P3: Parallel Peer to Peer

An Internet Parallel Programming Environment

Licinio Oliveira, Luis Lopes, and Fernando Silva

Departamento de Ciéncia de Computadores & LIACC
Faculdade de Ciéncias - Universidade do Porto
Rua do Campo Alegre, 823
4150 Porto, Portugal
{1soliveira,lblopes,fds}@ncc.up.pt

Abstract. P? is a next-generation Internet computing platform, build-

ing upon other experiments and implementing new ideas for high-performance
parallel computing in the Internet environment. This paper describes its
run-time system, programming model and how it compares to current
state-of-the-art systems.

Keywords. Peer to Peer, Distributed Computing, Parallel Com-
puting, High Performance Computing.

1 Introduction and Motivation

In recent years there has been a growing interest in High Performance Com-
puting using distributed systems, namely the Internet itself, as the resource
provider [10, 17]. This focus on current distributed systems stems from the obser-
vation that individual machines in such systems spend most of their time either
idle or with very modest workloads, and that their otherwise wasted computing
cycles may be gathered and used to perform large scale computations [17, 7, 8].

Grid Computing establishes the foundations for an infrastructure capable
of transparently providing computational cycles over wide area networks. Such
systems behave much like service providers and the first implementations are
very recent and subject to discussion namely on standardization [9, 11].

Peer-to-Peer Computing is often associated with Grid Computing as it pro-
vides a fundamental change in paradigm for programming distributed systems.
It provides highly efficient communication by making nodes exchange data di-
rectly, without intermediate routing servers. It also improves service availability
as these are not concentrated in a few servers with higher failure rates. Several
such systems have been proposed to date, mostly focusing on the sharing of
computational cycles or data-storage [17, 8, 7, 10, 12].

So far the work on Peer-to-Peer systems has been focusing on infrastructure
for Grid systems, stand alone parallel distributed systems and file-sharing sys-
tems. Our main interest in Peer-to-Peer computing is in using it as a basis for
the development of an efficient, highly available, parallel programming system

2 Oliveira, Lopes and Silva

which we named P? (Parallel Peer-to-Peer). In this perspective we argue that
current implementations lack adequate solutions on two fundamental issues.

First, to our knowledge, there is no system that integrates features such as:
dynamic discovery and management of resources, scalability, accessibility, avail-
ability, portability and fault-tolerance, into an integrated environment optimized
for parallel computing. In P? we aim to provide for these features by carefully
designing the run-time system. In short, our proposal is as follows:

— dynamic discovery and management, of resources is supported by dynamically
changing sets of nodes that monitor the network for resources and manage
the computational workload;

— the portability issue is solved by using an hardware independent format for
the run-time system implementation, in this case Java;

— scalability is supported by the use of dynamic workload balancing between
computing nodes, peer-to-peer communication and dynamically changing
sets of resource manager nodes;

— fault-tolerance is supported by keeping redundant copies of the run-time
system state and using checkpoint/rollback mechanisms;

— availability of resources is guaranteed by allowing any node who has the
run-time system installed to join a computation dynamically;

— finally, accessibility, by not requiring any specific properties for a node to
belong to the P? community.

A second, and most important, point is the lack of integration of an adequate
parallel programming model into existing systems, as most of them deal with
independent tasks. In our proposal, such a model must feature:

— builtin dynamic work balance, given the variable number of the computa-
tional resources;

— the specifications for the problem’s computation and for data partitioning
should be orthogonal; this allows a far cleaner and intuitive programming
style;

— a shared object-space that provides a network-wide, dynamically changing,
virtual shared memory.

The shared object-space, actually a Peer-to-Peer distributed file system, provides
all the support required for interprocess communication and synchronization.
The programmer must provide the code that solves the problem without think-
ing of data partition. The work partition strategy is specified independently by
the programmer in a P2 application and describes the behavior of a node when
a dynamic work request comes from a node joining the computation.This model
hides the architectural complexity from the programmer at the expense of addi-
tional run-time system complexity. The implementation of the P? framework is
ongoing research work.

The remainder of the paper is organized as follows. Section 2 describes the
software architecture of the P3 system and its proposed implementation. Sec-
tion 3 follows with a description of the programming model with an example.
Finally, in section 4 we issue some conclusions and discuss future work.

