
Replication Strategies for Highly Available Peer-to-Peer Storage

Ranjita Bhagwan, David Moore, Stefan Savage, and Geoffrey M. Voelker

Department of Computer Science and Engineering
University of California, San Diego

Abstract
We are investigating strategies for using replication to design and
implement highly reliable peer-to-peer systems. In particular, we
are comparing the use of whole object and blocking replication,
and pursuing the use of erasure codes with blocking replication
as a novel technique for achieving high reliability even for sys-
tems primarily composed of hosts with poor availability. In this
paper, we briefly present the different replication strategies we are
exploring, how those strategies can be influenced by application
characteristics and host availability, and some preliminary simu-
lation results.

1 Introduction
In the past few years, peer-to-peer networks have become an ex-
tremely popular mechanism for large-scale content sharing. Un-
like traditional client-server applications, which centralize the
management of data in a few highly reliable servers, peer-to-
peer systems distribute the burden of data storage, computation,
communications and administration among thousands of individ-
ual client workstations. While the popularity of this approach,
exemplified by systems such as Napster [11] and Gnutella [6],
was driven by the popularity of unrestricted music distribution,
newer work has expanded the potential application base to gen-
eralized distributed file systems [1, 3, 8], persistent anonymous
publishing [4, 9], wide-area databases [7], as well as support for
high-quality video distribution [5]. The wide-spread attraction of
the peer-to-peer model arises primarily from its potential for both
low-cost scalability and enhanced availability. Ideally a peer-to-
peer system could efficiently multiplex the resources and connec-
tivity of its workstations across all of its users while at the same
time protecting its users from transient or persistent failures in a
subset of its components.

However, these goals are not trivially engineered. First-
generation peer-to-peer systems, such as Gnutella, scaled poorly
due to the overhead in locating content within the network. Con-
sequently, developing efficient lookup algorithms has consumed
most of the recent academic work in this area [13,14,16,17]. The
challenges in providing high availability to such systems is even
more poorly understood and only now being studied. In particu-
lar, unlike traditional distributed systems, the individual compo-
nents of a peer-to-peer system experience an order of magnitude
worse availability – individually administered workstations may
be turned on and off, join and leave the system, have intermittent
connectivity, and are constructed from low-cost low-reliability
components. One recent study of a popular peer-to-peer file shar-
ing system found that the majority of peers had application-level
availability rates of under 20 percent [15].

As a result, all peer-to-peer systems must employ some form of
replication to provide acceptable service to their users. In systems
such as Napster and Gnutella, this replication occurs implicitly as
each file downloaded by a user is implicitly replicated at the user’s
workstation. However, since these systems do not explicitly man-
age replication or mask failures, the availability of an object is
fundamentally linked to its popularity and users have to repeat-

edly access different replicas until they find one on an available
host. Next-generation peer-to-peer storage systems, such as the
Cooperative File System (CFS) [3], recognize the need to mask
failures from the user and implement a basic replication strategy
that is independent of the user workload.

However, how best to replicate data to build highly available
peer-to-peer systems is still an open problem. In our work we
are exploring replication strategy design tradeoffs along several
interdependent axes:

� Application characteristics.The demands made on a stor-
age system, and the utility associated with making a given
piece of data available, depend on the application being
used. Small whole-file applications, common under Unix-
like workloads, have significantly different availability re-
quirements from large-file, streaming media workloads.

� Replica placement.Existing systems such as CFS assume
that failures are independent and uniformly distributed, al-
though it is well understood that this is not so. Hence, the
placement of replicas according to measured and estimated
failure distributions can have a significant impact on overall
application availability.

� Replication granularity.Whole-file replication allows sim-
ple and low-overhead implementations of naming and
lookup, while block-level replication allows increased per-
formance through parallel downloads and better balancing
of large file objects. Finally, block-level erasure coding
can enhance overall availability while providing the flexibil-
ity of block-level replication and, surprisingly, the minimal
state requirements of whole-file designs.

In this whitepaper, we briefly present the different replication
strategies we are exploring, how those strategies can be influenced
by application characteristics and host failure distributions, and
some preliminary simulation results.

2 Application characteristics
Peer-to-peer systems are being used for a wide range of applica-
tions, including music and video sharing, wide-area file systems,
archival file systems, software distribution. Two key properties
of peer-to-peer applications that impact the use of replication are
object sizes and timeliness of object download.

First, larger objects take longer to replicate and are more cum-
bersome to manage as a whole, and naturally motivate the use of
block-level replication. However, when conventional blocking is
used for large objects, the reliability of the system depends upon
an increasingly large number of hosts being available at the same
time. As a result, the availability of an object is inversely related
to its size: the larger the object, the worse the availability.

Second, the relationship between when data is requested and
the time at which it must be delivered. For example, traditional
Unix-like file system applications usually require an entire file
object to be delivered to the application buffer cache before the

1



application can make forward progress. However, the order in
which this data is delivered and variations in overall delay rarely
have a significant impact. In contrast, streaming media workloads
typically only require that the data surrounding the current play-
out point be available, but this particular data must be delivered
in a timely fashion for the application to operate correctly.

