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Abstract 

W e  identify the trust management problem as a dis- 
tinct and important component of security in network 
services. Aspects of the trust management problem in- 
clude formulating security policies and security creden- 
tials, determining whether particular sets of creden- 
tials satisfy the relevant policies, and deferring trust to  
third parties. Existing systems that support security in  
networked applications, including X.509 and PGP, ad-  
dress only narrow subsets of the overall trust manage- 
ment problem and often do so in  a manner that is ap- 
propriate to  only one application. This paper presents 
a comprehensive approach to  trust management, based 
on a simple language for specifying trusted actions and 
trust relationships. It also describes a prototype imple- 
mentation of a new trust management system, called 
PolicyMaker, that will facilitate the development of se- 
curity features in  a wide range of network services. 

1. Introduction 

The importance of cryptographic techniques in a 
wide range of network services is universally recog- 
nized. A service that uses cryptography must accom- 
modate appropriate notions of users’ security policies, 
their security credentials, and their trust relationships. 
For example, an electronic banking system must en- 
able a bank to state that at least k bank officers are 
needed to approve loans of $1,000,000 or less (a policy), 
it must enable a bank employee to prove that he can 
be counted as 1 out of k approvers (a credential), and 
it must enable the bank to specify who may issue such 
credentials (a trust relationship). 

It is our thesis that a coherent intellectual frame- 
work is needed for the study of security policies, secu- 
rity credentials, and trust relationships. We refer col- 
lectively to these components of network services as the 
trust management problem. Although certain aspects 

of trust management are dealt with satisfactorily by ex- 
isting services in specialized ways that are appropriate 
to those services (e.g., the PGP secure email system 
allows users to create security credentials by binding 
their IDS to their public keys), the trust management 
problem has not previously been identified as a gen- 
eral problem and studied in its own right. The goal of 
this paper is to identify the problem and to take the 
first step toward a comprehensive approach to solving 
it that is independent of any particular application or 
service. 

To address trust management per se, as opposed to 
the security needs of one particular service, we have 
developed a general framework that can be applied to 
any service in which cryptography is needed. To facil- 
itate the use of our approach, we are building a new 
type of tool, best described as a trust management sys- 
tem. Our system, called PolicyMaker, is suitable as a 
tool in the development of services whose main goal is 
privacy and authenticity (e.g., a secure communication 
system) as well as services in which these features are 
merely enablers or enhancements (e.g., an electronic 
shopping system). 

Our approach to trust management is based on the 
following general principles. 

0 Unified mechanism: Policies, credentials, and 
trust relationships are expressed as programs (or 
parts of programs) in a “safe” programming lan- 
guage. Existing systems are forced to treat these 
concepts separately. By providing a common lan- 
guage for policies, credentials, and relationships, 
we make it possible for network applications to 
handle security in a comprehensive, consistent, 
and largely transparent manner. 

Flexibility: Our system is expressively rich 
enough to support the complex trust relationships 
that can occur in the very large-scale network ap- 
plications currently being developed. At the same 
time, simple and standard policies, credentials, 
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and relationships can be expressed succinctly and 
comprehensibly. In particular, PGP and X.509 
“certificates” need only trivial modifications to be 
usable in our framework. 

0 Locality of contol: Each party in the network 
can decide in each circumstance whether to accept 
the credentials presented by a second party or, al- 
ternatively, on which third party it should rely for 
the appropriate “certificate.” By supporting local 
control of trust relationships, we avoid the need 
for the assumption of a globally known, monolithic 
hierarchy of “certifying authorities.” Such hierar- 
chies do not scale beyond single “communities of 
interest” in which trust can be defined uncondi- 
tionally from the top down. 

0 Separation of mechanism from policy: The 
mechanism for verifying credentials does not de- 
pend on the credentials themselves or the seman- 
tics of the applications that use them. This al- 
lows many different applications with widely vary- 
ing policy requirements to share a single certificate 
verification infrastructure. 

1.1. Review of Existing Approaches 

Existing services that use cryptographic techniques 
do not use a “trust management system” as such and 
do not identify “trust management” as a problem in its 
own right. Usually, implicit notions of trust manage- 
ment are handled by applications. Most are based on 
public key “certificates” in which a trusted third party 
signs a specially formed message certifying the identity 
associated with a public key. How the certified identity 
is acted upon, however, is left to the application. The 
two best known certificate systems are those of PGP 
and X.509. 

In the PGP system 171, a user generates a 
(Publiclcey, Secretlcey) pair that is associated with 
his unique ID; usually an ID is of the form 
( N a m e ,  Emai lAddress) .  Keys are stored in key 
records. A public (resp. secret) key record contains 
an ID, a public (resp. secret) key, and a timestamp of 
when the key pair was created. Public keys are stored 
on publrc key rrngs and secret keys on secret key rzngs. 
Each user must store and manage a pair of key rings. 

