
Architectural Support for Trust Models in Decentralized
Applications

Girish Suryanarayana, Mamadou H. Diallo, Justin R. Erenkrantz, Richard N. Taylor
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3455
+1(949) 824-6429

{sgirish,mdiallo,jerenkra,taylor}@ics.uci.edu
ABSTRACT
Decentralized applications are composed of distributed entities
that directly interact with each other and make local autonomous
decisions in the absence of a centralized coordinating authority.
Such decentralized applications, where entities can join and leave
the system at any time, are particularly susceptible to the attacks of
malicious entities. Each entity therefore requires protective mea-
sures to safeguard itself against these entities. Trust management
solutions serve to provide effective protective measures against
such malicious attacks. Trust relationships help an entity model
and evaluate its confidence in other entities towards securing itself.
Trust management is, thus, both an essential and intrinsic ingredi-
ent of decentralized applications. However, research in trust man-
agement has not focused on how trust models can be composed
into a decentralized architecture. The PACE architectural style,
described previously [21], provides structured and detailed guid-
ance on the assimilation of trust models into a decentralized
entity’s architecture. In this paper, we describe our experiments
with incorporating four different reputation-based trust models
into a decentralized application using the PACE architectural style.
Our observations lead us to conclude that PACE not only provides
an effective and easy way to integrate trust management into
decentralized applications, but also facilitates reuse while support-
ing different types of trust models. Additionally, PACE serves as a
suitable platform to aid the evaluation and comparison of trust
models in a fixed setting towards providing a way to choose an
appropriate model for the setting.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures.

General Terms
Design, Security.

Keywords
Decentralization, Peer-to-Peer (P2P), Trust Management, Reputa-
tion, Software Architecture, Architectural Style.

1. INTRODUCTION
Unlike a centralized system which relies upon a central authority
to coordinate the activities of each entity in the system, in a decen-
tralized system, each entity is completely autonomous and respon-
sible for its own individual behavior. In such systems, each entity,
also called a peer, depends upon its interaction with other peers to
make adequate decisions towards the realization of its individual
goals. Furthermore, in an open decentralized system, peers, includ-
ing those with malicious intentions, can enter or leave at any time,
thus exposing the system to potential attacks.

As an example, consider an open decentralized peer-to-peer (P2P)
file-sharing application, such as Gnutella [15], that allows peers to
directly share files with each other. A Gnutella peer locates other
peers ‘nearby’ and directly queries them for content it needs. These
peers may in turn forward these queries to other ‘nearby’ peers.
Results are then returned to the original peer who can download
the file directly from a peer that has the requested content. In the
ideal case, all peers are reliable and serve only good content. How-
ever, in the real world, attacks on file-sharing applications by mali-
cious peers are common and well-known. These peers may offer
files that are corrupted, or even worse, encapsulate viruses or tro-
jans within them. Downloading and opening these files pose a sig-
nificant risk to peers in the system. A study in January 2004 [27]
reported that 45% of 4,778 executable files downloaded through
the Kazaa [16] file-sharing application contained malicious code
like viruses and Trojan horses. This finding clearly serves to
emphasize the threats inherent to file-sharing applications and to
decentralized systems in general.

In the absence of a centralized entity that may, for example, upon
receiving information about a malicious peer, stop indexing the
files shared by the malicious peer, in a decentralized system, each
peer must itself adopt suitable measures towards safeguarding
against such attacks. Trust management solutions serve as poten-
tial candidates for such measures. In particular, a trust management
system helps peers establish trust relationships with other peers in
the system, and these relationships help a peer determine the trust-
worthiness of other peers in the system. Trust management has
thus become a necessary aspect of decentralized systems.

Decentralized trust management has therefore received much
attention in recent years. Several trust and reputation models with
varying objectives have been developed by researchers. However,
very little attention has been devoted to the exploration of how
these models can be composed into a decentralized application.
The PACE architectural style [21] addresses this particular need.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ICSE'06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

PACE is an event-based architectural style and has been designed
with trust management in mind. It provides explicit guidance and
support towards the incorporation of different trust models into a
decentralized application. PACE also addresses how peers can be
architecturally designed for participation in decentralized applica-
tions.

This paper describes our efforts towards the evaluation of PACE.
Our goals were to assess the effectiveness of the guidelines sug-
gested by PACE for the design of decentralized trust management
solutions, and to examine the degree to which PACE supports dif-
ferent kinds of trust and reputation models. Towards these goals,
we have incorporated four different reputation-based trust models
into a decentralized Crisis Response And Situation Handling sys-
tem (CRASH) built in the PACE style. The CRASH system simu-
lates a variety of governmental and non-governmental
organizations cooperating to respond to emerging crisis situations.
Our experiments with these four trust models using the PACE style
have revealed that PACE not only supports the integration of dif-
ferent trust models but also promotes easy and effective integration
of the trust models, and significant reuse of components. Addition-
ally, these experiments helped underline the use of PACE as a suit-
able platform to evaluate and compare the behavior of different
trust models under a fixed setting.

The rest of the paper is structured as follows. Section 2 discusses
relevant related work and Section 3 summarizes the PACE archi-
tectural style. Section 5 describes our approach and in particular
discusses threats due to decentralization, the CRASH system that
was used in our evaluation, the four candidate trust models, and
how these models were designed and integrated in the CRASH
architecture. Section 5 discusses our observations and evaluation.
The paper ends by drawing conclusions in Section 7.

2. RELATED WORK
A considerable number of trust models and algorithms have been
developed to tackle the problem of decentralized trust management
[11, 22]. Access-based systems such as Policymaker [3] and Key-
note [4] use credentials and application-specific policies to regu-
late access to resources and services. These systems evaluate the
credentials of resource requestors against application-defined poli-
cies in order to determine whether access to the resources can be
permitted [7, 26].