3 Replica placement
For the purposes of reliability, peer-to-peer systems should not ig-
nore the availability characteristics of the underlying workstations
and networks on which they are implemented. In particular, sys-
tems should recognize that there is wide variability in the avail-
ability of hosts in the system. Saroiu and Gribble found that fewer
than 20 percent of Gnutella’s peer systems had network-level
availability in excess of 95 percent [15], while over half of the
remainder had availability under 20 percent. Given such a wide
variability, the system should not place replicas blindly: more
replicas are required when placing on hosts with low availability,
and fewer on highly available hosts. Moreover, under many pre-
dictable circumstances, peer failures may be correlated. For ex-
ample, independent investigations of client workstation availabil-
ity has shown strong time-zone specific diurnal patterns associ-
ated with work patterns [10]. As a consequence, placing replicas
in out-of-phase time zones may be a sound replication strategy.

4 Replica granularity
Gnutella and Napster employ whole file replication: files are
replicated among many hosts in the system based upon which
nodes download those files. Whole file replication is simple to
implement and has a low state cost – it must only maintain state
proportional to the number of replicas. However, the cost of repli-
cating entire files in one operation can be cumbersome in both
space and time, particularly for systems that support applications
with large objects (e.g., audio, video, software distribution).

Block-level replication divides each file object into an ordered
sequence of fixed-size blocks. This approach has several bene-
fits. Because individual parts of an object may be named inde-
pendently, a block-level system may download different parts of
an object simultaneously from different peers and reduce overall
download time. Also, because the unit of replication is small and
fixed, the cost to replicate an individual block can be small and
can be distributed among many peers. Finally, block-level repre-
sentation allows large files to be spread across many peers even if
the whole file is larger than what any single peer is able to store.

There are two tradeoffs, however. First, in order to locate in-
dividual blocks, a block-level system must maintain state propor-
tional to the product of the number of replicas and the number
of blocks in an object. More seriously, though, downloading an
object requires that enough hosts storing block replicas are avail-
able to reconstruct the entire object at the time the object is re-
quested. If any one replicated block is unavailable, the object is
unavailable. For example, measurements of the CFS system us-
ing six block-level replicas show that when 50 percent of replicas
fail the probability of a block being unavailable is less than two
percent [3]. However, if an object consists of 8 blocks then the
expected availability for theentire objectwill be less than 15 per-
cent. This dependency is one of the motivating factors for the use
of erasure codes with blocking replication.

Erasure codes (EC), such as Reed-Solomon [12] and Tor-
nado [2] codes, provide the property that a set ofn original blocks

Conventional
EC

1
10

100
1000

10000
Blocks per file

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

Host failure probability

0

0.2

0.4

0.6

0.8

1

Reliability

Figure 1: Reliability as a function of the number of blocks per
file and host failure probability.

can be reconstructed from anym coded blocks taken from a set
of kn (wherem is typically close ton, andk is typically a small
constant). The addition of EC to block-level replication provides
two advantages.

First, it can dramatically improve overall availability since the
increased intra-object redundancy can tolerate the loss of many
individual blocks without compromising the availability of the
whole file. For example, for the same storage requirements, one
can either duplicaten blocks of an object or code those blocks
into 2n EC blocks. If the blocks are distributed across2n nodes,
then, when using standard block replication, at least one of two
hosts for each block must be available to reconstruct the object.
When using EC block replication, however, anyn of the2n hosts
storing EC replicas need be available to reconstruct the object.

Second, the ability to reconstruct an object from many distinct
subsets of EC blocks, permits a low-overhead randomized lookup
implementation that is competitive in state with whole-file repli-
cation. Rather than maintain the location of every replica for each
block, a system using EC blocks can simply track the location
of each peer holdinganyblock belonging to the object. When a
client desires an object it can simply request random blocks until
enough data is returned to reconstruct the object. This approach
is surprisingly efficient. For an object consisting ofn EC-blocks,
the expected number of blocks downloaded in this random fash-
ion is O(nlogn + c) (or a penalty of onlylogn unnecessary blocks
downloaded).

5 Replication and Host Failure
As an initial experiment to explore the tradeoff between conven-
tional block replication and block replication with erasure codes,
we simulate the replication and distribution of a single file in a
idealized system ofN hosts. The file is divided into fixed-size
blocks and replicated. Replicated blocks are randomly assigned
to hosts, each of which has the same uniform failure probability.

We then simulate random host failure and determine whether
the file is still recoverable from the system assuming an ideal
lookup system and perfect network conditions. A file is recov-
erable if, after the failures, enough of its blocks survive to recon-
struct its original contents. We repeat this experiment 100 times
and measure the fraction of times that the file is completely re-
coverable. For the purposes of this experiment, we define this
fraction as the reliability of the system.



