it is desirable to have low values for the maximum
utilization rate of a copy maxi qi/pi. The average utilization
over all copies,

� m
i=1 piqi/pi = 1, is independent of the allo-

cation p. The proportional allocation has qi/pi = 1 for all
i, and so it clearly minimizes the maximal value maxi qi/pi.

When compared to Uniform, Proportional improves the
most common searches at the expense of the rare ones, which
presumably would improve overall performance. We now
analyze some of the properties of these two strategies.

A straightforward calculation reveals the following sur-
prising result:

Lemma 3.1. Proportional and Uniform allocations have
the same expected search size A = m/ρ, which is independent
of the query distribution.

We note that Lemma 3.1 easily generalizes to all alloca-
tions that are a mix of Proportional and Uniform, in which
each item i has pi ∈ {1/m, qi}. We next characterize the
space of allocations.

3.2 Characterizing allocations
As a warmup, we consider the space of allocations for two

items (m = 2). We shall see that Proportional and Uniform
constitute two points in this space with anything “between”
them achieving better performance, and anything “outside”
having worse performance. Consider a pair of items with
qi ≥ qj . The range of allocations is defined by a single pa-
rameter 0 < x < 1, with pi/(pi + pj) = x and pj/(pi + pj) =
(1 − x). Proportional corresponds to x = qi/(qi + qj), and
Uniform to x = 0.5. The range 0.5 ≤ x ≤ qi/(qi + qj)
captures allocations “between” Uniform and Proportional.
The “outside” range 0 < x < 0.5 contains non-monotone
allocations where the less-popular item obtains a larger al-
location. The “outside” range 1 > x > qi/(qi + qj) contains
allocations where the relative allocation of the more popular
item is larger than its relative query rate. These different
allocations are visualized in Figure 1(A), which plots pi/pj

as a function of qi/qj .
The ESS for these two items is proportional to qi/x +

qj/(1 − x). This function has equal value on x = 0.5 and
x = qi/(qi + qj) and is convex. The minimum is obtained at
some middle point in the “between” range. By taking the
first derivative, equating it to zero, and solving the resulting
quadratic equation, we obtain that the minimum is obtained
at x =

√
qi/(

√
qi +

√
qj). Figure 1(B) shows the expected

search size when using these allocations on two items (m = 2
and ρ = 1). In this case, the maximum gain factor by using
the optimal allocation over Uniform or Proportional is 2.

In the sequel we extend the observations made here to ar-
bitrary number of items (m ≥ 2). In particular, we develop
a notion of an allocation being “between” Uniform and Pro-
portional and show that these allocations have better ESS,
and that “outside” allocations have worse ESS. We also de-
fine the policy that minimizes the ESS, and we bound the
maximum gain as a function on m, u, and `.

3.3 Between Uniform and Proportional
For m = 2, we noticed that all allocations that lie “be-

tween” Uniform and Proportional have smaller ESS. For
general m we first define a precise notion of being between
Uniform and Proportional:

Definition 3.3. An allocation p lies between Uniform
and Proportional if for any pair of items i < j we have
qi/qj ≥ pi/pj ≥ 1; that is, the ratio of allocations pi/pj

is between 1 (“Uniform”) and the ratio of their query rates
qi/qj (“Proportional”).

Note that this family includes Uniform and Proportional
and that all allocations in this family are monotone. We
now establish that all allocations in this family other than
Uniform and Proportional have a strictly better expected
search size:

Theorem 3.1. Consider an allocation p between Uniform
and Proportional. Then p has an expected search size of at
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Figure 1: (A) The space of allocations on two items (B) The average query cost for two items

most m/ρ. Moreover, if p is different from Uniform or Pro-
portional then its expected search size is strictly less than
m/ρ.

Proof. The limits qi/qj ≥ pi/pj ≥ 1 hold if and only
if they hold for any consecutive pair of items (that is, for
j = i + 1). Thus, the set of “between” allocations is char-
acterized by the m − 1-dimensional polyhedron obtained
by intersecting the m − 1-dimensional simplex (the con-
straints

�
pi = 1 pi > 0 defining the space of all alloca-

tions) with the additional constraints pi ≥ pi+1 and pi+1 ≤
piqi+1/qi. Observe that the expected search size function
F (p1, . . . , pm) =

� m
i=1 qi/pi is convex. Thus, its maximum

value(s) must be obtained on vertices of this polyhedron.
The vertices are allocations where for any 1 ≤ i < m, either
pi = pj or pi = pjqi/qj . We refer to these allocations as
“vertex allocations.”

It remains to show that the maximum of the expected
search size function over all vertex allocations is obtained
on the Uniform or Proportional allocations. We show that
if we are at a vertex other than Proportional or Uniform,
we can get to Uniform or Proportional by a series of moves,
where each move is to a vertex with a larger ESS than the
one we are currently at.

Consider a “vertex” allocation p which is different than
Proportional and Uniform. Let 1 < k < m be the mini-
mum such that the ratios p2/p1, . . . , pk+1/pk are not all 1
or not all equal to the respective ratios qi+1/qi. Note that
by definition we must have that qi+1 < qi for at least one
i = 1, . . . , k− 1; and qk+1 < qk. (Otherwise, if q1 = · · · = qk

then any vertex allocation is such that p1, . . . , pk+1 are con-
sistent with Uniform or with Proportional; if qk = qk+1 then
minimality of k is contradicted).