Trust management systems such as the Distributed Trust Model
and REGRET [1, 20] are based on reputations. Reputation-based
systems enable a peer to evaluate the trustworthiness of another
peer based on relevant reputation information obtained from other
peers in the system [19]. These systems use different kinds of
mechanisms to acquire reputation information and determine trust.
For example, in XRep [8], a peer has to query for recommenda-
tions from other peers in order to determine whether a peer can be
trusted. On the other hand, in NICE [17], each requesting peer
needs to present cookies received from other peers in order to
prove its own trustworthiness to a peer. Other trust models, such as
NodeRanking [18] and Regret [20] in addition to the opinion of
peers rely upon existing social relationships among peers to deter-
mine the reputation of peers. Research in trust management also
includes work on algorithms for computing trust and reputation
such as EigenTrust [14].

Existing trust architectures are either inapplicable to decentralized
systems or do not serve to provide comprehensive and complete
guidance towards decentralized trust management. Sultan [12] and
XenoTrust [9] are trust management frameworks that rely upon a
centralized server to aggregate trust information obtained from
entities in the system. Similarly, the trust framework described by
Gray et. al [13] provides a local algorithm for computing trust, but
relies on a central authority. Hence these systems are unfit for
decentralized applications. DPS [10] is an architectural style for
specifically building access controlled software systems but does
not consider decentralized trust and reputation.

Cahill et. al [5] identify trust components for the SECURE trust
management framework and the control flow between the compo-
nents. However, the trust calculator component used in their frame-
work is application-specific and may not support the assimilation
of third party trust models into the framework. hTrust [6] provides
a simple trust management architecture specifically for mobile ad
hoc systems and incorporates essential trust, application, and com-
munication layers. NICE [17] provides a platform for implement-
ing cooperative distributed applications over the Internet and
facilitates the implementation of different trust algorithms based on
reputation. However, hTrust and NICE do not provide a set of com-
plete and effective guidelines that specify the necessary constraints
on the structure of these components and their interactions. They
thus fail to provide comprehensive architectural guidance for com-
posing trust management.

3. PACE ARCHITECTURAL STYLE
PACE stands for the Practical Architectural approach for Compos-
ing Egocentric trust. The PACE architectural style addresses the
concerns of trust management in open decentralized applications.
PACE is designed to facilitate the incorporation of trust models
into the architecture of a decentralized peer. PACE provides com-
prehensive guidance about the components that should be included
inside a peer, their arrangement inside the peer, and their interac-
tions.

PACE is an extension of C2 [23], an event-based architectural
style. A C2 architecture is composed of components and connec-
tors that are organized into layers. Components in a layer are only
aware of components in the layers above and have no knowledge
about components below. Components communicate with each
other using two types of asynchronous event-based messages -
requests and notifications. Requests travel up the architecture
while notifications move down the architecture.

PACE imposes a set of additional constraints on the structure and
behavior of components within the peer to address trust manage-
ment. First, it identifies peers in the system through their digital
identities, allowing for the possibility that a single user may pose
as multiple peers by using multiple electronic identities. Trust
information about each digital identity is separately determined
and maintained irrespective of the physical identities it represents.
Second, PACE makes a specific distinction between the internal
beliefs of a peer and the beliefs communicated externally to it by
other peers in the system. Such a distinction is important since the
information received from other peers may possibly be faulty or
incomplete. PACE, therefore, explicitly divides data storage
between internal and external information repositories. Third, in

order to facilitate the comparison of trust values, PACE requires
that trust values be represented numerically, without imposing any
constraint on their semantics. Fourth, PACE requires that trust
between peers be not localized to a single component but be per-
ceptible to all the components across the architecture. This is so
that each component responsible for making local decisions can
take advantage of this perceived trust. Trust relationships should
be discernible to the components in the peer’s architecture as well
as published externally to other peers.

PACE divides the components of a peer’s architecture into four
layers: Communication, Information, Trust, and Application. Fig-
ure 1 depicts these layers and their associated components. The
Communication layer is responsible for handling the communica-
tion between peers in the system. It is composed of three compo-
nents: the Protocol Handler, Communication Manager, and
Signature Manager. The Protocol Handler enables multiple net-
work communications which are responsible for translating inter-
nal events into the format understood by the associated external
protocol and vice-versa. The Communication Manager is responsi-
ble for the dynamic creation of protocol handlers while the Signa-
ture Manager is responsible for signing requests and verifying
notifications. The Signature Manager digitally signs outgoing mes-
sages with the peer’s locally configured private key, and embeds
the signatures and corresponding public key within the message to
enable transport over protocols that do not support digital signa-
tures. At the receiving end, this included public key can be used by
the Signature Manager to authenticate the message.

The Information layer stores data in the system. To separate the
internal beliefs of a peer from those received from other peers, the
Information layer is composed of two components. The Internal
Information component stores request messages that originate
from internal components while the External Information stores
notification messages received from external peers. Data in the
Internal Information is persistent in order to allow the peer to
maintain a record of its prior actions and beliefs. The Internal
Information component allows modification and queries for data
only through requests to protect against unintentional distribution
of data to other peers. It is also responsible for forwarding requests
for transmission to the Communication layer.

The Trust layer incorporates components that enable trust manage-
ment. This layer is composed of the Key Manager, the Credential
Manager, and the Trust Manager. The Key Manager is responsible
for generating public-private key pairs for message authentication
and storing them in the Internal Information component. The Cre-
dential Manager manages the credentials of other peers that are
stored in the Internal Information. It is also responsible for request-
ing needed public keys and revoking them upon receiving suitable
notifications. The Trust Manager incorporates different trust and
reputation models like those discussed in Section 2. It is responsi-
ble for computing and assigning trust values to messages received
from other peers.

The Application layer encapsulates application-specific compo-
nents. It includes the Application Trust Rules and the Application
components. The Application Trust Rules encapsulates the rules
that are needed to assign trust values based on application-specific
semantic meanings of messages, and supports different dimensions

of trust relationships. The Application component represents local
behavior of a peer and may include user interfaces. While compo-
nents in the other layers can be reused across different applica-
tions, components in the Application layer are application
dependent and hence not reusable across application domains. The
application developer is expected to implement components for
this layer depending upon the needs of the application.