If user A has a good copy of user B’s public-key 
record, e.g., a copy that he is confident (for whatever 
reason) has not been tampered with since I3 generated 
it, then A can sign this copy and pass it on to user C. 
A thus acts as an zntmducer of B to C A signed key 
record is called a key certzficate,’ and we sometimes 

‘The PGP User’s Guide does not have distinct names for 

use the word “certify” as a synonym for “sign.” Each 
user must tell the PGP system which individuals he or 
she trusts as introducers and must certify the introduc- 
ers’ public-key records with his own secret key. More- 
over, a user may specify the degree of trust that he has 
in each introducer; an individual may be designated 
unknown, untrusted, marginally trusted, or completely 
trusted. Each user stores his trust information on his 
key rings and tunes PGP so that it assigns a valid- 
ity score to ‘each certificate on a key ring and uses the 
key in that certificate only if the score is high enough. 
For example, a skeptical user may require two fully 
trusted signatures on a public-key record to judge the 
key it contains valid, and a less skeptical user may re- 
quire only one fully trusted signature or two marginally 
trusted ones. 

It is important to note that implicit in PGP is the 
assuinption that the only notion of “security policy” 
that needs tlo be supported is that of verification of the 
ID of the seinder of a message. Keys rings and degrees 
of trust allow each user to design his own policy o j  
this very limited form. This narrow notion of policy is 
appropriate to PGP, which is designed specifically to 
provide secure email for individuals, but it is insuffi- 
cient for the broader range of secure network services 
now being designed and implemented. 

Note that A’s signature on B’s public-key record 
should not be interpreted to mean that A trusts B’s 
personal integrity; the right interpretation is rather 
that 4 believes that the binding of B’s identity to the 
key in the record is correct. Furthermore, note that 
trust is not transitive - the facts that A fully trusts B 
as an introducer and t,hat B fully trusts C do not auto- 
matically imply anything about A’s degree of trust in 
C. 

As PGP has grown in popularity, a decentralized 
“web of trust” has emerged. Each individual is re- 
sporisible for acquiring the public-key certificates he 
needs and for assigning degrees of trust to the intro- 
ducers he gets them from. Similarly, each individuai 
must create his own key pair and disseminate his own 
public key. This “grass roots” approach rejects the i;se 
of official certifying authorities that sign public keys of 
individuals (and those of other certifying authorities) 
and thereby act as “trust servers” for the users of those 
keys. 

The X.6’09 authentication framework attempt,s to 
solve the same part of the trust management prob- 
lem that FGP’s introducer mechanism attempts to 

signed and unsigned key records: it refers t o  both of them as 
“certificates.” We have chosen the term “record” to refer to an 
unsigned unit of key information so that we may use the term 
“certificate” as it is commonly used in the literature. 



solve, namely the need to find a suitably trustwor- 
thy copy of the public key of someone with whom 
one wants to communicate.’ As in PGP, X.509 cer- 
tificates are signed records that associate users’ IDS 
with their cryptographic keys; X.509 certificates con- 
tain more information than PGP certificates, e.g., the 
names of the signature schemes used to create them 
and the time interval in which they are valid (see [3]  
for details), but their basic purpose is simply the bind- 
ing of users to keys. However, X.509 differs sharply 
from PGP in its level of centralization of information. 
While anyone may sign public-key records and act as 
an introducer in PGP, the X.509 framework postu- 
lates that everyone will obtain certificates from an of- 
ficial certifying authority (CA). When user A creates a 
(Publicli’ey, Secre tKey)  pair, he has it and the rest of 
the required information certified by one or more CAS 
and registers the resulting certificates with an official 
directory service. If A later wants to communicate se- 
curely with B, he obtains a certificate for B from one 
of the directory servers. If A and B have both been 
certified by the same CA, the directory server can just 
send B’s certificate to A, who can verify its validity us- 
ing the public key of this common CA. If A and B have 
not been directly certified by a common CA, then the 
directory service must create a certification path from 
A to B. This is a list of the form C A I ,  certl,  GA2, 
cert’, . . ., CA,, cert,, where certi, 1 5 i < n ,  is a 
Certificate of CAi+l that has been signed by CA;,  and 
cert, is a certificate of B. In order to use this path to 
obtain B’s public key, A must know the public key of 
C A I ,  the first authority in the path. Thus, the X.509 
framework rests on the assumption that CAS are orga- 
nized into a global “certifying authority tree” and that 
all users within a “community of interest” have keys 
that have been signed by CAS with a common ancestor 
in this global tree. 

1.2. The PolicyMaker Approach 

Despite the differences in the way the various 
certificate-based systems structure trust relationships, 
they all assume a similar, and, as we shall see, rather 
cumbersome, trust architecture in the applications that 
use them. In particular, identity-based certificates cre- 
ate an artifical layer of indirection between the infor- 
mation that is certified (which answers the question 
“who is the holder of this public key?”) and the ques- 
tion that a secure application must answer (“can we 
trust this public key for this purpose?”). 

’Proposed future versions of X.509 include provisions for a 
“policy” attribute. However, the responsibility for interpreting 
the policy remains outside the scope of the X.509 mechanism [4]. 