There are now two possibilities for the structure of the
(k + 1)-prefix of p:

1. We have pi+1/pi = 1 for i = 1, . . . , k−1 and pk+1/pk =
qk/qk+1.

2. We have pi+1/pi = qi+1/qi for i = 1, . . . , k − 1 and
pk+1/pk = 1.

Claim: at least one of the two “candidate” vertices char-
acterized by

• p′: p′i+1/p
′
i = 1 for i = 1, . . . , k and p′i+1/p

′
i = pi+1/pi

for (i > k), or

• p′′: p′′i+1/p
′′
i = qi+1/qi for i = 1, . . . , k and p′′i+1/p

′′
i =

pi+1/pi for (i > k).

has strictly worse ESS than p.
Note that this claim concludes the proof: We can itera-

tively apply this move, each time selecting a “worse” can-
didate. After each move, the prefix of the allocation which
is consistent with either Uniform or Proportional is longer.
Thus, after at most m−1 such moves, the algorithm reaches
the Uniform or the Proportional allocation.

The proof of the claim is fairly technical and is deferred
to the Appendix.

We next consider the two families of “outside” allocations
and show that they perform worse than Uniform and Pro-
portional.

Lemma 3.2. Allocations such that one of the following
holds

• ∀j, pj < pj+1 (less popular item gets larger allocation)
or

• ∀j, pj/pj+1 > qj/qj+1 (between any two items, the
more popular item get more than its share according
to query rates)

perform strictly worse than Uniform and Proportional.

Proof. The arguments here are simpler, but follow the
lines of the proof of Theorem 3.1. We start with the first
family of “outside” allocations. Consider the intersection of
the allocation simplex with the halfspace constraints pi ≤
pi+1. These constraints constitute a cone with one vertex
which is the Uniform allocation. The resulting polyhedron
obtained from the intersection with the simplex has addi-
tional vertices, but note that all these vertices lie on the
boundary of the simplex (and thus, the ESS function is infi-
nite on them). We now need to show that the minimum
of the ESS function over this polyhedron is obtained on
the Uniform allocation. Recall that the function is convex,



and its global minimum is obtained outside this polyhedron.
Thus, the minimum over the polyhedron must be obtained
on a vertex, but the only vertex with bounded ESS value
is the Uniform allocation. Thus, the minimum must be ob-
tained on the Uniform allocation.

Similar arguments apply for the second family. We con-
sider the halfspace constraints pi+1 ≥ piqi+1/qi. The result-
ing polyhedron includes the Proportional allocation as the
only vertex with finite ESS value.

The following observation will become useful when bounds
are imposed on allocation sizes of items.

Lemma 3.3. All allocations in the “between” family result
in a narrower range of possible item allocation values than
Proportional, that is, we have p1 ≤ q1 and pm ≥ qm.

Proof. Consider such an allocation p. We have that
pi ≥ (qi/q1)p1. Thus 1 ≥

� m
i=1 pi ≥ (

� m
i=1 qi)p1/q1 =

p1/q1. Hence, p1 ≤ q1. Similarly pi ≤ (qi/qm)pm, and we
obtain that pm ≥ qm.

4. THE SQUARE-ROOT ALLOCATION
We consider an allocation where for any two items, the

ratio of allocations is the square root of the ratio of query
rates. Note that this allocation lies “between” Uniform and
Proportional in the sense of Definition 3.3. We show that
this allocation minimizes the ESS.

Definition 4.1. Square-root allocation is defined when
` ≤ √

qi/
�

i

√
qi ≤ u and has pi =

√
qi/

�
i

√
qi for all i.

Lemma 4.1. Square-root allocation, when defined, mini-
mizes the expected search size.

Proof. The goal is to minimize
� m

i=1 qi/pi. This natural
simple optimization problem had arisen in different contexts,
e.g, the capacity assignment problem [8] and scheduling data
broadcast [14]. We include a proof for the sake of complete-
ness.

Substituting pm = 1 −
� m−1

i=1 pi we have

F (p1, . . . , pm−1) =
m−1

�
i=1

qi/pi + qm/(1 −
m−1

�
i=1

pi) .

We are looking for the minimum of F when
� m−1

i=1 pi < 1
and pi > 0. The value of F approaches ∞ when we get closer
to the boundary of the simplex. Thus, the minimum must
be obtained at an interior point. By solving dF/dpi = 0 we
obtain that

pi = (1 −
m−1

�
j=1

pj) � qi/qm = pm � qi/qm .

4.1 How much can we gain?
Recall that for all q, the expected search size under both

Uniform and Proportional allocations is m/ρ. The expected
search size under Square-Root allocation is

( � q
1/2
i )2/ρ ,

and depends on the query distribution. An interesting ques-
tion is the potential gain of applying Square-root rather than
Uniform or Proportional allocations. We refer to the ratio
of the ESS under Uniform/Proportional to the ESS under
Square-root as the gain factor. We first bound the gain
factor by m, u, and ` (proof is in the Appendix):

Lemma 4.2. Let ASR be the expected search size using
Square-root allocation. Let Auniform be the expected search

size using Proportional or Uniform allocation. Then

Auniform/ASR ≤ m(u+ `−m`u) .

Moreover, this is tight for some distributions.