PACE is only concerned with trust relationships between peers and
not between the components comprising the internal architecture.
Also as discussed earlier, PACE distinguishes between the internal
beliefs of a peer and externally reported information. In particular,
PACE does not trust data received externally from other peers and
only trusts data originating internally. This distinction can be con-
veniently modeled through requests and notifications in C2. Thus,
messages from external peers sent by the Communication layer to
the other layers below in the form of notifications are not trusted
implicitly while messages originating from components internal to
the architecture in the form of requests are implicitly trusted.

It should be stressed that PACE does not require that all peers
interacting in a decentralized application be built in the PACE
style. Peers composed differently could still interact with those
built using PACE. Similarly, PACE does not constrain the internal
architecture of a peer beyond the PACE-specific parts. For exam-
ple, components belonging to the Application layer could be built
in other architectural styles or could be procured off-the-shelf.

4. APPROACH
In order to evaluate the applicability and the ease of assimilation of
the PACE style to different trust models, we first selected four trust
models, built implementations for them, and then used PACE to
incorporate these implementations within a prototype Crisis
Response And Situation Handling system (CRASH). We also sub-
jected these four prototypes of the CRASH system to threat scenar-

Figure 1. Peer Architecture in PACE

C
om

m
un

ic
at

io
n

La
ye

r
In

fo
rm

at
io

n
La

ye
r

Tr
us

t
La

ye
r

A
pp

lic
at

io
n

La
ye

r

Com m unication M anager

External
Inform ation

Internal
Inform ation

Key
M anager

 Signature M anager

Trust
M anager

Application
Trust Rules

HTTP Sender Custom Protocols M ulticast M anager

M ulticast Handler

Credential
M anager

A P P L I C A T I O N

ios to observe whether integration with PACE adversely affected
the capabilities of the trust models. In this section, we first briefly
discuss these threats of decentralization, followed by a summary of
the CRASH system, the design descriptions of the four CRASH
prototypes, and a discussion of the threat scenarios.

4.1 Threats of Decentralization
Our previous work [21] outlined several threats of decentraliza-
tion. In this domain, we limit our scope to the following subset of
these threats. Impersonation refers to the threat caused by a peer
that portrays itself as another in order to misuse the target peer’s
reputation or privileges. Another threat is due to fraudulent actions
that are deliberately performed by a deceitful peer in order to harm
or dupe other peers. For example, a peer may falsely claim to pro-
vide a particular service and charge other peers for that service.
Misrepresentation happens when peers provide misleading infor-
mation about their trust relationships with other peers. When a
group of peers collude together in order to bring down the system,
this threat is referred to as Collusion. The Addition of Unknowns
threat refers to the problem of cold start. When a new peer joins
the system, it is difficult to determine the trust relationship
between the new peer and the existing peers.

4.2 CRASH System
Crisis management is an inherently decentralized application with
a large number of benevolent participants, a potentially high num-
ber of malicious participants (such as lingering criminals or inter-
fering spectators), and demand for fast information exchange. In
serious crises, multiple agencies with multiple command centers
are involved, and a multitude of teams individually tackle different
parts of the crisis [24]. In such situations, information is scarce,
unreliable, and individual teams operate largely independently
while still needing to coordinate with each other. Moreover, even
when a central plan is in place, it is possible that crisis responders
may interact over unreliable ad hoc networks and perceived infor-
mation may turn out to be incorrect. Thus, it is imperative that suit-
able countermeasures be in place to guard against malicious
attacks that hamper communication or facilitate the dissemination
of misleading and inaccurate information.

There are two categories of entities that must be considered in this
particular domain: those that must make decisions based upon the
available information and those that merely report information.
The former category is the principal focus of our Crisis Response
and Situation Handling system (CRASH). CRASH models a col-
lection of governmental and non-governmental organizations
cooperating in response to emerging situations in order to make
decisions. For our evaluation, we modeled the following decision-
making organizations: Police Department (PD), Fire Department
(FD), Search and Rescue (S&R), Red Cross, St. Elsewhere Hospi-
tal (Hospital), a Charitable Organization (CO), and the Department
of Public Works (DPW). The general public, as a non-decision
maker, provides and relays information to CRASH entities. When
information originates from the public (which is an instance of an
unknown external event source), this information should be ini-
tially be treated with circumspect. Consequently, trust manage-
ment plays a critical part in helping these decentralized entities
make appropriate and timely decisions. For our evaluation pur-
poses, we introduce the Media as an organization that not only pro-
vides information but also consists of disgruntled members who

can secretly influence the decision-making ability of other organi-
zations even during crises.

Each CRASH entity or peer can be divided into three sub-system
classes: Display, Information Gathering Sources, and Command
and Control (C&C). The Display sub-system is responsible for
visualizing the information currently known to the organization -
such as deployment of resources and other vital information. Infor-
mation Gathering Source sub-systems provide feedback and infor-
mation to the entity’s C&C sub-system - such as relaying reports
from the public. These sub-systems are connected to the entity’s
C&C through internal ad hoc networks. Additionally, each entity’s
C&C center is also connected to the C&C center of other organiza-
tions - perhaps, again, through ad hoc networks (see Figure 2). An
entity’s C&C center is then responsible for aggregating data
received from its information sources as well as information from
other organizations. Ultimately, the C&C system is responsible for
making decisions on behalf of the entity and conveying informa-
tion and instructions to its affiliated resources.

4.3 Candidate Trust Models
In this section, we describe the four trust models that were used in
our evaluation of the PACE architectural style. All the four models
are based on the concept of determining trustworthiness of a peer
based on its past reputation, and thus in essence are reputation-
based. In the Distributed Trust model, the experience of other peers
is used to determine trust. The NICE trust model uses cookies to
store trust information and aims at protecting the system from
groups of malicious peers by establishing robust cooperative
groups. The REGRET model utilizes existing social relationships
in the determination of trust. The complaint-based model is differ-
ent from the other models in the sense that it uses only negative
reputation or complaints to determine trust.