P3: Parallel Peer to Peer 3
2 P23 System Overview

P? is a Java run-time system that uses user specified resources to provide support
for a distributed programming environment in a Peer-to-Peer network. P3 pro-
vides transparent access to network peers, persistence using shared disk storage,
fault-tolerance, high availability, portability, support for parallel computations
according to a specific programming model and an extensible framework.

The P3 network is fully autonomous and self-healing in the sense that it does
not need any administration nor centralized control procedures and provides the
means for fault-tolerance and high availability. More specifically, peers can join
and leave the network at any time and nodes do not need permanent Internet
connections (although this is preferential).

The P? run-time tries to be as unobtrusive as possible to the host peer sys-
tem, running in the background while possible and mandating child computa-
tions to have minimum operating system priority. If such restrictions should still
be insufficient, the kernel scheduler could easily be adapted to include any other
priority queueing policy, based, for example, on standard uptime information or
collected statistical information of the runtime execution.

Although security is not a priority in the current implementation of the P?
run-time, it is an obvious concern, especially in the Internet environment. As
such, P? tries to be as confidential as possible by not transmitting any personal
or unspecified system information through the network. As a policy, the previ-
ous is obviously unsatisfactory, but future work will address this problem more
adequately.

2.1 Conceptual Organization

The P3 network is organized in two distinct sets of nodes — manager nodes and
compute nodes (fig. 1). The idea is borrowed from previous work in [10] and [14],
where complete decentralization of the Peer-to-Peer network was proven, in prac-
tice, not to scale well. As such, a balance must be met between Peer-to-Peer com-
mon practice of complete decentralization of control and standard client-server
techniques. P3 uses the hybrid approach of maintaining volatile nodes marked
as manager nodes', which perform coordination operations, maintaining quality
of service. By volatile we mean that the set of manager nodes may dynamically
change, expand or even contract (though it can never be empty), given the state
of the current manager node set. Also, those changes are completely controlled
by the run-time system, without user intervention.

Peers are known in the system by their PeerlD. They are assigned by the
responsible manager nodes at first login and are persistent through all sessions.

! Similar, in concept, to Gnutella’s notion of ultra-peer.

4 Oliveira, Lopes and Silva

Compute: khorvo.ncc.up.pt:3266
' Manager: khampa .ncc .up.pt:3267

I

I
) O
! Disconnected
O ! Compute: khiko.ncc.up.pt:3266
. '
Disconnected O
’ /

' o
’ / "\ Manager: khrespo.ncc.up.pt:3267
! \

bCompute: khoala.ncc.up.pt:3266

Compute: khola.ncc.up.pt:3266

Fig. 1. Example of a possible P® network topology

P2 provides an object-space abstraction that resembles the concept of a dis-
tributed, shared file-system. In this object-space, objects can be stored and re-
trieved (by name) with atomic run-time system operations and name-spaces can
be created or deleted. Other operations are possible using the standard tools
provided by the P? run-time, which include object meta-search (e.g. search by
object type/contents) or storage of arbitrarily complex objects.

The shared file-system is stored across all compute nodes, thus providing
almost as much disk storage as the sum of free space of all nodes in the network?.

Manager Nodes. The manager node set is the collection of P3 nodes that, at
a given time, hold the responsibility of maintaining state coordination across the
P? network. The state of the P? run-time is the union of the following:

— Peer routing and meta-data information
— File-system data, meta-data and caching information
— Global application status

Given the responsibilities of such nodes, their allocation scheme should be
efficient and, by precedence, respect the following;:

1. Permanent Internet connection

2. Low latency and high bandwidth connection
3. Availability of disk space

4. Good overall system performance

Nonetheless, as it is not necessarily possible to allocate peers that fulfill all
of the specified goals, the choice should fall on the best rated nodes according
to the requirements given above.

P? uses redundancy in the manager node set to provide high availability and
fault-tolerance. For each manager node there is one or more shadow manager
nodes. These nodes are considered secondary, in the sense that they do not hold
authoritative data. They maintain consistency with the primary manager node
through a round-robin differential state copy. Several primary manager nodes

2 In reality, each node can configure the amount of disk space devoted to shared storage
and the high availability kernel features use more space for data backup.