Consider the steps an application must go through 
to process a request based on a signed message from 
the holder of a traditional (X.509 or PGP) certificate. 
(Some of these steps might be performed by the oper- 
ating system or otherwise hidden at a lower layer, as in 
the Taos operating system [ 6 ] ,  but they are performed 
nevertheless) : 

1. Obtain certificates, verify signatures on certifi- 
cates and on application request , determine public 
key of original signer(s). 

2. Verify that certificates are unrevoked. 

3.  Attempt to find “trust path” from trusted certifier 
to certificate of public key in question. 

4. Extract names from certificates. 

5. Lookup names in database that maps names to 
the actions that they are trusted to perform. 

6. Determine whether requested action is legal, based 
on the names extracted from certificates and 
whether the certification authorities are permitted 
to authorize such actions according to local policy. 

7. Proceed if everything appears valid. 

Observe that the final two steps are completely outside 
the scope of the certification framework and must be re- 
implemented for each application, despite being central 
to the problem that certificates are supposed to solve. 
The problem of reliably mapping names to the actions 
they are trusted to perform can represent as much of a 
security risk as the problem of mapping public keys to 
names, yet the certificates do not help the application 
map names to actions. 

A more general system would integrate the speci- 
fication of policy with the binding of public keys to 
the actions they are trusted to perform. That is, we 
would prefer a system in which the steps above could 
be reduced to: 

1. Obtain certificates, verify signatures on certifi- 
cates and on application request , determine public 
key of original signers. 

2. Verify that certificates are unrevoked. 

3 .  Submit request, certificates, and description of lo- 
cal policy to local “trust management engine.” 

4. Proceed if approved. 

PolicyMaker departs sharply from certificate-based 
security systems centered on the binding of identities 
to keys in that it allows requesters of secure services to 
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prove directly that they hold credentials that authorize 
them to use those services. PolicyMaker binds public 
keys to predicates that describe the actions that they 
are trusted to sign for, rather than to the names of 
the keyholders as in current systems. Using the Pol- 
icyMaker language, for example, it is straightforward 
to authorize a cryptographic key to sign purchase or- 
ders for up to $500 by itself or up to $5000 when the 
transaction is countersigned by another authorized key. 
Considerations such as personal identity and organiza- 
tional level of the approvers, which are only inciden- 
tally relevant to the question the application is trying 
to answer (whether to accept a purchase order), can 
be omitted altogther. This ability to express security 
credentials and policies without requiring the applica- 
tion to manage a mapping between personal identity 
and authority is especially convenient in systems that 
include anonymity as a security requirement. For ex- 
ample, an electronic voting system might require a re- 
quester to establish that he is a registered voter but 
might not be allowed to learn the requester’s personal 
identity. 

The expressiveness and generality that make the 
PolicyMaker language powerful does not come at the 
price of insecurity or incomprehensibility: Credentials 
can be presented by untrusted parties, because they are 
used by a “safe” interpreter. Moreover, simple policies 
and credentials can be stated simply, and existing PGP 
or X.509 certificates that merely bind keys to IDS can 
be used by PolicyMaker with only trivial modifications. 

Trust relationships are also more general and flex- 
ible in PolicyMaker than they are in existing sys- 
tems. Neither the completely anarchic PGP-style web 
of trust nor the monolithic X.509-style certifying au- 
thority trees suffices for many applications that require 
the use of cryptographic keys. In the PGP system, 
there is no official mechanism for creating, acquiring, 
and distributing certificates - one simply must acquire, 
by whatever ad hoc means one can devise, and store on 
one’s key ring any certificates that are needed. If a re- 
cipient of a signed message does not have a valid copy of 
the public-key required to verify the signature, then the 
signature goes unverified until the recipient can find an 
introducer who has the certificate. Furthermore, there 
is no systematic mechanism that allows the sender of 
a message to know whether a signature will be accept- 
able to a recipient. This informal introduction mech- 
anism may suffice for personal communication, but it 
is insufficiently reliable for commerce. On the other 
hand, the single, global certifying authority tree pro- 
posed in the X.509 authentication framework, no mat- 
ter how reliable, is also insufficient for commerce, be- 
cause it often forces competing entities to enter into 

unreasonable trust relationships (albeit possibly indi- 
rectly). The PolicyMaker system provides a simple lan- 
guage in which to express conditions under which an 
individual or an authority is trusted, as well as con- 
ditions under which trust may be deferred. Thus, a 
user may trust certificates signed by CA1 and CA2 for 
small transactions but may insist upon certificates from 
more reliable CA3 for large transactions. One user may 
trust certificates signed directly by CA1 but not those 
signed by authorities whom CA1 trusts, while another 
user may trust certificates signed by CA2 if CA1 trusts 
CA2. Simila,rly, one company may insist that its cus- 
tomers use CAI’s certificates, and another may insist 
upon CA2’s certificates. There is no assumption of a 
global tree in which all CAS have a common ancestor. 