Figure 2. CRASH with Police and Fire Departments

4.3.1 Distributed Trust Model
In the Distributed Trust model [1], a peer relies on two types of
trust data for determining trust - self experience and recommenda-
tions provided by other peers in the system. Two different types of
trust relationships are distinguished. When one peer trusts another,
it constitutes a direct trust relationship. But if a peer trusts another
peer to give recommendations about a third peer's trustworthiness,
then there is a recommender trust relationship between the two.
Corresponding to the two types of trust relationships, two types of
data structures are maintained by peers - one for direct trust experi-
ences and another for recommender trust experiences. Discrete
integral trust values are used to represent the trustworthiness of
peers with -1 representing distrust, 0 representing lack of knowl-
edge, 1-3 representing increasing trust and 4 representing complete
trust.

Three types of messages are exchanged between peers in this trust
model: Request for Recommendation, Recommendation, and
Refresh messages. When a peer needs a service offered by another
peer for the first time (no prior transactions between the two), the
peer sends out a Request for Recommendation message to the peers
it trusts as recommenders. These recommender peers can respond
by sending Recommendations if they know the target peer, else
they forward the request to other peers whom they trust as recom-
menders. The model does not specify clearly how long this process
of forwarding requests for recommendations continues and when it
stops. For our purpose, we assumed that this process continues
until all known recommender peers are queried. Since the opinion
of peers may change over time, recommendations are valid only
for a limited time. When recommendations expire or the trust val-
ues associated with them change, they are updated using Refresh
messages. Refresh messages are also used to revoke Recommenda-
tions by sending Refresh messages with trust values 0.

4.3.2 NICE Model
The main goal of the NICE trust model [17] is to identify good
peers in the system and establish solid cooperation with them in
order to guard against malicious peers. At the end of an interaction,
each interacting peer creates a cookie with feedback about the
other peer and signs it. These signed cookies are exchanged by the
interacting peers. A cookie can either be positive if the transaction
is successful or negative otherwise. In other trust models it is the
responsibility of the provider peer to ensure that the requestor can
be trusted. However, in NICE, when a peer wants to request a cer-
tain data or service from a provider peer that it has interacted with
before, it presents the provider with a cookie signed by the pro-
vider itself. The provider peer verifies it own signature in the
cookie and accepts the cookie as evidence of the requestor peer’s
trustworthiness.

If, on the other hand, the requesting peer does not have a direct
cookie, it searches for a path of trust between itself and the pro-
vider peer, and presents this path to the provider. Figure 3 shows a
directed graph with trust paths between peers A and B, which can
be presented by B to A in support of B’s trustworthiness.

While positive cookies are exchanged by interacting peers, nega-
tive cookies are retained by the peer that creates it. This is in order
to ensure that negative cookies are untampered and available to
other peers in the system who can search for negative cookies

about a peer before interacting with it. To prevent against attacks
perpetrated by colluding peers, peers create robust cooperative
groups with other good peers. For this, every peer maintains a pref-
erence list of good peers based on their past interaction history.

4.3.3 REGRET Model
The REGRET model [20] assumes that peers are organized into
groups and utilizes group relationships to determine trust. The
evaluation of reputations is based on impressions which represent
the results of interactions between peers. In REGRET there are
three dimensions of reputation: individual, social, and ontological.

The individual dimension concerns the direct interaction between
two peers. The social dimension takes into account group relation-
ships. Consider two groups of peers, Group A and Group B, as
illustrated in Figure 4. Suppose peer A1 wants to determine the
reputation of peer B1. The individual dimension refers to the infor-
mation A1 has about B1 as a result of their past interactions. The
social dimension includes both how much A1 trusts all the peers in
group B, and how much all the peers in group A trust B1 (witness
reputation) and how much all the peers in group A trust all the
other peers in group B (neighborhood reputation). REGRET, how-
ever, assumes that there exists complete trust between peers in the
same group.

Reputation also depends significantly upon the context. Reputation
in a particular context may also imply a certain reputation in other
related contexts. Each reputation value may thus represent reputa-
tion values for other related contexts. The ontological dimension
defines these various types of reputation and how they can be com-
bined together to create new types of reputation.

4.3.4 Complaint-based Model
A complaint-based reputation model relies on negative feedback or
“complaints” to convey reputation information. In such a model,
peers do not store information about successful interactions or
trustworthy peers, but rather record their negative experience in the
form of complaints against interacting peers. These complaints are

Figure 3. Directed Graph in NICE

Figure 4. Individual and Social Reputation in REGRET

A

C D

E

B

0.6

0.9

0.7

0.8
0.6

0.8

Group B

Individual Reputation

Group A

A1

A2

A3

B1

B2

B3

B4

Neighborhood Reputation

Witness Reputation

Witness Reputation

Neighborhood Reputation

also forwarded to another peer or peers in the system in order to
disseminate information about the malicious peer. When a peer
wants to evaluate the trustworthiness of a target peer, it first
searches its own history to locate any previous complaints regis-
tered by itself. It can also query other peers for other existing com-
plaints about the target peer. Complaints received from other peers
are included in the determination of the target peer’s trustworthi-
ness. This kind of complaint-based scheme has been adopted by
trust management systems such as the one based on the P-Grid
data structure [2].

4.4 CRASH Architectures
Our goal was to develop four different prototypes of the CRASH
application, each incorporating one of the trust models. Thus four
CRASH architectures corresponding to the four trust models were
designed. For each trust model, the CRASH architecture was mod-
ified in accordance with the trust model’s specifications. Since all
four implementations used the same CRASH application, the dif-
ferences between the four architectures primarily concerned the
Trust Manager and the trust-specific components of the Applica-
tion layer. The designs did not affect the Communication and
Information layers since PACE allows us to reuse existing compo-
nents of these layers independently of the trust model.

For each CRASH architectures, the required components in the
different layers were first identified. Following this, the interac-
tions between the components were determined in order to identify
the relevant request and notification messages for the architecture.
This included modeling of trust-based messages exchanged
between peers so that components could appropriately react to
them. The design of each trust model is discussed below. Figures 5
and 6 illustrate two CRASH architectures with the Distributed
Trust and the REGRET model respectively. Non-shaded compo-
nents indicate PACE components being reused. Shaded compo-
nents represent new components being added and components that
are cross patterned represent modified components.