P3: Parallel Peer to Peer 5

may exist but, in that case, they should be responsible for exclusive partitions
of the system’s state. Shadow manager nodes, however, need not comply to the
later, to avoid allocation of excessive manager nodes. The primary and its shadow
nodes must, at all times, know of each other’s existence.

The manager node set grows as soon as each primary manager node deter-
mines that it cannot keep up with peer connections or runs out of disk space;
the set can also grow if shadow manager nodes run out of available disk space
but in this case another shadow manager node can help and the set does not
need to increase in size.

Compute Nodes. All nodes that do not have manager capabilities® are called
compute nodes and contribute to the system with usable resources. The resources
that a compute peer may bring to the system are, in the current run-time imple-
mentation, of two kinds: processor time and disk storage. Several other resources
may be harnessed in the future, by using the run-time system extensibility prop-
erties.

Each compute node may only be contributing to a single P? application
at any given instant, thus avoiding local resource competition and simplifying
the run-time system. The amount of work each compute node has currently in
hand is dictated by the manager node that was responsible for its assignment.
Compute nodes expect to receive work from the manager nodes, upon request.
It is the manager’s responsibility to correctly select the application that each
compute node receives work from.

The Shared File-System. P32 has builtin support for a Peer-to-Peer file-
system, much in the style of current Peer-to-Peer file-sharing networks [10, 14].
The distinction between those systems and P? is the ability to search and store
arbitrarily complex Java objects by reference, transforming the file-system into
a shared associative memory or object-space. The file-system also supports the
existence of arbitrary name-spaces, where objects can be independently stored.
A name-space is a subset of the object-space where objects can be stored with-
out name clashing problems. This means that object "A" living in name-space
"X" is not the same as "A" in name-space "Y". Name-spaces are identified with
reference keys, NamespacelDs, which are strings.

The proposed standard for P?, imposes the presence of at least one, global,
name-space, named "global", and a local name-space for each P? application.
This ensures that each application has, at least, one absolutely safe name-space
in which to store its objects (accessible through the p3lspc method). This lo-
cal name-space identifier is assigned at application startup time, by an adequate
manager node. Additional management of name-spaces can be done at any time,
using name-space creation (p3create) and deletion (p3destroy) methods of the ap-
propriate P3NameSpace Java class.

% The role of a node may change at any time, given the needs of the system.

6 Oliveira, Lopes and Silva

Each object in the file-system has an associated key, ObjectlD, and name-
space tag, through which it is referenced. Optional meta-data can be specified for
each object, through appropriate methods (p3metadata) in the main Java shared
object class, P30bject. Several methods are also devoted to basic object sharing:
synchronous read/write (p3get/p3set), asynchronous read/write (p3bind/p3send)
and object search (p3search). The synchronous read/write methods are multi-
plexed into the basic Java data-types to provide commodity to the application
developer, just like many other parallel programming libraries.

Objects are stored in a Peer-to-Peer fashion, across P3’s network nodes. Ev-
ery P2 node may store objects and objects can be stored in any P2 node. Object
access information is stored and kept consistent by the manager node set. Syn-
chronization is needed when updating the state of an object in the object-space
and as such, manager nodes have the ability to block access to objects during
the time frame in which such actions occur. The principle is simple, as each man-
ager node must be informed of state changes for each object it is responsible for,
object locking is just a matter of disallowing or blocking the operation if a given
flag is set. Certain applications might be interested in using such synchronization
primitives and for that purpose one provides synchronization methods, such as
p3readlLock, p3readUnlock, p3writeLock and p3writeUnlock within the P30Object
class.

In this context, file-system caching is of vital importance to provide higher
system performance, high availability, fault-tolerance and avoiding resource dead-
locking. Caching is implemented through redundancy, in a hierarchical two level
scheme. Nodes are able to store local, non authoritative, object copies and asyn-
chronously verify its consistency (local caching). Manager nodes may at any time
propagate copies of objects for which request rates rise above a given threshold
or for which the storage nodes disconnect from the network (global caching).

2.2 P23 Run-Time System

The P3 run-time system is being implemented in Java. Java was chosen due to its
portability, extensibility and amazing number of features already present in the
language, and not readily available in other programming languages, like C or
C++. Besides, Java is the acknowledged standard for portable high performance
computing projects and, as such, lessons can be learned from the implementation
of those projects.