Note that if ` = 1/m or u = 1/m then the only legal alloca-
tion is 1/m on all items, and indeed the gain factor is 1. If
`� 1/m, the gain factor is roughly mu.
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Figure 2: The ratio of the ESS under Uni-
form/Proportional to the ESS under square root al-
location, for truncated Zipf-like query distributions
on m items. The query rate of the ith most popular
item is proportional to i−w.

In [9] we considered truncated Zipf-like query distribu-
tions, where there are m items and the query rate of the ith
most popular item is proportional to i−w. A simple calcu-
lation (see Table 1) shows that the gain factor dramatically
grows with the skew. In particular, the gain factor is a con-

w ρASR ≈ Gain factor

w < 1 1−w
(1−w/2)2

m (1−w/2)2

1−w

w = 1 4m/ lnm 1
4

lnm

1 < w < 2 w−1
(1−w/2)2

m2−w (1−w/2)2

w−1
mw−1

w = 2 ln2m m/ ln2 m

w > 2 w−1
(w/2−1)2

(w/2−1)2

w−1
m

Table 1: Asymptotic dependence on m of the gain
factor and ESS under Square-root allocation for
truncated m-items Zipf distribution with power w.

stant fraction for w < 1, logarithmic in m for w = 1, and
(fractional) polynomial in m for w > 1; for w > 2 the ESS



under Square-root is constant and the gain factor is thus
linear in m. Figure 2 plots the gain factor as a function of
the number of items for representative values of the power
parameter w.

We next consider two “natural” query distribution ob-
tained from Web proxy logs (the Boeing logs described in [1]).
We looked at the top m Urls, with “query rates” propor-
tional to the number of requests, and top m hostnames
(Web sites), with “query rates” proportional to the num-
ber of users that issued a request to the site. Figure 3 shows
the gain-factor and the ESS under Square-root allocation
and Proportional allocation as a function of the number of
items for these two distributions. For larger values of m, the
ESS of Square-root allocation is 30%-50% of that of Propor-
tional or Uniform allocations. Although these gaps are not
as dramatic as for highly-skewed Zipf distributions, they are
substantial.

The Uniform, Proportional, and Square-root allocations
result in different values of pm (the allocation assigned to the
locatable item with smallest query rate); in turn, this cor-
responds to different required minimum values of the max-
imum search size, which determines the cost of insoluble
queries. Figure 4 shows that for the hostname distribution,
the maximum search size under Square-root is within a fac-
tor of 2 of the smallest possible (Uniform allocation) whereas
Proportional requires a much larger maximum search size.
In the next section we develop the optimal policy, which
minimizes the combined resource consumption on soluble
and insoluble queries.

5. SQUARE-ROOT∗AND PROPORTIONAL∗
ALLOCATIONS

Suppose now that we fix the set of locatable items and the
bound on the maximum search size (that is, we fix the lower
bound ` on the allocation of any one item). Phrased differ-
ently, this is like fixing the resources consumed on insoluble
queries.

With ` (or u) fixed, Square-root allocation may not be
defined - since the smallest (largest) allocation may be below
(above) the bound.

We now ask what is the replication strategy which mini-
mizes the ESS under these constraints ?

We define a natural extension of Square-root, Square-
root∗, which always results in a legal allocation (when one
exists, that is, when ` ≤ 1/m ≤ u). Square-root∗ allocation
lies between Square-root and Uniform and we show that
Square-root∗ minimizes the ESS.

Since Square-root∗ minimizes the ESS while fixing the
maximum search size, by sweeping ` we obtain a range of op-
timal strategies for any given ratio of soluble and insoluble
queries. The extremes of these range are Uniform alloca-
tion, which is optimal if insoluble queries completely domi-
nate and Square-root allocation which is optimal if there are
relatively few insoluble queries.

5.1 Square-root∗ allocation

Lemma 5.1. Consider a query distribution q where q1 ≥
· · · ≥ qm and ` ≤ 1/m ≤ u. There is a unique monotone
allocation p ∈ P for which the following conditions apply.

1. if u > pi, pj > ` then pi/pj = � (qi/qj ).

2. if pj = ` ≤ pi or if pj ≤ u = pi, then pi/pj ≤
� (qi/qj).

Furthermore, this allocation minimizes the ESS.

The proof is deferred to the Appendix, and provides a simple
iterative procedure to compute the Square-root∗ allocation
for arbitrary qi’s.

The Square-root∗ allocation as a function of ` varies be-
tween ` ≤ √

qm/
�

i

√
qi (where Square-root∗ coincides with

the Square-root allocation) and ` = 1/m (where Square-
root∗ coincides with the Uniform allocation). On intermedi-
ate values of `, a suffix of the items is assigned the minimum
allocation value `, but the remaining items still have alloca-
tions proportional to the square-root of their query rate.

In the range [
√
qm/

�
i

√
qi, 1/m], the ESS as a function

of ` is a piecewise hyperbolic increasing function that is
minimized at ` =

√
qm/

�
i

√
qi. The breakpoints of this

function correspond to a suffix of the items that have min-
imum allocation. Basic algebraic manipulations show that
the breakpoints are `n = sn/(1−

� m
i=n si + sn(m−n+ 1)),

where si =
√
qi/

�
j

√
qj is the allocation of the ith item

under Square-root allocation. Note that the extremes of
this range are indeed `m = sm (Square-root allocation) and
`1 = 1/m (Uniform allocation).