4.4.1 Distributed Trust Model Design
In the Distributed Trust model, Recommendation and Refresh mes-
sages contain important recommender trust experiences that needs
to be persistently available to the peer. Therefore they are stored in
the Internal Information along with the direct trust experiences of
the peer. The Trust Manager component encapsulates the algo-
rithm that computes the trust value. It also filters away messages
that are marked by the Signature Manager as unsigned or unveri-
fied. Two new components, Recommendation Manager and Trust
Evaluator are added to the Application layer (see Figure 5). The
Recommendation Manager dispatches messages to other peers and
displays received messages. It also stores, updates, and deletes rec-
ommendations from the Internal Information. The Trust Evaluator
facilitates the computation of trust by gathering necessary data
required to compute trust, sending it the Trust Manager, and dis-
playing computed trust values returned by the Trust Manager to the
user. The user can then choose to store these values through the
Recommendation Manager.

4.4.2 NICE Model Design
In NICE, a peer needs to store positive cookies about itself signed
by other peers, and negative cookies it signed about malicious
peers. Both positive and negative cookies need to be persistently

available and so are stored in the Internal Information. The trust
algorithm responsible for the determination of trust based on the
available cookies is encapsulated in the Trust Manager component.
To provide for the functionality of the trust model, two new com-
ponents are added to the Application layer: Cookies Manager and
Trust Evaluator. The Cookies Manager sends signed positive cook-
ies to the interacting peer upon interaction, and displays received
cookies and paths to a target peer to the user. It is responsible for
querying for cookies that will enable it to discover a path of trust to
the target peer, responding to such cookie requests, and forwarding
cookie requests to peers along the path of trust. It is also responsi-
ble for searching and locating negative cookies about a peer. It also
stores, updates, and deletes cookies from the Internal Information.
The Trust Evaluator facilitates the determination of trust by gather-
ing relevant cookies (and paths of trust) from the Internal Informa-
tion, sending them to the Trust Manager, and displaying values
returned by the Trust Manager to the user.

4.4.3 REGRET Model Design
REGRET uses impressions to represent reputation information.
Impressions are the evaluations of the transactions and are used to
determine trust. Since impressions need to be persistently available
to the peer, they are stored in the Internal Information. The Trust
Manager encapsulates the trust computation algorithm that helps
determine the trustworthiness of peers based on available impres-
sions. Two new components, Impressions Manager and Trust Eval-
uator, are added to the Application layer (see Figure 6). The
Impressions Manager is responsible for storing, updating, and
deleting impressions from the Internal Information. Since trust
information is stored in the form of impressions in the REGRET
model, the Trust Evaluator sends out queries for impressions,
responds to queries about impressions, and displays received
impressions to the user. It is also responsible for collecting infor-
mation pertaining to the individual and social dimensions from the

Figure 5. CRASH Architecture with Distributed Trust model

Internal Information, requesting the computation of trust from the
Trust Manager, and displaying trust values received from the Trust
Manager to the user. The ontological dimension is not addressed in
this architecture; however, we envision that it can be encapsulated
within the Application Trust Rules component.

4.4.4 Complaint-based Model Design
In the complaint-based trust model, reputation information
exchanged between peers take the form of complaints. Complaints
received by a peer are stored in the Internal Information in order to
make it persistently available. Similar to the designs of other trust
models, the Trust Manager incorporates the algorithm that com-
putes trust values.Two new components, Complaints Manager and
Trust Evaluator, are added to the Application layer. The Com-
plaints Manager creates and files complaints with other peers, que-
ries and responds to queries for complaints, and displays
complaints received filed by other peers. It also stores and man-
ages complaints in the Internal Information. The Trust Evaluator is
responsible for collecting relevant complaints, sending them to the
Trust Manager for use in computing trust, and displaying values
returned by the Trust Manager to the user.

5. EVALUATION
The four CRASH prototypes with their associated trust models
were evaluated in the context of several decentralization threat sce-
narios. In this section, we discuss these threat scenarios and our
observations of each trust model based on their response to the
threat scenarios.

5.1 Demonstration Threat Scenarios
The four CRASH prototypes with corresponding trust models were
implemented according to the design described in Section 4.4.
Each implementation instance was executed and analyzed inde-
pendently of others. Each instance was subjected to demonstration

scenarios corresponding to the threats of decentralization summa-
rized in Section 4.1. These scenarios are similar to the attack sce-
nario mentioned in [25]. The objective behind these threat
scenarios was two-fold. The first was to help examine whether the
capabilities of the trust models were adversely affected upon inte-
gration within the PACE architectural style. The second was to
enable the evaluation and comparison of these trust models in the
face of decentralization threats.

A total of 100 threat scenarios were designed with an average of
about 5 scenarios per threat per model. Each of these scenarios was
then executed on the corresponding CRASH prototypes, and the
effects observed and compared with expected results. Since each
trust model has varying capabilities and behaves differently, threat
scenarios for each model though similar in objective were not
identical. Table 1 describes one sample scenario each for imper-
sonation, fraudulent actions, misrepresentation and collusion for
the Distributed Trust model. For each scenario, the table lists the
corresponding model-based results that were expected and the
actual observed results when the CRASH prototype of that model
was subjected to that scenario. Organizations mentioned in the
table such as the Fire Department and the Police Department actu-
ally represent the Command and Control sub-systems belonging to
those organizations.

It should be emphasized that the scenarios in Table 1 are only a
subset and do not constitute the entire set of scenarios that were
actually executed on the Distributed Trust Model CRASH proto-
type. Similar threat scenarios were also identified for the other
three trust models and executed against their CRASH prototypes.
However, a detailed discussion of all scenarios and the correspond-
ing trust model behavior in those scenarios cannot be included here
due to space constraints. A summary of the observed results from
our experiments is presented in the following section.

5.2 Observations
In this section, we briefly discuss some of the distinguishing char-
acteristics of each trust model that were observed when the threat
scenarios were executed on the CRASH prototypes. We believe
our observations provide some interesting insights about the way
these trust models react against the threats of decentralization. We
also point out the pros and cons of each model over other models.

