
Efficient Query Reformulation in Peer Data
Management Systems

Igor Tatarinov, Alon Halevy
{igor, alon}@cs.washington.edu

Department of Computer Science and Engineering

University of Washington, Seattle, WA 98195, USA

ABSTRACT
Peer data management systems (PDMS) offer a flexible
architecture for decentralized data sharing. In a PDMS,
every peer is associated with a schema that represents
the peer’s domain of interest, and semantic relationships
between peers are provided locally between pairs (or
small sets) of peers. By traversing semantic paths of
mappings, a query over one peer can obtain relevant
data from any reachable peer in the network. Semantic
paths are traversed by reformulating queries at a peer
into queries on its neighbors.

Naively following semantic paths is highly inefficient
in practice. We describe several techniques for optimiz-
ing the reformulation process in a PDMS and validate
their effectiveness using real-life data sets. In particular,
we develop techniques for pruning paths in the refor-
mulation process and for minimizing the reformulated
queries as they are created. In addition, we consider the
effect of the strategy we use to search through the space
of reformulations. Finally, we show that pre-computing
semantic paths in a PDMS can greatly improve the ef-
ficiency of the reformulation process. Together, all of
these techniques form a basis for scalable query refor-
mulation in PDMS.

To enable our optimizations, we developed practical
algorithms, of independent interest, for checking con-
tainment and minimization of XML queries, and for
composing XML mappings.

1. INTRODUCTION
Sharing data among multiple sources is crucial in a

wide range of applications, including enterprise data
management, large-scale scientific projects, sharing data
between government agencies and data sharing on the
World-Wide Web. Data integration systems offer an
architecture for data sharing in which data is queried
through a central mediated schema, but the data itself
stays at the sources in their local schemas. Recent data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

integration products have been successful at enabling
data sharing, but on a relatively small scale.

The main limitation of data integration system is the
need for the mediated schema. In many applications,
owners of data want to be able to share data without
any central authority (even at the logical level). In some
cases, the data is so diverse that a mediated schema
would be almost impossible to build or to agree upon,
and very hard to maintain over time.

Peer data management systems (PDMS) have been
proposed as an architecture for decentralized data shar-
ing [20, 1, 27, 5, 7]. A PDMS (see Figure 1) consists of
a set of (physical) peers. Each peer has an associated
schema that represents its domain of interest. Some
peers store actual data, and describe which data they
store relative to their schema. The stored data does not
necessarily cover all aspects of the peers’ schema.

Mappings between disparate schemas in a PDMS are
provided locally between pairs or small sets of peers.
When a query is posed at a peer, the system can ob-
tain relevant data from any peer in the PDMS that is
connected through a semantic path of mappings. In
the PDMS of Figure 1, supporting a web of database
research-related data, a query on the Roma node can ob-
tain data from the Paris node (and vice versa) by follow-
ing a path through DB-Projects and Stanford. Unlike
a hierarchy of data integration systems or mediators, a
PDMS supports any arbitrary network of relationships
between peers. In fact, PDMSs are a strict generaliza-
tion of data integration systems, as some peers in the
PDMS may act as mediators to other peers. Further-
more, a PDMS also provides a platform for web-scale
sharing of data, as envisioned by the Semantic Web [6].

The main advantages of PDMSs are (1) peers can
share data in diverse and overlapping domains without
a mediated schema, (2) joining a PDMS can be done
opportunistically, i.e., a peer can provide a mapping to
the most convenient (e.g., similar) peer(s) already in the
PDMS, and (3) a peer can pose a query using its own
schema without having to learn a different one.

Query reformulation: The key step in query process-
ing in a PDMS is reformulating a peer’s query over other
peers on the available semantic paths. Broadly speak-
ing, the PDMS starts from the querying peer and refor-
mulates the query over its immediate neighbors, then
over their immediate neighbors, and so on. Whenever
the reformulation reaches a peer that stores data, the

data
data

data

project

name members pubs

data data

area

member project

pubs peoplename

members pubs

paper

authortitle

member

project

Berlin Roma

DBLP

paper

title author venue

people papers

students faculty pub

DB−Projects

direction

project leaders other

members

Stanford Paris

Figure 1: A PDMS for the database research do-

main. A fragment of each peer’s XML schema is

shown as a labeled tree. Arrows indicate that there

is mapping between the schemas of the peers.

appropriate query is posed on that peer, and additional
answers may be found. Since peers typically do not
contain complete information about a domain, any rele-
vant peer may add new answers. Furthermore, different
paths to the same peer may yield different answers. For
example, in Figure 1, there are two paths between the
Roma peer and the Berlin peer. Since DBLP does not
model projects, data about projects in Roma cannot be
used for answering a query on the Berlin peer if we use
the path that goes through DBLP. In contrast, the path
through DB-Projects does enable that data flow.

However, following all semantic paths naively leads
to several inefficiencies. First, the algorithm may follow
many paths that can be pruned early on. Second, the
algorithm follows many paths that result in redundant
reformulations; each such reformulation results in an un-
needed query on a peer, significantly degrading perfor-
mance. Finally, in many cases the algorithm yields in-
efficient reformulations, i.e., queries on peers that must
be heavily optimized before they can be executed. As
our experiments show, these inefficiencies are a major
impediment to efficient query processing in PDMS.