Java presents the possibility of implementing the run-time system as an ap-
plet. However, the run-time system could not have been implemented with its
current, features, due to the security policy enforced by the environment where
applet based applications run. For example: peers could not communicate di-
rectly and a high performance persistent shared file-system could not be im-
plemented. As such, P3’s run-time system is implemented as a Java applica-
tion. Other Internet parallel computing systems follow the opposite (applet)
path [3, 6].

P3: Parallel Peer to Peer 7

Every machine wishing to participate in running computations must install
the Java application which encapsulates the run-time system. Once installed,
the run-time will need no additional setup, apart from configuration tuning.

In P? there is support for off-line computations; the run-time engine does
not need to have network access at all time. In fact, all P? computations occur
off-line. It is only in the presence of a blocking operation that network access
must be obtained. This would be the case, for example, of a blocking read/write
operation.

Futhermore, when network access is first obtained, in each session, a network
login procedure is executed. This procedure is important for several reasons, the
first being to refresh the manager node tables with peer information, avoiding
probing every node in the network for available resources. Another reason is
checking the status of the current node in respect to the task it is running.

When dealing with distributed applications, good resource management and
allocation policies are vital to system performance. In the Internet environment,
such concerns must be even stronger, because volatile resources are extremely
common. P? uses a meta-data approach to the problem; manager nodes are
responsible for collecting and storing relevant meta-data information for every
compute node. However, as each manager node has to store information for
each compute node it is responsible for, collected meta-data must be kept to a
bare minimum. Usually, the interesting information to retrieve from each com-
pute node includes: the executing P? application and its state, the available disk
space, machine load and additional routing information.

As already stated, P?’s main goal is to reuse computing cycles of Internet
connected machines. However, the P? run-time does not limit itself to that net-
work environment, it is possible to use P? to harness the computing cycles of
institutional intranets, for example. It should be emphasized that P? is not only
a run-time system for parallel computation; it is easy to envision several non-
parallel applications that could be implemented in P2. A large scale multimedia
database constructed as a P? application that interacts with several non P?
client applications is an interesting example.

Run-Time System Organization. Internally, the run-time system subdivides
itself into two layers: the kernel module layer, which includes the most important
and necessary features like communication, fault-tolerance, persistence, resource
management and discovery; and the service layer, which are all non-basic stan-
dard features of the P? run-time that use the kernel to access the P3 network
resources. The parallel programming model is an example of such a service. Di-
viding the run-time in two layers, induces a three-tier model for a P? application
(fig. 2). This widely used paradigm allows a higher degree of control and special-
ization of each layer, while making project development easier. The P? three-tier

8 Oliveira, Lopes and Silva

model is not opaque, in the sense that it allows the top layer (applications) to
access both lower layers (kernel and services) of the run-time system.

Applications

Services

Kernel

Fig. 2. P*’s three-tier model

Kernel. The P? run-time system kernel is the set of basic system features,
like communication support, object-space access libraries and so on. The im-
plementation tries to be expandable and modular, permitting quick and easy
implementation of new replacement modules. The modules present in the cur-
rent run-time implementation are those in table 1.

Table 1. Current run-time system kernel modules

Name Description
Configuration = Permits static and dynamic kernel configuration
Communication Communication interface and default TCP/IP backend

Object-space Name-space management and object search/storage/retrieval
procedures

Management Manager node sub-system

Kernel Kernel management and entry point

Although modular, the run-time engine expects some intercommunication
between modules to take place, e.g. the communication module works with the
management module to permit interaction compute/manager and manager/ma-
nager communications to take place.

Services. The three tier-model already explained, has the interesting property
of permitting disconnected development paths to the three layers of project
development, namely the kernel, the services and all applications wishing to use
the system, because once a kernel/services interface becomes stable, there is no
need to make any change to an existing service (or application), for each kernel
(or services) update.

P3: Parallel Peer to Peer 9

All a P? service needs, in order to be considered as such, is to subclass
the P3Service class. From that point on, apart from defining some obligatory
methods, the service can interact with the kernel layer to access P?’s facilities
and provide whatever functionality it desires.

Service libraries should be distributed with the run-time system due to their
static registration within the kernel. A useful P? feature would be to permit
services to register within the kernel dynamically, providing a plug-in based
approach as in [12]. However, at current development stage, the run-time system
is not capable of doing so; registration must be statically configured and known
at run-time startup time.