In additlion to providing a richer language for ex- 
pressing trust relationships, policies, and credentials, 
PolicyMaker greatly enhances the potential scope and 
form of security services by implementing trust man- 
agement in a distinct software system. It frees the de- 
signers of such services from the need to handle se- 
ciirity completely within applications (as in PGP) or 
completely within the operating system (as in Taos). 
It also allows implementations of “standard” security 
policies and credentials developed for one application 
to be reused in others. 

2. The PolicyMaker Trust Management 
Systeim 

2.1. Architectural Framework 

The interface to PolicyMaker reflects our goal of sep- 
arating generic mechanism (provided by Policy Maker) 
from application-specific policy (which is defined by 
each application). The PolicyMaker service appears 
to applications very much like a database query engine. 
PolicyMaker accepts as input a set of local policy state- 
ments, a collection of Credentials, and a string describ- 
ing a proposed trusted action. PolicyMaker evaluates 
proposed actions by interpreting the policy statements 
and credentials. Depending on the credentials and form 
of the query, it can return either a simple yes/no answer 
or additional restrictions that would make the proposed 
action acceptable. PolicyMaker can either be built into 
applications (through a linked library) or run as an sep- 
arate “daernon” service. 

In a simple application, certificates (and certificate 
revocation) will be obtained and managed by the ap- 
plication itself (e.g., in an email system, the sender 
of a message might include the appropriate certificates 
in the message itself, which the receiving application 
would pass directly to PolicyMaker with each query). 
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More complex applications might manage certificate:s 
with an external module, whose behavior (e.g., specify- 
ing certificate distribution and revocation authorities) 
might be specified in terms of PolicyMaker certificates. 
In this paper, however, we focus on the structure and 
language of the PolicyMaker interpreter itself. 

Security policies and credentials are defined in termis 
of predicates, called filters, that are associated with 
public keys. Filters accept or reject action descriptions 
based on what the holders of the corresponding secreit 
keys are trusted to do. Security policies and ereden.- 
tials consist of a binding between a filter and one or 
more public keys. Filters can be written in a variety 
of interpreted languages and are discussed in detail be- 
low. Any public key cryptosystem can be used; signa- 
ture verification on credentials is handled by external 
agents (including, for example, PGP). 

Trust may also be deferred. Since security informa- 
tion is often not completely defined or available locally, 
it is frequently necessary to rely on trusted third par- 
ties to provide additional security information. A local 
policy may defer to third parties who are trusted to 
issue credentials for others, and it may use filters that 
limit the extent to which these third parties are trusted. 
These third parties may themselves defer trust if they 
do not have all of the relevant security information, ancl 
they may use filters. Local policies may set bounds 
on the number of times trust may be deferred. Cre- 
dentials themselves may also contain filters that limit 
the actions their holder is trusted to perform. Trust, 
is monotonic; each policy statement or credential can 
only increase the capabilities granted to others. An. 
action is considered acceptable according to local pol- 
icy if there is a “chain” (defined in Section 2.3) from[ 
the policy to the key(s) requesting the action in which 
all the filters along the chain are satisfied. This model. 
supports very precise and complex trust relationships, 
as we shall see below. 

PolicyMaker is not tied to any particular notion 
of security policy or to any particular authentication 
or signature scheme. The form of action descriptions 
(called action strings) is not determined by or known to 
the PolicyMaker system itself. It is up to the applica- 
tion to generate and interpret the strings and up to the 
filters to accept or reject them. Similarly, PolicyMaker 
does not itself verify the signatures with which ac- 
tion strings are associated, allowing applications to em- 
ploy virtually any authentication scheme. An applica- 
tion calls PolicyMaker after it has composed an action 
string and determined the authentication identifier(s) 
(e.g., PGP public keys) from which the requested ac- 
tion originated. PolicyMaker then determines whether 
the action string is permitted according to the local 

security policy and credentials. 

2.2. The PolicyMaker Language 

The basic function of a PolicyMaker system is to 
process queries. A query is a request to determine 
whether a particular public key (or a sequence of pub- 
lic keys) is permitted to perform a particular action 
according to local policy. Queries are of the form 

key1 , keyz, ..., key, REQUESTS ActzonStrzng 

Action strings are application-specific messages that 
describe a trusted action requested by a (sequence of) 
public key(s). The semantics of action strings are de- 
termined by the applications that generate and inter- 
pret them and are not part of, or even known to, Policy- 
Maker. The action strings are interpreted only by the 
calling applications and might confer such diverse capa- 
bilities as signing electronic mail messages that claim to 
be from a particular individual, entering into contracts 
on behalf of an organization, logging into a computer 
system, or watching a pay-per-view movie. 