We use the term storage redundancy to refer to the amount of
storage a replication technique uses. For a given storage redun-
dancy, the two blocking techniques use different amounts of stor-
age to replicate a given file. In the conventional case, storage
redundancy is simply the number of replicas of the file. For the
erasure coded case, redundancy is introduced not only by repli-
cation, but also by the encoding process. In this case, storage
redundancy is the number of replicas times the encoding redun-
dancy. Comparing strategies when using storage redundancy is
more fair than comparing them using number of replicas.

Figure 1 shows simulation results of the idealized system as a
function of storage redundancy and host failure probability. Re-
dundancy is introduced in the conventional case only through
replication. Hence storage redundancy, for the conventional case,
is simply the number of replicas in the system. On the other hand,
for the erasure coded case, redundancy is introduced not only by
replication of the file, but also by the encoding. A file consist-
ing of k blocks is encoded intoek blocks, wheree > 1 is what
we call ”encoding redundancy” (orstretch factor[2]). So, to take
into account both these sources of redundancy, the storage redun-
dancy for the erasure coded scenario is the product of number of
replicas and the encoding redundancy. In our simulations,e = 2.

From the figure, we see that for host failure probabilities less
than 0.5 both replication schemes achieve high reliability. For
higher host failure probabilities, the reliabilities of the two tech-
niques diverge and the magnitude of the divergence depends on
the number of blocks per file. Because we abstract away block
size, the case where only one block is used for a file corresponds
to the use of whole-file replication. Note that the “conventional”
curve for this case has the best reliability compared with using
more blocks per file.

With multiple blocks per file, the number of blocks per file
roughly corresponds to the size of the file since we assume a con-
stant block size. For a small number of blocks per file, or small
files, the two techniques quickly diverge in reliability. Erasure
coded blocks actually increases in reliability since the system has
more flexibility in choosing among hosts to reconstruct the file.
However, conventional block replication decreases in reliability,
and is very sensitive to high host failure probability. For peer-to-
peer file systems, where the average file size is small and, hence,
the average number of blocks per file is small, the effect is only
severe for very high host failure probabilities. However, for peer-
to-peer systems that serve large files such as music and video,
conventional block replication has poor reliability even for host
failure probabilities close to 0.5.

The implication of these results is that using conventional
blocking and scattering those blocks across a large number of rel-
atively unreliable hosts makes the system less reliable. However,
by decoupling exactly which blocks are required to reconstruct a
file from the hosts storing replicas of those blocks, erasure coded
replication is able to achieve excellent reliability even when the
underlying hosts are quite unreliable. And the reliability of using
erasure coding increases, rather than decreases, for larger files.

6 Summary
We are investigating strategies for using replication to design and
implement highly reliable peer-to-peer systems. In particular, we
are comparing the use of whole object and blocking replication,
and pursuing the use of erasure codes with blocking replication
as a novel technique for achieving high reliability even for sys-
tems primarily composed of hosts with poor availability. In ad-

dition, we are investigating how application properties such as
object size, timeliness of delivery, workload properties such as
object popularity, and network properties such as host availabil-
ity should influence replication strategies. Initial experiments in-
dicate that the use of erasure codes with blocking replication is
promising, and we are further exploring their use. Eventually, we
plan to implement our results in a prototype system for practical
evaluation.

References
[1] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility

of a serverless distributed file system deployed on an existing set of
desktop PCs. InMeasurement and Modeling of Computer Systems,
pages 34–43, 2000.

[2] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital
fountain approach to reliable distribution of bulk data. InProceed-
ings of ACM SIGCOMM, pages 56–67, 1998.

[3] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with cfs. Inproceedings of the 18th ACM
Symposium on Operating System Principles (SOSP), 2001.

[4] R. Dingledine, M. J. Freedman, and D. Molnar. The free haven
project: Distributed anonymous storage service. InWorkshop on
Design Issues in Anonymity and Unobservability, pages 67–95,
2000.

[5] edonkey homepage, http://edonkey2000.com.

[6] Gnutella homepage, http://gnutella.wego.com.

[7] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What
can databases do for peer-to-peer? InProceedings of the Fourth
International Workshop on the Web and Databases (WebDB ’2001),
June 2001.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global-scale persistent storage. In
Proceedings of ACM ASPLOS, 2000.

[9] A. D. R. Marc Waldman and L. F. Cranor. Publius: A robust,
tamper-evident, censorship-resistant, web publishing system. In
Proc. 9th USENIX Security Symposium, pages 59–72, August 2000.

[10] D. Moore. Caida analysis of code-red, 2001.

[11] Napster homepage, http://www.napster.com.

[12] V. Pless.Introduction to the theory of error-correcting codes. John
Wiley and Sons, 3rd edition, 1998.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content addressable network. InProceedings of ACM
SIGCOMM, 2001.

[14] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
Middleware, pages 329–350, 2001.

[15] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study
of peer-to-peer file sharing systems. InMMCN, 2002.

[16] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applica-
tions. InProceedings of ACM SIGCOMM, 2001.

[17] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Tech-
nical Report UCB-CSD-01-1141, U. C. Berkeley, April 2000.