As an example, the parallel programming model proposed in the following
section is implemented as a run-time system service.

3 Programming Model

In P3? we want to introduce a programming model for the distributed environ-
ment that both hides the underlying architectural complexity of the system and,
that is intuitive for the programmer. The first major task for a programmer in a
parallel system is that of implementing the partition of data among a statically
defined set of computing nodes. Given this partition the computational task for
each node is then coded and this usually includes frequent interprocess com-
munication for synchronization purposes or to share intermediate results. The
implementation of this computation is usually highly dependent on the data
partition chosen and thus not appropriate for environments where availability of
computational resources changes dynamically.

In P? we solve this problem by asking the programmer to code a solution
for the problem (method p3compute) and to specify a work partition proce-
dure (method p3divide), orthogonally. For a matrix multiplication, for example,
p3compute would compute the result matrix from available input matrices. On
the other hand, p3divide describes how to divide the current matrix into smaller
slices to assign to other nodes joining the computation. Thus, our P? computa-
tion involves a set of nodes calculating a number of sub-matrices of the result
matrix, possibly of distinct sizes. It is the programmer that indicates the way in
which a node’s work is split and sent to a new node (method p3divide). This is
similar to the task of implementing data partition in parallel programming ex-
cept that in P2 this procedure is invoked dynamically and adapts to the evolution
of the computation.

Process synchronization and, in general, message passing are written as read
and write operations on a shared object-space.

Fault-tolerance is introduced in the programming model by using system
primitives supporting computation checkpointing (method p3checkpoint). These
primitives create a full dump of the computing object into a standard Java
format that then gets marshaled into a persistent medium. If at any time dur-
ing the computation, a node failure is detected, a copy of the node’s previous

10 Oliveira, Lopes and Silva

checkpointed computing object is fetched and the computation resumes (method
p3restart).

3.1 The Execution Model

The programming model is implemented in the P? run-time as a service. We shall
now describe the associated execution model encapsulated in the p3.services.parallel
Java package.

First of all, application startup is done through a standard programming
model service component, defined in the Java class P3ParallelUploader. This
small application uploads the pre-compiled Java class (which must be a sub-
class of P3Parallel) onto the manager, making it aware of its existence. The first
time the manager decides to allocate a node for this application, it will flag
the node’s run-time that it must start the application by running the p3main
method. After doing so, the allocated node’s run-time system begins to compute,
executing the method p3compute. All these actions are invoked asynchronously
and automatically by the service.

The programming model service is built on top of the following, simple, loop
of execution:

Request Work] - [

Compute]

This means that when a node’s run-time is not computing a P? task, it is probing
the managers for more work. Examining fig. 3 we can see the main algorithm
for work subdivision in P3. A node (node A, in the figure) requests work, not
directly from another node, but through a manager node, which may query other
manager nodes, and will notify the node it determines to be the most suitable
(B) to share some work with the first.

x | Manager node :
?&C\\@% “ 2 /VOt,'
n
A a2
Node A Node B
3. Transfer

Fig. 3. Work request and attribution scheme

The work subdivision strategy is implemented by the programmer under the
p3divide method. It could be as simple or as complex as one may desire. The
events that follow the invocation of p3divide are depicted in fig. 4.

The division starts when a node (the nodes are the same as those in figure 3)
receives a notify message from a manager node, saying it must send a work task
to another node.

During this process a clone of the current node’s compute object is produced
and the first object is left almost intact. The difference between the two final

P3: Parallel Peer to Peer 11
p3restart p3compute
[J

Node A

e“A/

... o
Node B oS J)—>3CheCkpomt./ o
o 7
O\o“e/ ~
O Stop O O/ - O Resume O
—_—_—— —_—_——
thread p3divide ~p3checkpoint thread

Fig. 4. Simplified execution flow after node B receives a work request from node A

compute objects is that one runs p3restart while the other does not. Besides that,
the objects are identical, as their state was preserved by using Java serialization
facilities. They are also different in the sense that they resume computation in
different locations; in node B, execution resumes from the point where it first
stopped and node A restarts by invoking p3restart and then p3compute.

This behavior allows the use of save/restore variables that permit the parti-
tioning of the problem, by carefully coding p3compute. It should be noted that
all interaction is implicit and hidden from the application programmer, by the
run-time system control logic.