5.2.1 Distributed Trust Model
This is a simplistic trust model that uses recommendations to
incorporate the opinion of others. This model primarily focuses on
determining trust values for an unknown peer using direct and rec-
ommendation trust values. However, it fails to describe how trust
relationships can be actually used to determine the relative trust-
worthiness of received application-based information in order to
arrive at a decision. Thus, unless an assumption is made about how
these values can be combined (for example, compute an average),
the use of this model as is in an actual application is uncertain.
Also, since a peer does not query others about a recommender if it
already has a previous recommender trust value for the recom-
mender, the peer becomes susceptible to attacks by a trusted rec-
ommender.

Another shortcoming of this model is its use of a discrete value
system for expressing trust. However, actual trust values computed
are typically continuous and it is not clear what the value repre-

Figure 6. CRASH Architecture with REGRET model

sents if it lies between two discrete values. Thus the actual signifi-
cance of a particular value is lost. Further, the asymmetrical nature
of the discrete values chosen has a significant impact in determin-
ing trust. Distrust is represented by -1 and total trust by 4. If two
peers that are trusted completely (value 4) as recommenders were
to give conflicting reports about another peer (one reports distrust
and the other reports complete trust), the computed trust value
would be 1.5 and wrongly signify that the concerned peer can be
trusted in the range of minimal to average trust. However, this
model has some useful benefits too. It includes the concept of
“context” while determining trust. Context refers to the topic in
which information is being provided. This is important because the

same peer can be trusted to different extents depending upon the
context. It uses message authentication to prevent impersonation.
It also provides an explicit message to revoke recommendations.
This helps actively propagate information about a malicious peer
to other peers in the system who may be unaware of the malicious
peer. Such a mechanism is lacking in the other models.

5.2.2 NICE
NICE is different from the other three models in that it puts the
onus of proving a peer’s trustworthiness on that peer itself. This
model is a better fit for applications that allow access to resources
or information to only trusted peers, than for applications where a
requestor peer must decide the trustworthiness of the provider peer
before using its resource or information such as CRASH.

Like REGRET, NICE also has a concept of group, but it is rather
simplistic. Peers maintain a list of “friend” peers who are consid-
ered completely trustworthy and whose opinion is relied upon
most while making a decision. This list that is slowly built over
time is an effective mechanism to guard against collusion because
even if the majority of the peers are to subscribe to a single opin-
ion, it is the opinion of the friend peers that matters the most. Sim-
ilarly, misrepresentation attacks can be nullified by relying on the
opinion of friend peers. Our observations have revealed that NICE
addresses misrepresentation and collusion threats better than the
other three models. However, these measures would fail if the
majority of friend peers were to collude against the peer. NICE
also allows peers to search for negative cookies for other peers.

Table 1. Selected CRASH Threat Scenarios for the Distributed Trust Model

Threats Scenario Result

Organizations and Acronyms: PD: Police Department, FD: Fire Department, H: St. Elsewhere Hospital, RC: Red Cross,
CO: Charitable Organization, DPW: Department of Public Works, S&R: Search & Rescue, M: Media (with a disgruntled employee)

Model-specified results: Theoretically expected results based upon the Distributed Trust Model
Observed results: Actual behavior when CRASH prototype with the Distributed Trust Model is executed

Impersonation 1. FD receives a message about a fire from some-
one claiming to be from the PD.

Model-specified: FD detects message is not authentic and blocks it.
Observed: FD’s signature manager cannot authenticate message
against PD’s public key; Message is tagged instead of blocked since
PACE allows untrusted events to be seen.

Fraudulent
Actions

1. PD has investigations into the activities of M.
2. PD decreases trust in M to -1.
3. M reports false information about a fire to FD.
4. FD queries other agencies about M.
5. FD trusts PD to value 3.
6. PD responds truthfully to queries.

Model-specified: FD’s query reaches PD, who responds with a nega-
tive recommendation for M. FD has considerable recommender trust
(3 on a scale of 4) in PD. So, it should believe the PD and not trust M.
Observed: Based on PD’s response and FD’s recommender trust for
PD, FD computes the trust value for M and finds it to be -0.75. FD
decides not to believe the information provided by M.

Misrepresentation 1. RC has only interacted with H.
2. H has a good impression about the RC.
3. However, M has influence over the staff at H.
4. FD queries other agencies about RC.
5. H sends a value of -1 for RC.
6. FD trusts H to value 3.

Model-specified: In this model, FD does not query other peers about
H as a recommender, but relies solely on H’s direct trust. So, it
wrongly mistrusts the Red Cross.
Observed: As expected, FD incorrectly decides not to believe in RC.

Collusion 1. CO offers assistance to PD.
2. PD queries other agencies about CO.
3. M does not want CO to play any role.
4. M has influence over DPW, H, and FD.
5. PD trusts DPW to value 2, H to value 3, FD to

value 4, and S&R to value 2.

Model-specified: In response to PD’s query only S&R responds posi-
tively (3) whereas DPW, H, and FD each respond negatively (-1)
about the CO. PD ends up mistrusting CO.
Observed: PD uses direct trust responses and its recommender trust
values for the DPW, H, FD, and S&R to compute a value of -0.1875
for the CO (see Figure 7). PD incorrectly decides to mistrust CO.

Figure 7. Graph showing Trust Relationships in DTM

PD

H

DPW

FD

CO

DT = 3

RT = 4

RT = 2
DT = -1

RT = 2

DT = -1

DT = -1RT = 3

S&R

PD's Trust in CO = [(2/4) * (-1) + (3/4) * (-1) + (4/4) * (-1) + (2/4) * (3)] / 4
 = - 0.1875

DT = Direct Trust
RT = Recommender Trust

This helps a peer to become aware of fraudulent and malicious
peers. One shortcoming of the NICE trust model is that the context
of the provided information does not affect the extent to which a
peer is trusted. In other words, if a peer is trusted, all information
reported by the peer is trusted to the same extent.

5.2.3 REGRET
The main shortcoming of the REGRET model is that peers can
easily become targets of impersonation attacks. This is because
unlike the above two models, it does not have any mechanism to
uniquely identify peers or to authenticate messages. However, inte-
gration with PACE helps address this shortcoming because PACE
explicitly provides digital signature-based authentication in the
Communication layer.