PolicyMaker processes queries based on trust infor- 
mation contained in assertions. Assertions confer au- 
thority on keys. As discussed in the previous section, 
each assertion binds a predicate, called a filter, to a 
sequence of public keys, called an authority structure. 
The simplest filters are interpreted programs that can 
accept or reject action strings. More complex filters, 
discussed later, can also generate annotations to action 
strings. Assertions are of the form: 

Source ASSERTS Authoritystruct WHERE Falter 

Here, Source indicates the source of the assertion 
(either the local policy in the case of policy assertions 
or the public key of a third party in the case of signed 
assertions). AuthorityStruct specifies the public key 
or keys to whom the assertion applies. In the sim- 
plest case, an authority structure is just a single public 
key, but more complex authority structures are also 
possible (such as “at least three of the following eight 
keys”; how this is done is discussed below). In this 
way, authority structures serve a purpose in our trust 
management system that is similar to the one served 
by “access structures” in a secret-sharing scheme. Fal- 
ter is the predicate that action strings must satisfy for 
the assertion to hold. In other words, each assertion 
states that the assertion source trusts the public keys 
in the authority structure to be associated with action 
strings that satisfy the filter. (Any filters that apply 
to the source are recursively applied as well; we discuss 
query semantics in detail in the next section.) 

168 



There are two types of PolicyMaker assertions: cer- 
tificates and policies. A certificate (also called a signed 
assertion) is a signed message that binds a particu- 
lar authority structure to a filter. A policy also binds 
a particular authority structure to a filter. Policies, 
however, are not signed; instead, because they origi- 
nate locally, they are unconditionally accepted locally. 
They are, semantically and syntactically, really just a 
special case of certificates. On any given system, the 
set of local policies forms the “trust root” of the ma- 
chine and defines the context under which all queries 
are evaluated. 

Authority structures are specified as filters that ac- 
cept or reject a list of one or more public keys asso- 
ciated with an action string. The simplest authority 
structure matches exactly one key, but it is also pos- 
sible to construct filters that implement complex re- 
quirements, such as Ic-out-of-n threshold schemes. 

A more precise syntax is given in the Appendix. 

2.3. Query semantics 

A query is a request for information about the trust 
that can be placed in a particular (sequence of) public 
key(s). A PolicyMaker system must have at least one 
policy assertion before it can process queries. Typi- 
cally, there will be several fixed policy assertions and a 
collection of signed assertions pertaining to the query 
at hand. 

Recall that queries contain one or more keys and an 
action string and that assertions contain a source, an 
authority structure, and a filter. From a semantic point 
of view, the simplest case is that of a query with one key 
IC and a set of assertions (both policies and certificates) 
in which all authority structures are just single keys. In 
this case, we may interpret the assertions as a directed 
graph D in which the vertices are labeled by keys or 
policy sources and the arcs are labeled by filters; if 
v -+ w is an arc in D that is labeled by f ,  then there 
must be an assertion whose source is the label of U, 
whose authority structure is the label of w ,  and whose 
filter is f. To process a query, the PolicyMaker system 
must find a chain v1 -+ v2 -+ . . . t ut in D in which 
‘u1 is a local policy source and ut = I C .  If the query 
contains multiple keys k l ,  . . ., k, and the assertions 
contain complex authority structures, then V (  D )  must 
include nodes that are labeled by keys, policy sources, 
and complex authority structures, and the chain v1 -+ 
v2 + . . .  -+ ut must be such that vt is labeled by an 
authority structure that accepts the input ( k l ,  . . . , kn). 

The filters in certificate and policy assertions may 
take one of two forms. The simplest form is a program 
that simply accepts or rejects action strings. A query 

is then satisfied if the digraph given by these assertions 
contains a chain in which all of the filters accept the 
action string. 

The second filter form not only accepts or rejects 
action strings but may also append annotations to an 
otherwise acceptable action string that indicate restric- 
tions or information not present in the original query. 
Such assertions allow the querying application to gen- 
erate a description of the trust capabilities of a key 
without needing to “probe” PolicyMaker with specific 
queries. For example, in an electronic mail system, 
a certificate for an organizational certifying authority 
might generate an “organization:” line to be added 
to action strings where one is not already present. 
Such assertions contain two filter programs: a predi- 
cate, which behaves exactly as the filters we have al- 
ready described, and an annotator. Queries involving 
assertions that contain annotators are evaluated in two 
phases. Annotators behave just like predicates but are 
also able to emit an annotation that is appended to 
the action string. In the first pass, the action string is 
passed to each annotator along the chain, from policy 
to query, possibly acquiring more annotations. If all 
annotators are satisfied, we run a second pass with the 
fully annotated action string through the predicates in 
the chain. The predicates can either accept or reject 
but cannot add further annotations. This ensures that 
any annotations in the previous phase are acceptable 
to all certificates in the chain. If all predicates are sat- 
isfied, the annotated action string is returned to the 
application. 