Our contributions: This paper describes several meth-
ods for optimizing query reformulation in a PDMS, and
evaluates their impact with a detailed set of experiments
on a fully implemented PDMS, Piazza. In Piazza, data
is modeled in XML and peers represent their schemas
in XML Schema. To enable our optimizations we devel-
oped a set of practical algorithms for containment and
minimization of XML queries, which are of independent
interest and applicable elsewhere. In particular, the op-
timizations we describe are the following:

• Pruning and minimization: we describe algo-
rithms for pruning redundant reformulation nodes
and for minimizing reformulations, and show ex-

perimentally that it is critical to perform these op-
timizations in order for reformulation to scale to
large PDMS. To support pruning and minimiza-
tion we describe the first practical algorithms for
containment of XML queries with nesting and for
minimization of such queries.

• Search strategies: reformulation can be viewed
as a search through a space of reformulations. We
study the effects of the search strategy on the re-
formulation time. In particular, we show that the
choice of search strategy is especially important
when we want to start execution as soon as possi-
ble by pipelining reformulation and query execu-
tion. We show that a variation on best-first search
ends up exploring a smaller space and being most
appropriate for pipelining.

• Pre-computing semantic paths: we show that
pre-computing certain paths in the network can
offer many benefits, and examine the tradeoffs in-
volved. To support pre-computation we describe
a practical algorithm for composing mappings be-
tween XML peers in a PDMS.

While the optimization techniques we describe are,
at a high-level, intuitive, the main contributions of the
paper are the techniques we developed to apply the opti-
mizations to our context, and the experimental study of
their practical impact. All put together, our optimiza-
tions speed up reformulation by up to several orders of
magnitude, thereby enabling efficient reformulations on
significantly sized PDMS.

The paper is organized as follows. Section 2 defines
the reformulation problem and describes the opportuni-
ties for optimization. Section 3 describes the novel al-
gorithms that are needed to support the optimizations.
Section 4 describes the optimization methods we pro-
pose and provides a detailed experimental evaluation
of their utility. Section 5 discusses related work, and
Section 6 concludes.

2. QUERY REFORMULATION IN PDMS
This section describes the challenges raised by query

reformulation in a PDMS and the different optimiza-
tions that may be considered. We begin with a brief
overview of PDMS and of query reformulation.

2.1 Data Sharing with a PDMS
A PDMS consists of a network of nodes referred to as

peers. Peers can be serve one or more of the following
roles: servers of data, mediators translating between
schemas of other peers, and clients posing queries. We
denote the set of peers by P = {P1, . . . , Pn}, and we use
Pi to refer both to the peer and to its schema. Piazza is
based on an XML data model, and therefore their peer
schemas are described in XML Schema.

Peer mappings: Peers in a PDMS are linked through
peer mappings. Peer mappings describe the semantic
relationship between the schemas of pairs (or small sets
of) peers. Given a query over a peer Pi, the system will
use the peer mappings to reformulate the query over

Schema S1:

S1

people

faculty*

name

advisee*

student*

Schema S2:

S2

people

faculty*

student*

name

advisor*

< S2 >
for $people in /S1/people
return
< people >

for $name in $people/faculty/name/text()
return
< faculty > { $name } < /faculty >

for $student in $people/student/text()
return
< student >

< name > { $student } < /name >

for $faculty in $people/faculty,
$name in $faculty/name/text(),
$advisee in $faculty/advisee/text()

where $advisee=$student
return

< advisor > { $name } < /advisor >
< /student >

< /people >
< /S2 >

<S2>

S1

<people> people

<faculty>

faculty
name

{$name}

student
<student>

<advisor>

faculty

$advisee=$student
{$name}

adviseename

{$student}<name>

Figure 2: An example pair of peer schemas (left), a Piazza mapping between the schemas expressed
as an XML query (middle) and its query block representation (right).

the schemas of the neighboring peers. Typically, when
a peer joins a PDMS, it will supply mappings, as is most
convenient, to a small number of peers. This paper is
not concerned with the problem of generating the peer
mappings. We refer the reader to [28, 11, 12] for semi-
automatic schema mapping techniques, which directly
apply our context.

Peer mappings in Piazza are described as query ex-
pressions using a subset of XQuery. We describe the
details of the mapping language in Section 3. From the
perspective of the reformulation algorithms, the impor-
tant aspect of peer mappings is that they are directional:
a mapping defines how to construct a fragment of a tar-
get schema Pi from data in a source schema Pj , or set
of source schemas. Mappings that have a single source
schema are called pairwise mappings, and others are
called join mappings. We denote a pairwise peer map-
ping where Pi is the target and Pj is the source, by
Mi,j . (A similar notation can be given for non-pairwise
mappings, but don’t require it for our discussion).

To describe the data stored at the peers, we use a for-
malism that is small variation on peer mappings. These
descriptions are not germane to our discussion. How-
ever, it is important to note that a peer’s schema can
be broader that just what is needed to model the data
it actually stores.

Example 2.1. Figure 2 shows an example of a Piazza

mapping. The mapping defines the relationship between
the schema of S2 and the schema of S1; the two schemas
differ in how they represent the advisor/advisee infor-
mation. In our figures, schemas are represented using
a format in which indentation indicates nesting and a
* suffix indicates an arbitrary number of occurrences of
the subelement. 2

Since PDMSs are a mechanism for decentralized shar-
ing of data, mappings are not controlled in any central
fashion. The only assumption we can make about them
is that any peer that joins the system provides some
mappings (thereby defining its neighbors). In partic-
ular, the system may contain mappings in both direc-

tions between a pair of peers (i.e., both Mi,j and Mj,i).
Clearly, such decentralization also raises questions re-
garding the consistency of mappings (as individuals and
as a set), and general issues of trust. We discuss these
issues briefly in Section 6.