The unique feature in REGRET is the use of groups and group
relationships that provides more trust-related data to determine
trustworthiness of peers. This can prove to be very useful in mak-
ing critical trust-related decisions. For example, consider the fol-
lowing scenario: the Police Department (PD) trusts the Fire
Department (FD) and the Media equally. PD requests certain infor-
mation and FD and the Media give conflicting responses. PD thus
cannot determine whom to believe. If however, FD were to belong
to a group called Disaster Management Group and the Media were
to belong to a group called News Group, and PD trusts the Disaster
Management Group more than the News group, then it becomes
easy for PD to choose to believe FD over the Media.

However, in REGRET, a peer implicitly trusts all the peers belong-
ing to its own group and in a scenario where peers within the same
group lie to each other, the model will fail to make correct trust-
related decisions. One significant advantage that REGRET enjoys
over the three models is in the way it handles trust contexts.
REGRET provides an ontological structure to express the different
contexts of trust.

5.2.4 Complaint-based
This model relies only on negative reputations in the form of com-
plaints that are created when an interaction is unsuccessful. Suc-
cessful interactions are not expressed or stored in the form of
positive reputations. Hence, essentially this model cannot help you
decide whom to trust more when there are no complaints available
about a certain peer. Similarly, this model also fails when a mali-
cious peer creates a false complaint about a good peer. Since peers
search only for complaints and no record of “goodness” is stored,
the good peer will be mistaken to be a bad peer based on the false
complaints found. Another shortcoming of this model compared to
other models is that it does not provide any mechanism to protect
against impersonation. However, like REGRET, integration of this
model with PACE helps address this shortcoming because PACE
provides digital signature-based authentication in the Communica-
tion layer. Further, unlike the REGRET and Distributed Trust
model, this model does not include the concept of context while
determining trust.

The above observations of the behavior of trust models in response
to threat scenarios can be used to identify some essential character-
istics of a suitable trust model for the CRASH application. The
most important requirement for an appropriate trust model for
CRASH is to take specific measures to counter impersonation.
Using unique digital identities and key-based message authentica-

tion such as in the Distributed Trust model and NICE are excellent
measures to protect against impersonation attacks. A trust model
suitable for CRASH can also use the concept of a friend list from
NICE. This would mean agencies would rely to a greater extent
upon the information reported by other trusted agencies than that
reported by the public. This can be extended in a REGRET-like
manner to form explicit groups with distinct trust relationships
between them. In a crisis situation, it is very important to ensure
that wrong information or rumors are not being circulated. For this,
the mechanism of actively informing other crisis response peers of
malicious peers can be borrowed from the Distributed Trust model.

6. DISCUSSION
Our evaluation of PACE had three principal objectives. The first
was to determine the ease with which different trust models could
be assimilated in PACE. The second was to assess whether upon
integration with PACE, the capabilities of the trust models were
preserved and not affected adversely. The third objective was to
examine and compare these trust models using PACE as an evalua-
tion platform. Below we describe the observations from our exper-
iments in the context of these three objectives.

Towards our first objective, we successfully integrated the four
selected trust models into the four CRASH prototypes using the
guidelines provided by the PACE architectural style. We observed
that since PACE is layered and enforces visibility constraints upon
layers, it is easy to reuse PACE components across different
instances. In particular, for the CRASH application, the Communi-
cation, the Information and most parts of the Trust layer can be
easily reused across prototypes. The only differences in the proto-
type architectures involve the Trust Manager component and com-
ponents belonging to the Application layer. In other words, an
application developer could plug in different trust models into the
PACE framework with relatively little effort and could still be con-
fident that the resulting architecture would be able to effectively
realize the desired trust management solution. Thus PACE not only
supports different trust models but also enables their easy assimila-
tion into a decentralized application. Additionally, we believe that
the reusability of the PACE components could be further demon-
strated by applying it to an altogether different domain. Specifi-
cally, we believe that except for the Application layer, components
belonging to the other layers could be reused across application
domains.

Towards our other objectives, each CRASH prototype was sub-
jected to threat scenarios to see how the application and the trust
model reacted to the threats. We found that the observed behavior
of the four prototypes in the face of threats matched the results we
had anticipated based on our study of the models. This led us to
conclude that the capabilities of the trust models are not debilitated
by their integration with PACE, and that the trust mechanisms
function fully as originally specified. In fact, PACE aids the trust
models further by enhancing some of their weaknesses. In particu-
lar, PACE provides message authentication, regardless of whether
the trust model being used provides it or not, by using digital iden-
tities and signatures, and including a signature manager in the
communication layer. This is especially useful when working with
the Complaint-based and REGRET trust models because they lack
authentication mechanisms that help detect impersonation attacks.

Results observed from executing threat scenarios on the CRASH
prototypes also helped us draw conclusions regarding the behavior
of the associated trust models. Additionally, since PACE and the
CRASH application can serve as a common evaluation platform
for trust models, these results helped us compare the behavior of
the trust models in response to different kinds of threat situations.
We believe this kind of a comparison is especially useful since it
provides a way to determine and choose a suitable trust model for a
given application setting.

Our successful integration of the trust models using the PACE style
and the subsequent determination that the capabilities of the mod-
els remain unaffected upon integration demonstrate the effective-
ness of the guidelines set by PACE towards achieving trust
management in decentralized applications. It also revealed how
PACE is trust model-independent, can support different trust mod-
els, as well as facilitate the evaluation and comparison of trust
models towards the selection of a suitable model.

7. ACKNOWLEDGEMENTS
This material is based upon work supported by the National Sci-
ence Foundation under Grant Numbers 0205724, 0438996, and
0524033.

8. REFERENCES
[1] Abdul-Rahman, A. and Hailes, S. A Distributed Trust Model.

In Proceedings of the New Security Paradigms Workshop.
Langdale, Cumbria UK, 1997.

[2] Aberer, K. and Despotovic, Z. Managing Trust in a Peer-2-
Peer Information System. In Proceedings of the Conference
on Information and Knowledge Management. Atlanta, Geor-
gia, Nov 5-10, 2001.

[3] Blaze, M., Feigenbaum, J., et al. Decentralized Trust Manage-
ment. In Proceedings of the IEEE Symposium on Security and
Privacy. p. 164-173, May, 1996.