3.2 The Programming Interface

The programming interface for P?’s parallel programming model is implemented
in one major class named P3Parallel. All P? parallel applications are instances
of extensions to this class.

The P3Parallel Class The application programmer has to provide an imple-
mentation for the following methods of the P3Parallel class:

— p3main, is the method that sets up the P? computation. It can be used to
perform some I/O or for the initialization of data-structures before the actual
computation begins;

— p3compute, is the method implementing the unit of parallel work in the P3
system for a given application;

— p3divide, describes how the work block allocated to the current computation
is divided when a request for work is received from another node;

— p3restart, is invoked whenever a branch of the computation is resuming after
a node failure or on the arrival of new work. In general, the computation must
have been previously checkpointed at some point in the past, and execution
will resume from that point (note that, a checkpoint is automatically created
right after p3divide is invoked).

The P3Parallel superclass implements other methods, such as p3checkpoint, which
may be used as a default action or re-implemented by the programmer in case
some application specific needs must be fulfilled.

12 Oliveira, Lopes and Silva

An Example: Matrix Multiplication In the following we describe an imple-
mentation of the usual matrix multiplication operation. To implement a solution,
we define a class for the application, P3MatrixMultiply, that extends P3Parallel.
The implementation of the application simply requires the definition of its at-
tributes and methods.

In this example written in P?, we compute the matrix C, from A and B,
parameterized on a few attributes. The code for the computation has no refer-
ence whatsoever to data-partition among cooperating nodes. It is apparently a
sequential code. The program then provides a procedure that describes how to
obtain sub-matrices for C, dynamically, when a request for work arrives.

— global class attributes: a shared object n for the size of the matrix, shared
objects a, b and ¢ to contain, respectively, matrix A lines, matrix B columns
and each cell of matrix C. Additional attributes include line, column, 1,
m and max which are integers used to keep track of the evolution of the
computation.

— method p3main() is used to perform the initial matrix setup:

void p3main() {
try {
n.p3bind(p3lspc(), "n");
} catch(P3BindException e) { p3abort(); }

n.setInt(10000); // Set matrix size to 10000x10000
for (inti=0;i< 10000 ; i++) {
// Code for initializing line i of matrix A
// Code for initializing column i of matrix B
}
}

— method p3compute() computes the matrix C. Before computing the new
entry at row line and column column, it binds line 1ine for A, column
column for B and c for the resulting cell. Then, a cycle computes the value
for the cell. Finally, a check is made to verify whether it is time to advance
to the next line in the current work block.

void p3compute() {
try {
n.p3bind(p3lspc(), "n");
} catch(P3BindException e) { p3abort(); }

while (line < max && column < n.getint()) {
try {
a.p3bind(p3lspc(), "A"+line);
b.p3bind(p3lspc(), "B"+column);
c.p3bind(p3lspc(), "C"+line+"_"+column);
} catch(P3BindException e) { p3abort(); }

P3: Parallel Peer to Peer 13

for (inti =0;i< ngetint() ; i++)
c.setint(c.getInt()+a.getIntPos(i)*b.getIntPos(i));
if (++column > n.getint()) { line++; column = 0; }

}
}

— method p3divide() defines the way the computation reacts to a request for
work from a coordinator node. The method is invoked synchronously and, in
this case, it divides the work into two similar blocks of size (max-line+1)/2.
The block to be given away will compute from line line+(max-line+1) /2
to line max. The current computation will continue from line to the new
value of max.

boolean p3divide() {
| = line + (max — line + 1) / 2;
m = max;
max = line — 1;
return(true);

}

— method p3restart() describes the computation restart procedure. We initialize
the attributes 1ine and max to the previously checkpointed values:

void p3restart() {
line = [;
column = 0;
max = m;

}

As seen, the main task for the programmer lies in the code for p3compute and
p3divide. These define work partition and computation for the problem orthogo-
nally. The big advantage of this programming model relative to the usual models
used in current parallel distributed systems stems from the following features:

— we allow the computing node pool to grow dinamically. The way work is
partitioned among compute nodes is controlled by the programmer at the
application level;

— by implementing a solution for the problem abstracting away from data
partitioning among nodes we make the code for the problem more explicit
and intuitive.