Single-step reformulation: Suppose a query Q is
posed over the peer P1. If P1 contains its own data,
then the PDMS first retrieves the answers to Q based
on P1’s data. Then, Q is reformulated on P1’s neighbors
and appropriate queries are posed to them, and the pro-
cess continues recursively. For each individual reformu-
lation step, the reformulation algorithm uses one of two
techniques: unfolding or rewriting, depending on the di-
rectionality of the mapping available. Suppose P2 is a
neighbor of P1. If there is a mappingM1,2, (i.e., defining
P1 as a query over P2), then reformulation amounts to
unfolding (which can be done using techniques described
in [16]). Mapping unfolding is analogous to view unfold-
ing in traditional database systems, and to query refor-
mulation in GAV-based data integration systems [18].
If the mapping is in the other direction, i.e., M2,1, then
Q needs to be rewritten using M2,1, which is similar to
rewriting a query using a (materialized) view [21] and
to query reformulation in LAV-based data integration
systems.

In our discussion we treat the actual reformulation
algorithm as a black box. The only property we require
from the algorithm is that it be sound, i.e., ultimately
lead to only certain answers [2] to the query. The the-
oretical properties of query unfolding for our formalism
are well understood. However, for the case of rewrit-
ing, the theoretical properties of algorithms for rewrit-
ing XML queries with nesting are still a subject of re-
search, and therefore so is the question of returning all
certain answers. However, there are several algorithms
that capture practical cases well [10, 19].

Multi-step reformulation: A PDMS answers queries
by chaining individual reformulation steps. In this way,
a PDMS can follow arbitrarily long semantic paths and
retrieve answers from peers not directly connected to

the query peer. Given a single-step reformulation al-
gorithm, a template algorithm for query answering in
a PDMS could be implemented iteratively as follows.
Suppose that the PDMS includes only pairwise map-
pings. At every point, we maintain a tree of goals G,
each of which is a query on a particular peer. Initially,
G includes a single goal with the original query and peer,
i.e., (Q,P). At each iteration, we choose one of the leaf
goals (Q′, P ′) ∈ G. First, if P ′ contains data, we pose
the query Q′ on the peer P ′ and add the set of answers
to the set of answers to Q. Second, we reformulate Q′

on all the neighbors of P ′ and add the newly created
goals to G.

The reason we follow all possible semantic paths are
twofold. First, as in data integration systems, since
peers rarely contain complete data w.r.t. their schema,
two peers with overlapping domains may contain dif-
ferent (or overlapping) sets of data instances. Second,
different paths to a peer may produce different refor-
mulations, because the reformulation depends on the
intermediate nodes on the path. At the extreme, one
path may produce an empty reformulation, while an-
other will not.

In [20] it is shown that if a PDMS contains certain
kinds of cycles, then query answering, and our proce-
dure in particular, may not terminate. In Piazza we
consider all paths, except that we only follow a cycle
at most once. With this termination condition we are
guaranteed to find all the answers to a query when pos-
sible according to the conditions in [20], but still obtain
answers in other cases as well.

When the PDMS includes join mappings, i.e., a map-
ping that defines a target as a join over multiple source
schemas, the procedure is conceptually similar but more
elaborate. Instead of a simple tree of goals, we build
an AND-OR tree. Reformulation using a join mapping
creates an AND node in the tree whose children are the
queries on the source peers of the mapping. Answers to
AND nodes in the tree are obtained by performing the
appropriate join on answers of its children.

As experienced in our initial implementation of Pi-

azza, the above algorithm has several obvious inefficien-
cies. The algorithm may follow redundant paths (which
later result in redundant queries to the peers), or paths
that can be pruned early on. Second, in many cases the
algorithm yields large reformulations, which need to be
heavily optimized before they can be executed.

We now describe the reformulation optimizations we
consider in this paper. We assume that query reformu-
lation is performed at the query peer and that the entire
PDMS catalog is available to every peer (the catalog can
still be distributed, e.g., using a distributed hash table).

2.2 Optimization Opportunities
In order for query processing in a PDMS to be viable,

we need to optimize the above procedure significantly.
We now outline several optimization opportunities we
consider in this paper.

Optimization goals: depending on the specific en-
vironment, different metrics can be used to optimize
query reformulation in a PDMS. The optimizations we

describe below are common to all of them. One possi-
ble optimization goal is to reduce the execution time of
queries on peers. This metric requires computing the
most efficient set of queries to be executed on the peers.
A primary example of an inefficiency that we would like
to avoid is executing a redundant query, i.e., a query
that returns a subset of the results of a previously ex-
ecuted query. Alternatively, in interactive applications
the primary goal is to minimize response time (time to
first answers). Here too, reducing redundancy is a con-
cern since redundant reformulations are more likely to
return no answers. Finally, the optimizations we de-
scribe here are also crucial for off-line analyses of net-
works of mappings, where the goal is to remove redun-
dancies in the mappings. Section 4 shows experimen-
tally the impact of each of the following optimizations.