The ESS for ` ∈ [`n, `n−1) is given by

m

�
i=n

qi/`+ (

n−1

�
i=1

qi/si)

� n−1
i=1 si

1 − l(m− n + 1)

and is increasing with `. The maximum search size needed to
support the allocation is approximately 1/` and is decreas-
ing with `. The overall search size (as defined in Equation 5)
is a convex combination of the ESS and the MSS and is min-
imized inside the interval [sm, 1/m]. Figure 5 illustrates the
combined expected search size for different mixes of soluble
and insoluble queries as a function of `. When all queries are
soluble (fs = 1), the minimum is obtained at ` = sm, where
Square-root∗ coincides with Square-root (which minimizes
the ESS). At the other extreme, when all queries are insol-
uble (fs = 0), the minimum is obtained at ` = 1/m, where
Square-root∗ coincides with Uniform (which minimizes the
MSS).

5.2 Proportional∗ allocation
Similarly, with ` (or u) fixed, the Proportional allocation

may not be defined. We similarly define Proportional∗ al-
location to be the legal allocation that minimizes the maxi-
mum utilization rate.

Proportional∗ allocation is defined whenever there exists
a legal allocation, that is, when ` ≤ 1/m ≤ u. We define
Proportional∗ allocation as the unique allocation defined by
the following conditions:

• if u > pi, pj > ` then pi/pj = qi/qj .

• if pj = ` ≤ pi or if pj ≤ u = pi, then pi/pj ≤ qi/qj .

When we have ` ≤ qi ≤ u for all i then Proportional∗ is
the same as Proportional. It follows from Theorem 3.1 that
Proportional∗ allocation has ESS no higher than Uniform
allocation and when Proportional∗ is different than Propor-
tional (that is, there are qi < ` or qi > u) then Proportional∗

has a lower ESS than Uniform. Proportional∗ allocation lies
“between” Proportional and Uniform (in the sense of The-
orem 3.3).
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6. DISTRIBUTED REPLICATION
Our previous results identified the optimal replication strat-

egy. In this section we show that it can be achieved, via
simple distributed protocols, in a decentralized unstructured
P2P network.

At least conceptually, The Uniform allocation can be ob-
tained via a simple scheme which replicates each item in a
fixed number of locations when it first enters the system. We
had seen that the optimal allocation is a hybrid of Square-
root and Uniform allocations. We first develop algorithms
that obtain Square-root allocation, and then discuss how
they can be slightly modified to optimally balance the cost
of soluble and insoluble queries.

In order to consider replication algorithms4 aimed at query-
rate-dependent allocations (like Proportional and Square-
root), we model a dynamic setting where copies are created

4A note on terminology: a replication strategy is a map-
ping between q and p whereas a replication algorithm is
a distributed algorithm that realizes the desired replication
strategy.

and deleted:

• Creation: New copies can be created after each
query. After a successful random search, the request-
ing node creates some number of copies, call it C, at
randomly-selected nodes. This number C can only de-
pend on quantities locally observable to the requesting
node.

• Deletion: Copies do not remain in the system for-
ever; they can be deleted through many different mech-
anisms. All we assume here of copies is that their
lifetimes are independent of the identity of the item
and the survival probability of a copy is non-increasing
with its age: if two copies were generated at times t1
and t2 > t1 then the second copy is more likely to still
exist at time t3 > t2.

This creation and deletion processes are consistent with
our search and replication model and with the operation of
unstructured networks. In our model, and perhaps in re-
ality, the network would perform copy creation by visiting
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nodes in a similar fashion to how it performs search.5 Our
copy deletion process is consistent with the expectation that
in deployed networks, copy deletion occurs either by a node
going offline or by some replacement procedure internal to a
node. We expect node crashes to be unrelated to the content
(part of the index) they possess. The replacement proce-
dure within each node should not discriminate copies based
on access patterns. Two common policies, Least Recently
Used (LRU) or Least Frequently Used (LFU) are inconsis-
tent with our assumption, but other natural policies such as
First In First Out (FIFO), fixed lifetime durations, or ran-
dom deletions (when a new copy is created remove a cached
copy selected at random), are consistent with it.

Let 〈Ci〉 be the average value of C that is used for creating
copies of item i (〈Ci〉 may change over time). We say that
the system is in steady state when the lifetime distribution
of copies does not change over time. We use the following
property of this deletion process in our distributed replica-
tion algorithm:

Claim 6.1. If the ratio 〈Ci〉/〈Cj〉 remains fixed over time
and 〈Ci〉, 〈Cj〉 are bounded from below by some constant,
then pi/pj → qi〈Ci〉/(qj〈Cj〉)

Thus, Proportional allocation is obtained if we use the same
value of C for all items.

A more challenging task is designing algorithms that re-
sult in Square-root allocation. The challenge in achieving
this is that no individual node issues or sees enough queries
to estimate the query rate qi, and we would like to deter-
mine C without using additional inter-host communication
on top of what is required for the search and replication. We
can use the above claim to obtain the following condition for
Square-root allocation

5This process automatically adjust to designs where search
is performed on a fraction of nodes, or when nodes are not
evenly utilized, such as with FastTrack, since hosts receive
copies in the same rate that they receive search probes.

Corollary 6.1. If 〈Ci〉 ∝ 1/
√
qi then pi/pj → � qi/qj

(the proportion factor may vary with time but should be the
same for all items).