2.4. Signature Schemes and Filter Languages 

PolicyMaker does not itself verify signatures on 
signed assertions or queries or even process the orig- 
inal signed messages. Instead, signatures are ver- 
ified by some external program or function (e.g., 
PGP, F’EM, etc.). The external program guarantees 
that the signature was valid for the identified pub- 
lic key. The public key passed to the PolicyMaker 
interpreter identifies the program and the key (e.g., 
“PGP : Ox01234567abcdef aObic2d3e4f 5a6b7”). By 
not interpreting signatures itself or insisting on a par- 
ticular signature scheme or format, PolicyMaker makes 
it very easy to implement a certification authority that 
exploits existing infrastructure. For example, it is pos- 
sible to have chains of trust that consist of a mixture 
of X.509 certificates (interpreted by a program that 
converts them into PolicyMaker certificates) and cer- 
tificates consisting of simple text messages signed with 
a program such as PGP. 

Similarly, PolicyMaker filters are interpreted pro- 
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grams that are run within a “safe” (I/O and resource 
limited) wrapper. Our implementation currently s u p  
ports three filter languages: a regular expression sys- 
tem (similar to those used in Unix), an internally de- 
veloped safe version of AWK [l], which we call AWK- 
WARD, and a macro language that preprocesses into 
safe AWK. Other “safe” languages, such as Java [2] or 
Safe-TCL [5], are easily added as desired. 

In general, any language that can be safely inter- 
preted can be used as a filter language. A distin- 
guishing feature of our system is that filters are al- 
lowed the full complexity and expressiveness of gen- 
eral programs. Designing and implementing a safe fil- 
ter language is a much simpler task than designing a 
general-purpose language for remote agents (like Java) , 
however, because filters generally have no need to is- 
sue “dangerous” system calls. (There is no need to  
open files or interact with the network, for example.) 
PolicyMaker wraps the filter-language interpreter in a 
resource-limited shell that prevents, e.g., infinite loops 
in filters from consuming the entire host CPU. Most fil- 
ters can be assumed to be very simple, so their resource 
allocation can be modest. 

Input to  filters consists of the current action string 
and an “environment” containing information about 
the current context (e.g., date, time, application name, 
etc.). A filter can use the environment to enforce con- 
textual constraints such as expiration times. A filter 
also has access to information about the rest of the 
chain in which it is being evaluated, which makes it 
possible to design certificates that limit the degree to 
which their authority can be deferred. 

Although the interpreter for a filter language is ex- 
ternal to PolicyMaker itself, the name of the language 
is given in assertions and must be known by anyone 
who needs to  use the assertion. New languages can be 
added easily as needed, provided that all recipients of 
certificates using the new language are configured to  in- 
terpret them. PolicyMaker ignores certificates written 
in unknown or unsupported filter languages. 

3. Application Examples 

Because the responsibility for defining and interpret- 
ing action strings rests entirely with the application, 
the most important consideration in integrating Poli- 
cyMaker into applications is identifying an appropri- 
ate “trust language” that captures the required secu- 
rity semantics. An application’s action string language 
should be chosen so that it can be easily generated and 
acted upon by the application and so that recognizers 
can be easily programmed into policies and certificates. 
In general, it should be possible for a person who un- 

derstands the application to  examine an action string 
and understand what it does and to  examine assertions 
and understand what kinds of actions satisfy them. In 
the sections that follow, we give (informal) examples of 
trust languages and assertions that show how Policy- 
Maker might be integrated into various applications. 

3.1. Email system 

Here, we propose an electronic mail system for the 
Internet, in which the security policy requires that we 
establish the identities of parties to messages. A natu- 
ral, if somewhat simplistic, language for describing the 
trust properties of messages in such a system derives 
from the mail delivery headers used to  route the mes- 
sage from sender to  recipient. For example, headers 
containing the lines 

From: Alice 
Organization : Bob Labs 

indicate that the message originated from an individual 
named “Alice” who is affiliated with “Bob Labs.” The 
security policy in such a system aims to  ensure that the 
headers displayed to the user along with each message 
are correct, based on certificates from (locally chosen) 
trusted authorities. It is easy to  imagine a language of 
action strings for such a system: 

From: s e n d e r > s  name 
Organization : s e n d e r ’ s  organa z a t  i on 

Given such a language, it is also easy to construct a 
policy that binds Alice’s P G P  public key to  the ability 
to sign messages that claim to originate with Alice: 

p o l i c y  ASSERTS 
pgp:”Oxf0012203a4b51677d8090aabb3cdd9e2f” 
WHERE PREDICATE=regexp:“(From: Alice) && 

(Organization: Bob Labs)” ; 

Because the policy is very simple and can be recog- 
nized by simple pattern matching, we used a regular 
expression for the filter. The expression simply checks 
that the expected fields are present and contain only 
the expected information. (We might have also added 
an ANNOTATOR filter that contains a simple AWK 
program that fills in any missing fields, but we did not 
in this example.) Note that ,  with this policy, the au- 
thority to certify identity is not deferred to  a third 
party; the trust in Alice’s key is embedded directly 
from the policy. 