2.2.1 Pruning reformulation goals
A PDMS is likely to include multiple semantic paths

between most pairs of peers. On the one hand, this is
an advantage because different paths can yield flow of
different fragments of data. In particular, there may be
cases when a path between a pair of peers leads to an
empty reformulation, and then an alternate path may
be more successful. On the other hand, multiple paths
may lead redundant reformulations, and hence redun-
dant queries on the peers.

Pruning is a common technique used to avoid wast-
ing work in a search algorithm. In our case, pruning in-
volves checking query containment between a previously
obtained reformulation and a new one. In Section 3.2
we describe a query containment algorithm that enables
us to perform pruning.

2.2.2 Minimizing reformulations
As we follow longer paths in the PDMS, the repetitive

application of query unfolding and rewriting results in
very large reformulations containing redundant subex-
pressions. (A similar observation regarding query un-
folding was made in [16]). In Section 3.3 we describe a
minimization algorithm for XML queries.

2.2.3 Pre-computation of Semantic Paths
Another approach to improve efficiency of query refor-

mulation in a PDMS is to pre-compute some (or all) se-
mantic paths. To pre-compute a semantic path we need
to compose the individual peer mappings along the path
[25, 15]. The composed mappings offer two types of
benefits. First, some semantic paths can be eliminated
a priori, independent of the input query if the compo-
sition is found to yield an empty reformulation. Sec-
ond, the composed mappings can be pre-optimized to
remove redundancies, therefore yielding better reformu-
lations at query time. Composition needs can be done
judiciously to exploit the most commonly used paths.

Composition of peer mappings was first considered
in [25] for mappings between relational schemas. (Note
that mapping composition is quite a bit more complex
than query composition). [25] shows that composition
can be quite expensive, and even lead to mappings with
unbounded size. In Section 3.4 we describe a practical
mapping composition algorithm for the XML context.

2.2.4 Search Strategies
The reformulation process can be viewed as a search

in the space of reformulations. Unlike typical search
problems, where we need to find a single goal state,
here we need to find all possible reformulations. How-
ever, the search strategy can still make a difference. If
a reformulation Q is ultimately going to be pruned, we
would like to prune it before we expand any (or much)
of its subtree. This is particularly important if we are
pipelining reformulation and execution, i.e., we execute
reformulations on peers as they are generated. Here,
producing a reformulation Q before a different reformu-
lation that subsumes it will result in a wasted query to
the peer.

3. THE CORE ALGORITHMS
We now describe the core algorithms underlying our

optimizations, including the first algorithm for contain-
ment of XML queries with nesting, an algorithm for
query minimization and for composition of peer map-
pings. Although they are developed in the context of
PDMS optimization, they are also of independent in-
terest. We begin by describing the specific query and
peer-mapping language we use in Piazza.

3.1 Query and Mapping Languages
In our discussion, queries to the PDMS are posed

in a fragment of XQuery. Our mapping language has
a different syntax, but peer mappings can be viewed
as queries in the same language fragment. Recall that
a peer mapping defines a target schema in terms of a
source schema (in the spirit of DTD-to-DTD mappings
in [8]).

In what follows we describe the exact limitations on
queries in our language fragment. An example peer
mapping is shown in the middle column of Figure 2.
Our queries include the FOR, WHERE and RETURN
clauses of XQuery.

• Path expressions in the query can include only the
child and descendant axes and alternation (|).

• Nested blocks are supported. Note that while user
queries may often consist of a single block, map-
pings are typically nested queries because the tar-
get schema is nested.

• A query block may contain equality predicates in
one of the two forms: $var = literal or $var1 =
$var2. In both cases, the variables must be bound
to text values. We consider only = and 6=.

• A leaf query block can “return” a value that can
be either a variable or a literal.

Our fragment of XQuery ignores order between sib-
ling XML elements. We also do not support returning
mixed content. Note that since we assume knowledge of
the schemas of peers, then the fact that we do not sup-
port node comparisons or returning of elements is not
a real restriction, because we can always unfold them
according to the schemas (assuming the schema is not

recursive). Throughout our discussion we assume set se-
mantics for queries, rather than the sequence semantics
of the XQuery.

When appropriate, we use the notation A ⊆ Q(B) (or
A ⊇ Q(B)) to denote mappings. Here, B denotes the
source schema and A denotes the target schema. The
left-hand side need not mention the entire schema of A,
so it can be a projection on A’s schema. Hence, in com-
parison to the GLAV formalism for describing mappings
among relational peers [23], our formalism is restricted
so that the left-hand side can only contain projections.
The ⊆ enables describing the typical case where a source
does not contain all of the data in a particular domain
(as in the open-world assumption [2]). Complete sources
can be described with two descriptions.

Tree structure in queries: for analysis purposes, it is
convenient to identify two tree structures in our queries,
the head tree and the path tree. The head tree is defined
as follows. Nodes in the tree correspond to query blocks,
and the labels on the the nodes correspond to the tag re-
turned by that block. The example mapping in Figure 2
has the following head tree:

S2

people

faculty ($name)

student

name ($student)

advisor ($name)

Here indentation corresponds to the block-subblock re-
lationship in the query.

The path tree (which can actually be a forest) is de-
fined as follows. Each edge in a tree pattern corresponds
to a path expression in the query. The source node of
an edge corresponds to the base variable of the path ex-
pression, and the target node corresponds to the vari-
able bound by the expression.

The right column of Figure 2 illustrates both trees.
A box in the graph corresponds to a query block. The
box label, such as < people > corresponds to the tag of
the XML element constructed by the query block. The
XPath expressions in each block are shown as connected
tree patterns. The value returned by the block, if any,
is shown in braces, e.g., {$name}.