We propose three algorithms that achieve the above prop-
erty while obeying our general guidelines. The algorithms
differ in the amount and nature of bookkeeping, and so
which algorithm is more desirable in practice will depend on
the details of the deployment setting. The first algorithm,
path replication, uses no additional bookkeeping; the sec-
ond, replication with sibling-number memory, records with
each copy the value C (number of sibling copies) used in its
creation; the third probe memory has every node record a
summary on each item it sees a probe for. We show that un-
der some reasonable conditions, sibling-number and probe-
memory have 〈Ci〉 close to its desired value and path repli-
cation has 〈Ci〉 converge over time to its desired value.

6.1 Path replication
At any given time, the expected search size for item i,

Ai, is inversely proportional to the allocation pi. If 〈Ci〉 is
steady then pi ∝ qi〈Ci〉 and thus Ai ∝ 1/(qi〈Ci〉). The Path
replication algorithm sets the number of new copies C to be
the size of the search (the number of nodes probed). At the
fixed point, when Ai and 〈Ci〉 are steady and equal, they
are proportional to 1/

√
qi; and pi is proportional to

√
qi.

We show that in steady state, under reasonable condi-
tions, Ai and 〈Ci〉 converge to this fixed point. Let Ai be
the value of Ai at the fixed point. At a given point in time,
the rate of generating new copies is Ai/Ai times the opti-
mal. This means that the rate is higher (respectively, lower)
than at the fixed point when the number of copies is lower
(respectively, higher) than at the fixed point. If the time be-
tween queries is at least of the order of the time between a
search and subsequent copy generation then path replication
will converge to its fixed points.

A possible disadvantage of path replication is that the cur-
rent Ci “overshoots” or “undershoots” the fixed point by a
large factor (Ai/Ai). Thus, if queries arrive in large bursts
or if the time between search and subsequent copy genera-
tion is large compared to the query rate then the number
of copies can fluctuate from too-few to too-many and never
reach the fixed point. Note that this convergence issue may
occur even for a large number of nodes. We next consider
different algorithms that circumvents this issue by using 〈Ci〉
that is close to this fixed-point value.

6.2 Replication with sibling-number memory
Observe that the search size alone is not sufficient for es-

timating the query rate qi at any point in time (path repli-
cation only reached the appropriate estimates at the fixed
point). In order to have 〈Ci〉 ∝ 1/

√
qi we must use some ad-

ditional bookkeeping. Under replication with sibling-number
memory (SNM), with each new copy we record the number
of “sibling copies” that were generated when it was gener-
ated, and its generation time. The algorithm assumes that
each node known the historic lifetime distribution as a func-
tion of the age of the copy (thus, according to our assump-
tions, the “age” of the copy provides the sibling survival
rate).

Consider some past query for the item, aj , let dj > 0 be
the number of sibling copies generated after aj and let λj

be the expected fraction of surviving copies at the current
time.



Suppose that every copy stores (d, λ) as above. Let T be
such that copies generated T time units ago have a positive
probability of survival. Let PT be the set of copies with age
at most T . Then,

�
c∈PT

1/(λcdc) is an unbiased estimator
for the number of requests for the item in the past T time
units. Denote by 〈1/(λcdc)〉 the expectation of 1/(dλ) over
copies.

We thus obtain that

qi ∝ 〈1/(λcdc)〉pi ∝ 〈1/(λcdc)〉(1/Ai)

Hence, it suffices to choose Ci with expected value 〈Ci〉 ∝
(1/〈1/(λcdc)〉)0.5A0.5

i .

6.3 Replication with probe memory
We now consider a scheme where each node records a

summary of all “recent”6 probes it had received: For each
item it had seen at least one probe for, the node records the
total number of probes it received and the combined size of
the searches which these probes where part of (in fact, it
is sufficient to use the search size up to the point that the
recording node is probed).

Interpret qi as the rate per node in which queries for item
i are generated. The probe rate of item i, which is the rate in
which a host in the network receives search probes for item
i, is then ri = qiAi, where Ai = 1/(ρpi) is the size of the
expected search size for i. Thus, intuitively, the query rate
qi can be obtained (estimated) from (estimates on) Ai and
ri. In order to estimate ri, which could be very low, with
reasonable confidence, we can aggregate it across multiple
nodes.

A natural choice for the size for this group, that allows the
replication strategy to be integrated with the search process,
is to aggregate along nodes on the search path. Consider
now the aggregated rate in which nodes on a search path
for i received search probes for i. The aggregated rate for
a group of nodes of size Ai is qiA

2
i = qi/(ρpi)

2. Observe
that for Square-root allocation, this aggregated rate is fixed
for all items and is equal to (

�
i

√
qi)

2/ρ2 times the rate in
which nodes generate queries.

This suggests a simple replication algorithm: when search-
ing for item i, count the total number of recent probes for
i seen on nodes in the search path. The count being lower
than the threshold suggests that the item is over-replicated
(with respect to Square-root allocation). Otherwise, it is
under-replicated. More generally, by carefully combining
information from nodes on the search path, we can obtain
high confidence estimates on Ai and ri, that can lead to
better estimates on qi.