In most cases, we would prefer a level of indirection. 
For example, we might trust the public key belonging 
to Bob (the president of Bob Labs) to  tell us which 
public keys belong to his employees. Here, local policy 
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would associate his public key with a predicate that 
checks only that the “Organization:” field indeed 
says “Bob Labs”. Bob can sign predicates on behalf of 
his employees that check their names in the “From:” 
field. These signed predicates are roughly analogous to 
the “Certificates” of the X.509 system; Bob is trusted 
as the “certificate authority” but only with respect to 
his own employees. 

It is simple to set a policy to trust Bob (whose key is 
pgp : “Ox01234567abcdef aObic2d3e4f 5a6b7“) in this 
role: 

policy ASSERTS 
pgp : “Ox01234567abcdef aOblc2d3e4f 5a6b7“ 
WHERE 
PREDICATE=regexp:“Organization: Bob Labs”; 

This policy allows us to trust certificates from Bob 
(which are just messages signed with his PGP key): 

pgp: “Ox01234567abcdef aOblc2d3e4f 5a6b7“ 
ASSERTS 
pgp:“Oxf0012203a4b51677d8090aabb3cdd9e2f~‘ 
WHERE PREDICATE=regexp: “From: Alice“; 

Together, this certificate and the deferring policy 
have the same meaning as the non-deferring policy 
given above. The query: 

pgp:“Oxf00i2203a4b51677d8090aabb3cdd9e2f~i 
REQUESTS “From: Alice 

Organization: Bob Labs“ ; 

would succeed, but 

pgp:~‘Oxf0012203a4b51677d8090aabb3cdd9e2f~~ 
REQUESTS “From: Alice 

Organization: Matt Labs“ ; 

and 

pgp:”Oxf0012203a4b51677d8090aabb3cdd9e2f” 
REQUESTS ”From: John 

Organization: Bob Labs” ; 

would both fail. 
The preceding discussion shows how to use Policy- 

Maker to support authenticity of email messages. Note 
that it can also support privacy of messages. By query- 
ing a PolicyMaker daemon, a sender can obtain the ap- 
propriate key with which to encrypt a message, as well 
as the information about the recipient’s security policy 
needed to prepare the outgoing message. 

3.2. A Certificate Revocation Server 

PolicyMaker does not itself implement certificate 
distribution or revocation services ( 2 .  e., there are no 
“Certificate revocation lists” built into the system). 

However, PolicyMaker can be used to specify services 
in which arbitrary certificate revocation, distribution, 
and freshness constraints are built into the policy. It 
is possible, for example, for a certificate issuer to spec- 
ify authority structures that include not only the pub- 
lic key being certified but the public key of a certifi- 
cate revocation service as well. The revocation ser- 
vice issues ffrequently broadcast certificates that con- 
tain predicates that are only satisfied by non-revoked 
keys. Other constraints, such as the required “fresh- 
ness” of the revocation certificates, can also be specified 
and may be based on application-based criteria (e.g., 
high-valued transactions require more recently issued 
assurance that the certificates are not revoked). 

Detailed example is omitted for brevity. 

3.3. X509PGP Certificates as PolicyMaker Asser- 
tions 

It is possible to exploit existing certification infras- 
tructure and still use the policy specification i-necha- 
nisms of PolicyMaker. For example, if the majority 
of certificates in a system are still in X.509 or PGP 
format, it is simple to write an application-specific 
program that converts these certificates into Policy- 
Maker assertions. The predicate for such an assertion 
would iinclude routines that check the application’s ac- 
tion string language for, e.g., the correct identity. 

3.4. A Simple Workflow System 

A company policy regarding signatures on contracts, 
checks, bids, purchase orders, etc. might require k out 
of n people to sign for the company, The signers have 
to be identifiable as legitimate co-signers for the vari- 
ous applications and corresponding qualifiers (such as 
dollar amount, liability, control, etc). The typical co- 
signature is a two-out-of-n protocol. In other cases, 
perhaps to recover an escrowed key that has been cov- 
ered using a k-out-of-n threshold scheme, k signatures 
are needed. 

In the following example, the company policy is 
that, for the purchase-order department to process 
purchase orders for amounts less than or equal to 
$1,000,000, submitted orders must have the signa- 
tures of at least three of the company directors. 
The purchase-order application then requires that the 
amount, the organization, and the signers’ names be 
present before it will verify that an order has been ap- 
propriately constructed. 

The top level policy states that the security certifi- 
cate authority key is allowed to create certificates in 
the na.me of the company. (in the interest of read- 
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ablity in the examples that follow, we use labels like 
"Security-CA" in place of the actual public keys). 

nodes long evaluated in much less time than is required 
to verify the signatures on the certificates. 

POLICY ASSERTS Security-CA WHERE 
PREDICATE=regexp: "Organization: Bob Labs" ; 

This Security-CA then creates a certificate that 
states that any group of at least three legitimate corpo- 
rate directors can sign purchase orders for ammounts 
not exceeding $1,000,000. 