3.2 XML Query Containment
Checking containment of XML queries is fundamen-

tal to several of our optimizations, including pruning
nodes, eliminating redundant reformulations, and mini-
mizing reformulated queries. While query containment
of XPath expressions has been well studied [26, 9], con-
tainment of XML queries with nesting has not been ad-
dressed. The two problems are fundamentally different
because in the former case the query returns a set of
nodes, while in the latter it returns a nested structure.
In what follows we describe an algorithm for contain-
ment of XML queries with nesting.

3.2.1 Definition of XML Query Containment
In order to define containment of XML queries, we

first need to define containment of XML instances. An

XML instance can be viewed as a node-labeled tree,
which is special case of complex objects [3]. Therefore,
we can specialize the definition of containment of com-
plex objects [24] to node-labeled trees. The definition
is based on homomorphisms between trees:

Definition 3.1. (Tree homomorphism.) Given a pair
of node-labeled trees T1 and T2, a mapping ψ from the
nodes of T1 to the nodes of T2 is a tree homomorphism
if the following conditions hold:

• ψ maps the root of T1 to the root of T2,

• if node n2 is a child of node n1 in T1, then ψ(n2)
is a child of ψ(n1) in T2, and

• for every node n ∈ T1, the label of n in T1 is the
same as the label of ψ(n) in T2.

Definition 3.2. (XML instance containment.) An XML
instance D1 is contained in an XML instance D2, de-
noted as D1 v D2, if there exists a tree homomorphism
from the node-labeled tree corresponding to D1 to that
of D2. 2

Definition 3.3. (XML query containment.) An XML
Query Q1 is contained in an XML query Q2, denoted
Q1 v Q2, if for any XML instance D, Q1(D) v Q2(D).
2

3.2.2 Algorithm for XML Query Containment
We now describe an algorithm for XML query con-

tainment. We note that in concurrent work [13], we
have studied the complexity of query containment for
XML queries with nesting, and described a sound and
complete containment algorithm. However, the analysis
in [13] has shown that the complexity of query contain-
ment, in the worst case, can be super-exponential. The
algorithm we describe here is incomplete in general, but
is useful for practical applications. As we show, under
certain conditions, our algorithm is complete. We com-
ment on the sources of incompleteness of our algorithm
in Section 4. To simplify our discussion, we do not al-
low sibling query blocks to have the same tag. Such
blocks introduce a form of union, which requires addi-
tional bookkeeping.

To check whether the query Q1 is contained in the
query Q2 our algorithm finds a containment mapping
from Q2 to Q1. Specifically, in our context, a contain-
ment mapping consists of a pair of embeddings: a query-
head embedding from Q1 to Q2 and a query-body embed-
ding that extends the query-head embedding from Q2

to Q1. We now explain each of these embeddings.

Query-head embedding: A query-head embedding,
Ehead(Q1, Q2), from a query Q1 into a query Q2 is a
tree homomorphism from the head tree of Q1 to the
head tree of Q2.

Figure 3 shows an example of a query-head embed-
ding from Q1 to Q2. Note that in addition to mapping
query blocks, the query-head embedding establishes a
mapping from the variables returned by Q1 to a subset
of those returned by Q2. In this example, Q1.$student
is mapped to Q2.$student and Q1.$name is mapped to

Q2.$name. Note that a query-head embedding is not
onto, i.e., Q2 may output some subelements that Q1

does not. For example, the faculty block of Q2 in the
example is not covered by the embedding.

Query-body embedding: A query-body embedding,
Ebody(Q2, Q1), from a query Q2 into a query Q1 is a
tree homomorphism from the path tree of Q2 to the
path-tree of Q1. We say that a query-body embedding
Ebody(Q2, Q1) extends a query-head embeddingEhead(Q1,

Q2) if the following condition holds for every node n2

in the path-tree pattern of Q2: suppose Ebody(Q2, Q1)
maps the node n2 to the node n1 in the path-tree of Q1,
and Ehead(Q1, Q2) maps the query block of n1 to the
block B in Q2. Then B is either the same as the block
of n2 or one of its descendents.

Figure 4 shows an example of a query-body embed-
ding from queryQ2 to query Q1 that extends the query-
head embedding from Q1 to Q2 shown in Figure 3. The
figure illustrates how the tree patterns of Q2 can be
mapped “higher-up” in Q1. For example, the node
faculty that belongs to the advisor block of Q2 is
mapped into the faculty node in the people block of
Q1. Based on these embeddings, we can now define
containment mappings.

Definition 3.4. (Containment mapping.) A contain-
ment mapping from an XML query Q2 into a query Q1

consists of a query-head embedding Ehead(Q1, Q2) from
Q1 to Q2, a query-body embedding Ebody(Q2, Q1) from
Q2 to Q1 that extends Ehead(Q1, Q2), where the follow-
ing conditions hold:

• For every query block B1 of Q1 and its image B2

under Ehead, the predicates of B1 and its ancestor
blocks imply those of B2.

• Let v1 be either a variable or constant returned by
a query block B1 of Q1, and let v2 be the variable
or constant returned by the B2, the image of B1

under Ehead. Let Ehead(v1) be the image of v1
under Ehead. Then, either Ehead(v1) = v2, or the
predicates in B1 and its ancestor blocks entail that
v1 = v3, such that Ehead(v3) = v2.