Let v be a node and let kv be the number of recent probes
it had received for item i. Let sj (j = 1, . . . , kv) be the search

size of the jth probe seen by v for item i. Let Sv =
� kv

j=1 sj ,
7

Suppose that each node stores (kv, Sv) for each item.
Let V be a set of nodes (say, the nodes encountered on

a search for item i.). We can estimate the probe rate by

6We use the informal term “recent” for the a time duration
in which the allocation pi did not significantly change. Given
this constraint, we would typically want the duration to be
as long as possible.
7Note that the expected value of sj is Ai/2, since it is a
Geometrically distributed random variable, we expect Sv/kv

to rapidly converge to Ai/2 as kv grows.

r̂i =
�

v∈V kv/|V |, and the expected search size by

Âi = 2 �
v∈V

Sv/ �
v∈V

kv .

Since qi = ri/Ai, we can use (
�

v∈V kv)2/(2|V | �
v∈V Sv)

to estimate qi. We thus can use�
2|V | �

v∈V

Sv/ �
v∈V

kv

as a (biased) estimator for 1/
√
qi.

The accuracy of these estimates grows with
�

v∈V kv. We
earlier argued that when the allocation is Square-root, the
expectation of

�
v∈V kv (when V are nodes on the search

path for i) is fixed across items. This implies that it is
desirable to aggregate statistics on probes for an item over
number of nodes that is proportional to the search size of the
item. The confidence level in the estimates can be increased
by increasing the proportion factor.

If an item is over-allocated with respect to Square root,
then the probe rate over the search path is low, in which case
the estimates are not as accurate, but this only implies that
the item should be replicated at a higher rate. If an item
is under-allocated, then the statistics collects more probes
and the estimates obtained have even larger confidence.

6.4 Obtaining the optimal allocation
The algorithms presented above converge to Square-root

allocation, but now we discuss how they can be modified
so that we obtain the optimal allocation. For the purposes
of the discussion, assume that we fix the set of locatable
items, that is, items for which we want queries to be solu-
ble. The optimal algorithm is a hybrid of a Uniform and a
Square-root algorithms: For each locatable item, the “Uni-
form” component of the replication algorithm assigns a num-
ber of “permanent” copies (e.g., by nominating nodes that
never delete it and are replaced when they go offline). The
“Square-root” component, which can be based on any of
the specific algorithms proposed above, generates “transient
copies” as a followup on searches. The maximum search size
is set together with the number of permanent copies so that
items with this minimum number of copies would be locat-
able. The value of these two dependent parameters is then
tuned according to the mix of soluble and insoluble queries
to obtain the optimal balance between the cost of soluble
and insoluble queries.

6.5 Simulations
We argued that all the distributed replication algorithms

discussed here do indeed achieve the Square-root allocation,
though with different rates of convergence and degrees of
stability. We illustrate these convergence issued by simulat-
ing two of the proposed algorithms: path replication, and
replication with sibling-number memory.

The simulations track the fraction of nodes containing
copies of a single item in a network with 10K nodes. In
our simulations, copies had a fixed lifetime duration and
queries are issued in fixed intervals. Each search process
continues until k copies are found (k ∈ {1, 5}). The number
of new copies generated following each search is the search
size for path replication, and the estimators discussed above
for sibling-number memory. Some of the simulations in-
cluded delay between the time a search is performed and



the time the followup copies are generated. Figures 6 and 7.
show how the fraction of nodes with copies evolves over
time. The figures illustrate the convergence issues discussed
above: The sibling-memory algorithm arrives more quickly
to Square-root allocation and also is not sensitive to delayed
creation of followup copies.

In related work, [9] presents simulation results from the
path replication algorithm (two different variants thereof).
These simulations included much more general load models,
and true Gnutella-like search dynamics (but with random
walks rather than flooding for query propagation).

7. CONCLUSION
This paper asks a simple question: how should one repli-

cate data in an unstructured peer-to-peer network? To an-
swer this question, we formulated a simple model that allows
for evaluating and comparing different replication strategies
while abstracting away the particular structure of the net-
work and the specific query-propagation method used.

We found that the two most obvious replication strategies,
Uniform and Proportional, yielded identical performance on
soluble queries and in fact are outperformed by all strate-
gies that lie between them. We then identified the optimal
replication policy (which when restricted to soluble queries,
is Square-root replication). As opposed to the Uniform and
Proportional allocations, the Square-root allocation is inher-
ently nonlinear and nonlocal. Somewhat to our surprise, we
were able to find simple distributed replication algorithms
that achieve this allocation.

The distributed algorithms we proposed all result in the
optimal allocation, but they involve different amounts of
bookkeeping, rates of convergence, and degrees of stabil-
ity. An important open issue is how these algorithms would
function in more realistic settings.

8. APPENDIX

Proof (Theorem 3.1). We conclude the proof by prov-
ing the remaining claim. We start with the first case (p has
the form 1). We use the shorthand T =

� m
i=k+1 pi for the

total allocation to the “tail” items and ψ =
� m

i=k+1 qi/pi

for the contribution of the tail items to the ESS. Similarly,
we use T ′ =

� m
i=k+1 p

′
i and similarly define T ′′, ψ′, and ψ′′.

Since the relative allocation to items in the “tail” is the same
for the allocations p, p′, and p′′, we have ψ′ = ψT/T ′ and
ψ′′ = ψT/T ′′.