Security-CA ASSERTS 
"an AWKWARD program requiring at least 
3 keys directly certified by PersonnelKey" 

WHERE PREDICATE="an AWKWARD program 
that checks that Amount <= $1,000,000''; 

The PersonnelKey signs keys for the four directors, 
Jack, Joan, Matt, and Alice, certifying their names: 

PersonnelKey ASSERTS JackKey WHERE 
PREDICATE=regexp:"Signer ' s  Name: Jack"; 

PersonnelKey ASSERTS JoanKey WHERE 
PREDICATE=regexp:"Signer's Name: Joan" ; 

PersonnelKey ASSERTS MattKey WHERE 
PREDICATE=regexp : "Signer ' s Name : Matt ' I  ; 

PersonnelKey ASSERTS AliceKey WHERE 
PREDICATE=regexp:"Signer's Name: Alice"; 

When the purchase-order application receives a PO 
of the form: 

. . .  
PO Amount: $800,000 
Signed By: 

Jack, Joan, Matt 

it checks the digital signatures and generates an appro- 
priate action string with which it queries PolicyMaker: 

{JackKey, JoanKey, MattKey) 
REQUESTS "PO amount = $800,000 

Organization: Bob Labs 
Signer's Name: Jack 
Signer's Name: Joan 
Signer's Name: Matt"; 

4. Current Status and Future Directions 

We have implemented a prototype PolicyMaker in- 
terpreter that includes a built-in regular expression and 
AWKWARD interpreter. External programs recognize 
DSA and PGP-signed PolicyMaker assertions and can 
convert X.509 and PGP certificate formats into Poli- 
cyMaker assertions for a simple Internet email appli- 
cation. Performance is reasonable, with chains several 

The PolicyMaker approach has a number of advan- 
tages compared with the traditional, ad hoc trust man- 
agement approaches forced by such systems as X.509 
and PGP. First, because certificates and policies are 
based on predicates written in a general programming 
language, the trust language for an application domain 
can be as simple or as complex as required without 
changing the trust management system itself or the 
interface to it.  Second, trust descriptions can be in 
whatever form naturally occurs in the application and 
can be changed without altering the trust management 
system. In an email system, they might consist of mes- 
sages header lines. In a system for signing and approv- 
ing contracts, they might consist of strings indicating 
the amounts and types of expenditures. Third, applica- 
tions that use PolicyMaker to implement trust manage- 
ment may be more secure, since the risks arising from 
one level of indirection (mapping of identities to their 
authority) are eliminated. Finally, responsibility is sep- 
arated in a natural way. Applications are responsible 
for describing trusted actions and taking appropriate 
actions based on correct descriptions. Certificates and 
policies are responsible for describing who is trusted 
to perform actions according to the descriptions. The 
trust management system (PolicyMaker) is responsible 
for ensuring that described actions actually conform to 
the policies and certificates but need not actually un- 
derst and them. 

Of course, PolicyMaker does not solve the entire 
trust management problem or guarantee that systems 
that use it will be secure. Applications must define ac- 
tion description languages that accurately reflect the 
security semantics of the application. The predicates 
in policy and certificate assertions must be carefully 
written to reflect the intentions of the policy. Because 
there are few restrictions on predicates, it is possible 
to construct policies that have unfortunate or unex- 
pected consequences. However, because PolicyMaker's 
trust management functions are encapsulated in only a 
few components (the certificates, policies, and applica- 
tion's act<ion string management functions), it is proba- 
bly easier to verify or at least debug security properties 
of systems than it is in traditional approaches in which 
trust management is spread across the entire system. 

Our near-term plan for PolicyMaker has two impor- 
tant components. On one front, we plan to develop 
a formal model of trust management in which to in- 
vestigate the power and limitations of the PolicyMaker 
approach in a mathematically rigorous manner. Simul- 
taneously, we plan to experiment with our prototype 
implementation of the PolicyMaker system in diverse 
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applications contexts. We also believe PolicyMaker 
will make a good framework for certificate distribution 
(e.g., a certification server could provide appropriate 
certificates based on provided policy assertions). Both 
formal and experimental results will guide the develop- 
ment of future versions of the system. 

In conclusion, PolicyMaker introduces the general 
“trust management layer’’ at what appears to be the 
right level of abstraction. An important benefit is that, 
by exposing a trust management interface, it requires 
designers and implementers of secure services and sys- 
tems to consider trust management explicitly. It en- 
courages the use of sophisticated notions of security 
when appropriate to the context, and it enforces the 
necessary coordination of the design of policy, creden- 
tials, and trust relationships. 

Appendix: PolicyMaker Syntax 

The bask grammar accepted by the PolicyMaker in- 
terpreter follows. Terminals are given in UPPERCASE. 

a s s e r t i o n  : source ASSERTS 
au ths t ruc t  WHERE 
f i l t e r l i s t  SEMICOLON 

au ths t ruc t  SEMICOLON 
I source ASSERTS 

query : k e y l i s t  REQUESTS 
s t r i n g  condi t ion  SEMICOLON 

source ; keyid 
I POLICY 

keyid : system COLON s t r i n g  
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