To test containment, our algorithm searches for a con-
tainment mapping. The following theorem shows that
our containment algorithm is sound, and in some cases,
complete.

Theorem 3.1. Let Q1 and Q2 be a pair of queries in
the fragment of XQuery as described in Section 3.1. As-
sume the queries do not contain same-tag sibling blocks.
If there exists a containment mapping from Q2 into Q1

then Q1 ⊆ Q2. Moreover, if the queries are not nested,
i.e., each query consists of a single block, then Q1 ⊆ Q2

implies that there is a containment mapping from Q2

into Q1. 2

It has been observed that a containment mapping
is not a necessary condition for containment of XPath
queries only if both // and * are allowed. The above
theorem entails that with nesting, even if both // and
* are disallowed, a containment mapping may still be

people

student

$advisee=$student
{$name}

S1

advisee

faculty

S1

people

faculty
name

student

faculty

adviseename

{$student}

<student>

<S2>

<name>

<advisor>

<people>

<S2>

<faculty>

<student>

<name>

<advisor>

Q1: Q2:

E
head

name

<people>

pos
$pos=’professor’

{$name}

{$student}

{$name}
$advisee=$student

Figure 3: A query head embedding from query
Q1 to Q2. The Q1 blocks and the matching Q2

blocks are highlighted. The matching return
variables are shown in bold.

<S2>

people

student
<student>

<advisor> {$name}

<name>

<S2>

S1

<people> people

student
<student>

<name> {$student}{$student}

<faculty>

Q1: Q2:

E
body

name pos

<people>
$pos=’professor’

<advisor> {$name}

$advisee=$student

advisee 4
faculty

$advisee=$student
name advisee

faculty

1
S1

3

3

2

1

5

5

4

2

Figure 4: A query body embedding from query
Q2 to Q1. The Q2 tree patterns and the matching
Q1 tree patterns are highlighted; matching edges
are labeled with numbers.

unnecessary for XQuery containment. A similar result
is shown in [24] for queries over complex objects.

Based on the definition of a containment mapping,
one can design an algorithm for testing XML query con-
tainment. The algorithm works by considering all pos-
sible head embeddings between a given pair of queries.
Then, for each head embedding it checks if there is a
possible query body embedding that is valid. If Q1

and Q2 do not contain comparison predicates (= and
6=), then the containment algorithm runs in polynomial
time. In general, in the worst case the algorithm has
exponential complexity. As we see in the next section,
the algorithm is efficient in practice.

3.3 XML Query Minimization
Following semantic paths in a PDMS can result in

queries that have many redundant fragments. The rea-
son is, as has already been observed in [16], that un-
folding often results in redundant queries. Intuitively,
unfolding boils down to copying fragments of the map-
ping into the query. Some fragments turn out to be
unnecessary, and others get copied multiple times also
leading to redundancy. In order to avoid a blow up of
the reformulated queries, it is important to minimize
these queries after every unfolding.

Like query containment, the problem of query mini-
mization has been studied in the literature for XPath
queries [4], but not for queries with nesting. The prob-
lem of XML query minimization can be defined formally
as follows. Given an XML query Q, find a query Q′ that
is equivalent to Q but that is simpler, i.e., Q′ should
have fewer tree pattern nodes. In [26] it is shown that
minimization of XPath queries when both // and * are
allowed is NP-hard. If either // or * is not allowed then
minimization can be done in polynomial time.

We can show, by reduction from conjunctive query
minimization, that XML query minimization is also coNP-
hard, even if XPath expressions are not allowed to con-
tain // or *. In fact, the problem can be shown coNP-
hard even if predicates are not allowed but nested blocks
are. Moreover, it can be shown that the minimization
problem is at least as hard as the containment problem
similar to the case of XPath queries [26, 17].

Given the containment algorithm described above, a
query minimization algorithm can be implemented as
follows. Given a query Q, our algorithm establishes a
maximal containment mapping Mself (Q) from Q to it-
self. The mapping must be maximal in terms of the
number of path-tree nodes that are not mapped to them-
selves but are mapped to other nodes with the same tag.
Once such a containment mapping is found, the query
can be minimized by removing the nodes that are not
mapped into themselves. The soundness of this algo-
rithm follows straightforwardly from the soundness of
the containment algorithm.

3.4 Mapping Composition
As described earlier, one of the possible optimiza-

tions in a PDMS is to pre-compute certain paths. The
technical problem that needs to be addressed in order
to pre-compute paths is mapping composition: how do
we replace a “chain” of two or more mappings with an
equivalent single mapping.

Mapping composition was studied for the relational
case in [25]. There it was shown that the exact com-
position of two mappings may be infinite. In [25] map-
pings were of the form Q1(A) ⊆ Q2(B), where Q1 and
Q2 are conjunctive queries over the schemas A and B,
respectively. In Piazza, the queries are over XML data
and the left hand-side is effectively constrained to be a
simple projection over the target schema, but even with
that restriction we can get into the same complications
described in [25].

The composition algorithm we describe here builds on
the query reformulation algorithm (in particular, the al-
gorithm for rewriting a query using a mapping). Hence,
our composition algorithm is sound, and it becomes
more complete as the underlying rewriting algorithm
does. This is important because we can benefit directly
from improvements to the reformulation algorithm. For
example, it may be easier to incorporate support of in-
tegrity constraints directly into a reformulation algo-
rithm than into a mapping composition algorithm.