We now express the respective expected search sizes s, s′,
and s′′, as a function of p1 and ψ. For the allocation p we
obtain:

s = 1/p1

k

�
i=1

qi + ψ

For s′ we obtain

s′ = (1/p′1)
k

�
i=1

qi + ψ′ = (1/p′1)
k

�
i=1

qi + ψT/T ′ (6)

The sum of allocations must be 1, thus

kp1 + T = kp′1 + T ′ = 1 (7)

Since the relative allocations on the tail are the same for
p, p′ and p′′ we obtain

T/T ′ = pk+1/p
′
k+1 = p1(qk+1/qk)/p′1 . (8)

From Equations (7) and (8) we obtain that

1/p′1 = k + qk/(qk+1p1) − kqk/qk1
. (9)

and

T/T ′ = (qk+1/qk)p1/p
′
1 = (1 − p1k(1 − qk+1/qk)) (10)

By substituting Equations (9) and (10) in (6) we obtain

s′ = (k+qk/(p1qk+1)−kqk/qk+1)

k

�
i=1

qi+ψ(1−p1k(1−qk+1/qk))

thus

s′−s = (qk/qk+1 −1)(1/p1 −k)
k

�
i=1

qi −ψ(p1k(1−qk+1/qk))

If s′ − s < 0 (p′ is strictly better than p) we obtain that

ψ >
(qk/qk+1 − 1)(1/p1 − k)

� k
i=1 qi

p1k(1 − qk+1/qk)
=
qk(1/p1 − k)

�
qi

kp1qk+1

(11)
We now express s′′ in terms of p1 and ψ.

s′′ =
k

�
i=1

qi/p
′′
i + ψ′′ = kq1/p

′′
1 + ψT/T ′′ (12)

We have

kp1 + T =
k

�
i=1

p′′i + T ′′ = p′′1

k

�
i=1

qi/q1 + T ′′ = 1 (13)

and

T/T ′′ = pk+1/p
′′
k+1 = p1(qk+1/qk)/(p′′1qk+1/q1) = (q1/qk)p1/p

′′
1 .

(14)
From Equations (13) and (14) we obtain

1/p′′1 =
k

�
i=1

qi/q1 − kqk/q1 + qk/(q1p1) (15)

and

T/T ′′ = 1 − kp1 + p1

k

�
i=1

qi/qk . (16)

Substituting (15) and (16) in (12) we obtain

s′′ = k
k

�
i=1

qi − k2qk + kqk/p1 + ψ(1 − kp1 + p1

k

�
i=1

qi/qk) .

Thus,

s′′ − s = (
k

�
i=1

qi − kqk)(k − 1/p1) + ψp1(
k

�
i=1

qi/qk − k) .

The second term is always nonnegative. The first term is
nonnegative if k > 1/p1. If s′′−s < 0 (p′′ has a shorter ESS
than p) we obtain

ψ < qk(1/p1 − k)/p1 . (17)

If both s′′ < s and s′ < s we obtain from (11) and (17)
that

qk(1/p1 − k)
�
qi

kp1qk+1
< ψ < qk(1/p1 − k)/p1 .
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Figure 6: Simulating performance of Path Replication and Sibling-Memory algorithms. In these simulations
there is no delay in copy creation; the copy lifetime is 100 time units; and the inter-request-time is 2 time
units
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Figure 7: Performance of Path Replication and Sibling-Memory replication algorithms. In these simulation
there is delay of 25 time units in copy creation; the copy lifetime is 100 time units; and the inter-request
time is 2.

Thus, qk+1 <
� k

i=1 qi/k, which is a contradiction (recall
that qk+1 ≤ qi when i < k + 1).

Note that strict equality occurs only when s = s′ = s′′

and is only possible when q1 = · · · = qk+1, which contradicts
our assumption that qk+1/qk was inconsistent with previous
relations.

We now apply similar arguments to handle the second
case (where p has the form 2). In this case we have

s =
k

�
i=1

qi/pi + ψ = kq1/p1 + ψ . (18)

The sum of allocations in p and p′ must satisfy

p1/q1

k

�
i=1

qi + T = kp′1 + T ′ = 1 . (19)

We have

T/T ′ = pk+1/p
′
k+1 = qkp1/(q1p

′
1) (20)

From Equations (19) and (20) we obtain

(p′1)
−1 = q1/(p1qk) − q−1

k

k

�
i=1

qi + k (21)

and

T/T ′ = 1 − (p1/q1)
k

�
i=1

qi + kp1qk/q1 (22)

Substituting (21) and (22) in (6) we obtain

s′ =
q1

p1qk

k�
i=1

qi −
1

qk
(

k�
i=1

qi)
2 + ψ � 1 −

p1qk

q1
(q−1

k

k�
i=1

qi − k) �
Thus,

s′ − s = (q−1
k

k�
i=1

qi − k) � (q1/p1 −

k�
i=1

qi) − ψp1qk/qi � .



If s′−s < 0 we obtain that (note that since qi are monotone

non-increasing and they are not all equal we have q−1
k

� k
i=1 qi >

k)

ψ >
q1
p1qk

(
q1
p1

−
k

�
i=1

qi) . (23)

Repeating the same steps for p′′ we have

T +
p1

q1

k

�
i=1

qi) = T ′′ +
p′′1
q1

k

�
i=1

qi) = 1 (24)

and

T

T ′′ =
pk+1

p′′k+1

=
p1qk/q1
p′′1 qk+1/q1

=
p1qk

p′′1qk+1
(25)

From Equations (24) and (25) we obtain

(p′′1 )−1 =
qk − qk+1

q1qk

k

�
i=1

qi +
qk+1

p1qk
(26)

and

T

T ′′ = 1 +
p1(qk − qk+1)

q1qk+1

k

�
i=1

qi (27)

Substituting Equations (21) and (27) in (12) we get

s′′ =
k(qk − qk+1)

qk

k�
i=1

qi+
kq1qk+1

p1qk
+ψ � 1 +

p1(qk − qk+1)

q1qk+1

k�
i=1

qi �
thus,

s′′−s = (1− qk+1

qk
)(k

k

�
i=1

qi−
kq1
p1

)+ψ
p1qk

q1qk+1

k

�
i=1

qi(1−
qk+1

qk
) .