While matrix multiplication is a fairly common programming example, allowing
very regular data partition strategies we feel that our model provides adequate
programming support for more complex applications, namely grid-based or hier-
archical algorithms. In fact, the mappings used to construct the data partition in
these systems may be easily adapted to produce an implementation for method
p3divide. Also, the object-space may be used to store arbitrarily complex data-
structures by assuming some adequate naming convention (e.g., directory style
as in file-systems, or URL style as in web documents).

14 Oliveira, Lopes and Silva

4 Conclusions and Future Work

We have described a development platform for high performance parallel com-
puting in the Internet environment, based on recent and open research areas.
Our belief is that the Internet and large, fast, intranets will, in the near future,
be the de facto standard for high performance computing. Grid computing [11, 9]
is an effort to take this idea even further, providing on demand computing power
from high performance computers with fast interconnections.

Systems like HARNESS [12], Charlotte [3] and Javelin [6] also try to provide
parallel programming environments for the Internet. However all these systems
fall into the same computational and organizational model; they use the mas-
ter/worker computation model and the client/server communication paradigm.
P? is distinct for it uses none of these concepts; P? proposes a more intuitive
and adaptive parallel programming model and uses Peer-to-Peer techniques to
guard against common problems in those systems (server failures and connec-
tion bottlenecks), while providing a wide range of additional functionalities. The
result should be a much more scalable, easier and richer parallel programming
environment,.

The P3 run-time system is currently being implemented and major work is
underway for creating a capable run-time system with all the features exposed
in this document. Our concerns, at present, are in building a high performance,
stable kernel with support for parallel computations according to the proposed
model. The programming model was our first priority while kernel scalability,
fault tolerance, high availability and object-system performance are now the
most important concerns. Active research points are scalability issues and toler-
ance to volatile resources in extreme conditions.

In the future, P? will address topics such as security or dynamic system recon-
figuration, but these are not short term objectives. Finally, profound tests will
be conducted in three major areas: performance, scalability and fault-tolerance.

Acknowledgments. The authors are partially supported by FCT’s projects
MIMO and APRIL (contracts POSI/CHS/39789/2001 and POSI/SRI/40749/2001,
respectively).

References

[1] Albert D. Alexandrov, Maximilian Ibel, Klaus E. Schauser, and Chris J. Scheiman.
SuperWeb: Research issues in Java-based global computing. Concurrency: Prac-
tice and Ezperience, 9(6):535-553, 1997.

[2] J. Baldeschwieler, R. Blumofe, and E. Brewer. ATLAS: An infrastructure for
global computing, 1996.

[3] A.Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff. Charlotte: Metacomputing
on the web. In Proc. of the 9th Int’l Conf. on Parallel and Distributed Computing
Systems (PDCS-96), 1996.

[4]

[5]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
(18]

P3: Parallel Peer to Peer 15

M. Beck, J. Dongarra, G. Fagg, G. Geist, P. Gray, J. Kohl, M. Migliardi, K. Moore,
T. Moore, P. Papadopoulous, S. Scott, and V. Sunderam. HARNESS: A next
generation distributed virtual machine, 1999.

A. Bricker, M. Litzkow, M. Livny, T. Summary, and V. Report. Condor Technical
Summary, 1992.

P. Cappello, B. Christiansen, M. Ionescu, M. Neary, K. Schauser, and D. Wu.
JAVELIN: Internet based parallel computing using Java, 1997.

distributed.net. http://wuw.distributed.net/.

Entropia. http://www.entropia.com/.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115-128, Summer 1997.

Gnutella. http://wwu.gnutella.com/.

Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver, and
Paul F. Reynolds Jr. Legion: The next logical step toward a nationwide virtual
computer. Technical Report CS-94-21, 8, 1994.

M. Migliardi and V. Sunderam. Heterogeneous distributed virtual machines in
the HARNESS metacomputing framework, 1999.

M. Migliardi, V. Sunderam, A. Geist, and J. Dongarra. Dynamic reconfiguration
and virtual machine management in the HARNESS metacomputing system, 1998.
Napster. http://www.napster.com/.

Parabon. http://wuw.parabon.com/.

A. Rowstron and P. Druschel. Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility, 2001.

SETI@Home. http://setiathome.ssl.berkeley.edu/.

D. Skillicorn and D. Talia. Models and languages for parallel computation, 1998.