3.4.1 Mapping Composition through Inversion
Given peers A, B and C, and mappings M1 between

for $S1 in /S1 return

< S1 > {
for $people in $S1/people return

< people > {
for $faculty in $people/faculty return
< faculty > {

for $name in $faculty/name/text() return

< name > {$name} < /name >
for $advisee in $faculty/advisee/text() return

< advisee > {$advisee} < /advisee >
}< /faculty >
for $student in $people/student/text() return

< student > {$student} < /student >
}< /people >

}< /S1 >

Figure 5: The identity mapping for schema S1.

A and B and M2 between B and C, our goal is to find a
direct mapping between A and C. Note that since peer
mappings are directional, composition can result in two
mappings, one in each direction. We consider mappings
in a single direction, but the treatment for the converse
case is similar.

The cases in which composition is possible fall into
two categories. In the first case, the input mappings
are of the form:

M1 : A ⊇ Q1(B) and M2 : B ⊇ Q2(C).

This case is straightforward, as it amounts to query
composition, and hence the composed mapping is A ⊇
Q1 ◦Q2(C).

In the second case the mappings are of the form

M1 : B ⊆ Q1(A) and M2 : B ⊇ Q2(C).

To compose these two mappings we first compute the in-
verse ofM1, M

−1

1
. An inverse mapping has the property

that if reformulating a query using the original map-
ping requires unfolding, then reformulating the same
query given an inverse mapping would require rewriting,
and vice versa (similar to inverse rules in the relational
case [14]). The resulting composition is then obtained
by query composition: A ⊇M−1

1
◦Q2(C).

Mapping inversion: Our method for inverting map-
pings works in the same spirit as constructing inverse
rules for relational views [14]. Consider the following
Piazza mapping: M : A ⊆ Q(B). We proceed in two
steps:

• Let IB be the identity query over B, i.e., a query
that maps B into itself in a nested fashion on a
per-element basis. Figure 5 shows the identity
mapping for schema S1. Note that it is always
possible to write an identity mapping.

• Rewrite the query IB using the view Q. Denote
the result of such rewriting by [IB]Q(A). Note that
the query [IB]Q(A) “generates” B as a query over
A, i.e., it inverts the query Q in the mapping M .
The inverse mapping of M is B ⊇ [IB]Q(A). Fig-
ure 6 shows the inverse mapping for the mapping
in Figure 2.

Note that the inverse mapping could be improved if
we made use of integrity constraints. Specifically, the

for $people in /S2/people return

< S1 > {
< people > {

for $faculty in $people/faculty return
< faculty > {

for $name in $faculty/text() return

< name > {$name} < /name >
}< /faculty >

for $student in $people/student,
$advisor in $student/advisor return

< faculty > {
for $name in $advisor/name/text() return

< name >{$name}< /name >
for $advisee in $student/name/text() return

< advisee >{$advisee}< /name >
} < /faculty >

for $student in $people/student/name/text() return
< student >{$student}< /student >

} < /people >
}< /S1 >

Figure 6: The inverse of the mapping M in Fig-
ure 2 obtained through rewriting the identity
mapping for S1 using M.

the set of faculty elements in S1 is obtained from the
corresponding set in S2 and the set of advisor elements
in S2, which can be repetitive. Second, every faculty
element in S1 gets only one advisee sub-element rather
than having all of its advisees grouped under a single
advisor element.

To summarize this section, we described a set of prac-
tical algorithms for reasoning about XML queries. Like
similar algorithms for relational query languages, these
algorithms are applicable even beyond our particular
context. We can now use them to develop optimiza-
tions for PDMS reformulation.

4. OPTIMIZATION TECHNIQUES
We now describe the methods for optimizing query

reformulation in a PDMS. For each method we describe
experimental results that evaluate their impact in prac-
tice. We start by describing our experimental setup.

4.1 Experimental Setup
We experimented with two real-world data sets. The

first, which we refer to as the XML.org data set, is based
on schemas that were independently contributed to a
repository at www.xml.org. We began with 10 of the
schemas in that site, and by adding structure variations
on them, we created schemas for 27 peers. The schemas
are in the domain of customer orders and typically rep-
resent customers, vendors, orders, and products.

The second data set, DB-Research, is based on data
available on web sites concerning research in our field.
We created schemas corresponding to the structure and
terminology of 19 such web sites (such as DBLP, Cite-
Seer, ACM Digital Library, and a few university sites).
The sites usually represent researchers, projects, pub-
lications, and related material. The schemas in DB-

Research tend to be more diverse in their content than
the schemas in the XML.org whereas the schemas in the
latter data set have more diverse structures.

For each of the data sets we created the mappings
between the most similar peers, typically resulting in
4 mappings for each peer. The scenarios we ran were
based on randomly sampling from the collection of map-
pings. In the scenarios we varied the average rank of
each peer, which refers to the average number of map-
pings per peer (and hence, a higher rank corresponds to
a more interconnected network).

In order to experiment with larger PDMSs we repli-
cated the set of peers in each domain and connected
replicas with a small set of mappings. Note that the
structure of each replica is different, since we sampled
the set of mappings for each replica separately. We
experimented with PDMSs having zero, one and two
replicas (which we refer to as scale factor of 1, 2 and 3,
respectively). Hence, in the XML.org domain we had
PDMS of up to 81 peers, and in the DB-Research do-
main up to 57 peers.