Hence, if s′′ − s < 0 we obtain (recall that qk+1 < qk and
thus (1 − qk+1

qk

) > 0.)

ψ <
kq1qk+1

p1qk

� k
i=1 qi � q1p1

−
k

�
i=1

qi � (28)

and, since ψ is nonnegative, we have

(
q1
p1

−
k

�
i=1

qi) ≥ 0 . (29)

Assume to the contrary that s′′ < s and s′ < s. We obtain
a contradiction from Equations (23),(28),(29).

Proof (Lemma 4.2). The expected search size with Uni-
form allocation is m/ρ for any choice of q. The search size
with optimal allocation is at most

max
q|`≤√

qi/ � √
qi≤u

1/ρ(

m

�
i=1

√
qi)

2 .

We are now interested in the minimum of
� √

qi over the
(m − 1)-simplex intersected with the cube ` ≤ qi ≤ u. The
function is concave and maximized at an interior point. Min-
ima are obtained at vertices, which are defined by intersec-
tion of m−1 dimensional faces of the cube with the simplex.
Algebraically, the function is minimized when allocations are

either at u or at `. 8 Solving x`+ (m − x)u = 1 we obtain
that x = (um − 1)/(u − `) items have allocation ` and the
remaining m−x = (1−m`)/(u−`) items have allocations u.
Let q` (respectively, qu) be the query rate of items obtaining
allocation ` (respectively, u). We have xq` + (m− x)qu = 1
and

√
q`/(x

√
q` + (m− x)

√
qu) = ` .

Substituting x and solving the above we obtain

q` =
`2

u+ `−m`u

qu =
u2

u+ `−m`u

Thus, at the minimum point,

� √
qi = x

√
q` + (m− x)

√
qu = 1/

√
u+ `−m`u .

Proof (Lemma 5.1). Consider a monotone allocation p
for which one of these conditions does not apply. A simple
case analysis establishes that a legal allocation with smaller
ESS can be obtained by “locally” reallocating pi +pj among
pi and pj (increasing one and decreasing the other by the
same amount). Thus, these conditions are necessary for an
optimal allocation.

We now focus on the set of legal allocations for which
condition 1 hold. These allocations have a (possibly empty)
prefix of u’s and (possibly empty) suffix of `’s and the middle
part is square-root allocated and has values between u and
`. As argued above, the optimal allocation must be of this
form.

We first argue that there must be at least one allocation in
this set by explicitly defining it: Let x = d(1− `)m/(u− `)e
be the number of u’s and m − x − 1 be the number of `’s
in the suffix. There is at most one item in the middle part,
and it has allocation between u and `.

We next show that any allocation of this form for which
condition 2 does not hold, has a neighbor allocation of that
form with a lower ESS. By neighbor allocation we refer to
one where the suffix or prefix lengths differ by at most one.
To prove this, consider the case where pj = ` ≤ pi and

pi/` > � qi/qj (the other case is similar). If this is true for
any such j and i then it is true for j being the minimal for
which pj = ` and i = j−1. If we add j to the “middle part”
and recalculate square-root allocation then it is not hard to
see that we get a better allocation with values between u
and `. If pj−1 = u (there was no middle part) we place both
pj−1 and pj in a newly-created middle part.

It remains to show that there is only one local minima
to this process of moving to a better neighbor. Consider
an allocation. Let j be the last index for which pj = u.
Let k + 1 be the first index for which pk+1 = `. The op-
timality conditions imply that u � qj+1/qj ≤ pj+1 < u and

` � qk/qk+1 ≥ pk > `. We show that if there are two differ-
ent solutions that fulfill the optimality conditions then we
get a contradiction. Let j, k and j′, k′ be the corresponding

8There can be one item which lies in between these two
limits (when x is not integral), but this adds a small term
which we ignore.



indexes and p, p′ the corresponding allocations. We first
consider the case where j = j′ and k < k′. We have
p′k+1, . . . , p

′
k′ > ` = pk+1, . . . , pk′ . As allocations sum to

1 we have p′j < pj . We must have p′j/p
′
k+1 = � qj/qk+1. On

the other hand, we also must have pj/pk+1 ≤ � qj/qk+1.
Thus, p′j/p

′
k+1 ≥ pj/pk+1, which is a contradiction. The

claims for other cases are similar: If j′ < j < k < k′ we
consider the items j′ and k′. We have p′j′ < u and p′k′ > `

thus we must have p′j′/p
′
k′ = � qj′/qk′ < u/`. On the other

hand, the assumed optimality of the other allocation im-
plies that � qj′/qk′ > u/`. Another case is j′ < j < k′ < k.
We consider the total allocation to items j, . . . , k′. If it is
larger in p′ we get a contradiction with the allocation of p′i
(i < j). If it is larger we get a contradiction by looking at
pi (i ≥ k′ + 1).
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