[4] Blaze, M., Feigenbaum, J., et al. RFC 2704 - The KeyNote
trust-management system version 2. <http://www.faqs.org/
rfcs/rfc2704.html>, 1999.

[5] Cahill, V., Gray, E., et al. Using Trust for Secure Collabora-
tion in Uncertain Environments. IEEE Pervasive Computing
Mobile and Ubiquitous Computing. 2(3), p. 52-61, Aug,
2003.

[6] Capra, L. Engineering Human Trust in Mobile System Col-
laborations. In Proceedings of the 12th International Sympo-
sium on the Foundations of Software Engineering (SIGSOFT
2004/FSE-12). Newport Beach, California, USA, Nov, 2004.

[7] Chu, Y., Feigenbaum, J., et al. REFEREE: Trust management
for web applications. World Wide Web Journal. p. 127-139,
1997.

[8] Damiani, E., di Vimercati, S.D.C., et al. A Reputation-Based
Approach for Choosing Reliable Resources in Peer-to-Peer
Networks. In Proceedings of the 9th ACM Conference on
Computer and Communications Security. Washington DC,
Nov, 2002.

[9] Dragovic, B., Kotsovinos, E., et al. XenoTrust: Event-based
distributed trust management. In Proceedings of the 2nd
International Workshop on Trust and Privacy in Digital Busi-
ness. Prague, Czech Republic, Sep, 2003.

[10] Fenkam, P., Gall, H., et al. An Architectural Style for Devel-
opment of Secure Software. Lecture Notes in Computer Sci-

ence. 2437, p. 180-198, Jan, 2002.
[11] Grandison, T. and Sloman, M. A Survey Of Trust in Internet

Applications. IEEE Communications Surveys. 3(4), Dec,
2000.

[12] Grandison, T. and Sloman, M. Trust Management Tools for
Internet Applications. In Proceedings of the 1st International
Conference on Trust Management. Crete, Greece, May, 2003.

[13] Gray, E., O'Connell, P., et al. Towards a Framework for
Assessing Trust-Based Admission Control in Collaborative
Ad Hoc Applications. Distributed Systems Group, Depart-
ment of Computer Science, Trinity College, Report TCD-CS-
2002-66, 2002.

[14] Kamvar, S., Schlosser, M., et al. The EigenTrust Algorithm
for Reputation Management in P2P Networks. In Proceedings
of the WWW. Budapest, Hungary, May 20-24, 2003.

[15] Kan, G. Gnutella. In Peer-to-Peer: Harnessing the Power of
Disruptive Technologies, Oram, A. ed. p. 94-122, O'Reilly,
2001.

[16] Kazaa. kazaa.com. <http://www.kazaa.com>.
[17] Lee, S., Sherwood, R., et al. Cooperative peer groups in

NICE. In Proceedings of the IEEE Infocom. San Francisco,
USA, Apr 1-3, 2003.

[18] Pujol, J., Sanguesa, R., et al. Extracting reputation in multi
agent systems by means of social network topology. In Pro-
ceedings of the 1st Joint Conference on Autonomous Agents
and Multi-Agent Systems. Bologna, Italy, Jul 15-19, 2002.

[19] Resnick, P., Zeckhauser, R., et al. Reputation Systems. Com-
munications of the ACM. 43(12), p. 45-48, December, 2000.

[20] Sabater, J. and Sierra, C. REGRET: A Reputation Model for
Gregarious Societies. In Proceedings of the 4th Workshop on
Deception, Fraud and Trust in Agent Societies. Montreal,
Canada, 2001.

[21] Suryanarayana, G., Erenkrantz, J.R., et al. PACE: An Archi-
tectural Style for Trust Management in Decentralized Appli-
cations. In Proceedings of the 4th Working IEEE/IFIP
Conference on Software Architecture. p. 221-230, Oslo, Nor-
way, Jun, 2004.

[22] Suryanarayana, G. and Taylor, R.N. A Survey of Trust Man-
agement and Resource Discovery Technologies in Peer-to-
Peer Applications. UCI Institute for Software Research,
Technical Report UCI-ISR-04-6, Jul, 2004.

[23] Taylor, R.N., Medvidovic, N., et al. A Component- and Mes-
sage-Based Architectural Style for GUI Software. IEEE
Transactions on Software Engineering. 22(6), p. 390-406,
Jun, 1996.

[24] Tierney, K. Research Overview: Emergency Response. In
Proceedings of the The NEHRP Conference and Workshop on
Research on the Northridge, California Earthquake of Janu-
ary 17, 1994. Richmond, California, 1998.

[25] Vigna, G. and Kemmerer, R.A. NetSTAT: A Network-based
Intrusion Detection Approach. In Proceedings of the 14th
Annual Computer Security Application Conference. Scotts-
dale, AZ, Dec, 1998.

[26] Yu, T., Winslett, M., et al. Interoperable strategies in auto-
mated trust negotiation. In Proceedings of the 8th ACM Con-
ference on Computer and Communications Security.
Philadelphia, USA, Nov 5-8, 2001.

[27] Zetter, K. Kazaa delivers more than tunes. Jan 9, 2004. <http:/
/www.wired.com/news/business/0,1367,61852,00.html>.

	ABSTRACT
	1. INTRODUCTION
	2. RELATED WORK
	3. PACE ARCHITECTURAL STYLE
	4. APPROACH
	4.1 Threats of Decentralization
	4.2 CRASH System
	4.3 Candidate Trust Models
	4.3.1 Distributed Trust Model
	4.3.2 NICE Model
	4.3.3 REGRET Model
	4.3.4 Complaint-based Model

	4.4 CRASH Architectures
	4.4.1 Distributed Trust Model Design
	4.4.2 NICE Model Design
	4.4.3 REGRET Model Design
	4.4.4 Complaint-based Model Design

	5. EVALUATION
	5.1 Demonstration Threat Scenarios
	5.2 Observations
	5.2.1 Distributed Trust Model
	5.2.2 NICE
	5.2.3 REGRET
	5.2.4 Complaint-based

	6. DISCUSSION
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