We tested each data instance on a set of five “mean-
ingful” queries. In the XML.org case, the queries are rel-
atively simple pattern matching queries (e.g., find sup-
pliers of a particular product, or find customers who
are also suppliers). In the DB-Research case, since the
schemas are more complex, our queries also included
joins (e.g., find PC members who had a paper in that
same conference). Join queries typically result in a much
larger number of reformulations because we obtain com-
binations of reformulated subqueries.

The results we show were obtained by executing 20
runs on each topology. We generated 20 random topolo-
gies for each set of input parameters (scale factor and
rank). We observed that our results were quite con-
sistent within such families of topologies. The results
presented in the rest of the section are averaged across
all topologies for given scale and rank.

The query reformulator of Piazza is implemented in
Java and includes 40,000 lines of code. The system was
tested on a Linux Pentium 4 PC running at 2.8GHz
with 512M of memory. (We allocated 400MB to the
Java interpreter.) The actual evaluation of the queries
is done by a data integration engine developed in our
group, but the focus of our experiments is on speeding
up the reformulation process.

4.2 Pruning and Minimization
The two most important optimizations we consider

are pruning redundant reformulation nodes and mini-
mizing the reformulations as they are constructed.

The process of query reformulation builds an AND-
OR tree of nodes, where each node is a query on a par-
ticular peer. The answers of an AND node are obtained
by joining the answers its children, while the answers of
an OR node are the union of the answers of its children.
One of the first observations we made is that it is crucial
to minimize the resulting reformulations as we expand
the AND-OR tree. Without minimization, every refor-
mulation step that performs query unfolding can lead
to a blowup in the size of the resulting reformulation,
and after a few steps the reformulations may become
unwieldy. The query minimization algorithm we de-
scribed in Section 3.3 enables us to tame the growth of
the reformulations.

Q

...

G

...
...

G2

1

1CCA(G , G)
2

...

Figure 9: An exam-
ple of pruning. Goal
g1 subsumes g2 only if
all nodes between g1
and the closest com-
mon ancestor of g1 and
g2 are OR nodes, and
the query in g1 con-
tains the query in g2.

Q

... ...

A(x) B(x) B(x)A(x)

1 2
P P

Figure 10: An ex-
ample when pruning
doesn’t work. One
of the two pairs of
goals can be pruned
but none of the goals
can be pruned on its
own.

Pruning is a very effective technique to avoid build-
ing unnecessary parts of the AND-OR tree. Informally,
pruning removes nodes that are guaranteed to be sub-
sumed by other nodes. Formally, suppose g1 and g2 are
two nodes in the tree, of the form (q1, p), and (q2, p),
i.e., they both represent queries on the same peer, p. If
the following conditions hold, then the node g2 can be
pruned.

• the query q2 is contained in q1, and

• all the nodes between g1 and the closest common
ancestor of g1 and g2 are OR nodes.

The second condition guarantees that g1 is an alterna-
tive to g2 in the tree, and therefore g2 does not need to
be considered further. This situation is depicted in Fig-
ure 9. Note that g2 may have siblings, but only if the
AND node happens to be performing an intersection of
its children.

Given the containment algorithm described in Sec-
tion 3.2, we can implement pruning. When the tree is
extended with a new goal node, we check whether (1)
the new goal is subsumed by an existing goal, or (2) the
new goal subsumes an existing goal.

Experiments: The effect pruning and minimization
on reformulation time is drastic. In fact, when either
pruning or minimization were not employed, the sys-
tem would often run out of memory for the data sets
with scale factor of 2 or 3. In other cases, the effect
of pruning and minimization was similar to that shown
in Figure 7. A relatively small PDMS (DB-Research of
scale factor=1) was used for the experiments in this Fig-
ure. As we can see, minimization leads to a speedup of
up to a factor of 3; pruning leads to a speedup of a fac-
tor of 10. The combined speed up factor is almost 30.
We conclude that pruning and minimization are cru-
cial for reformulation to scale up, and hence all of our
subsequent experiments employ both of them.

Incompleteness of containment checking: As de-
scribed in Section 3.2, our containment algorithm is not
complete for arbitrarily nested queries. Incompleteness
means that in some cases the algorithm will say that Q1

0

2

4

6

8

10

12

Q1 Q2 Q3 Q4 Q5

R
ef

or
m

ul
at

io
n

tim
e,

 s
ec

Minimization only
Pruning only
Both

Figure 7: The effect of minimiza-
tion and pruning on reformula-
tion times. (DB-Research dataset,
scale=1, rank=3).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Q1 Q2 Q3 Q4 Q5

R
ef

or
m

ul
at

io
n

tim
e,

 s
ec

DFS
BFS

0

2

4

6

8

10

12

Q1 Q2 Q3 Q4 Q5

R
ef

or
m

ul
at

io
n

tim
e,

 s
ec

DFS
BFS

Figure 8: Reformulation times of DFS vs BFS on DB-Research (left)
and XML.org (right), scale=2, rank=3. The graph shows that BFS
is a more efficient reformulation strategy.

is not contained in Q2, even though it is, thereby miss-
ing opportunities for pruning and minimization (but not
leading to incorrectness!). In contrast, a complete algo-
rithm for query containment, recently described in [13],
would be impractical. Since our algorithm is complete
for unnested queries, this is not an issue in pruning and
minimization as long as the user query is not nested (be-
cause the resulting reformulations are always unnested),
but incompleteness will arise in pre-composition. Clearly,
the experiments show that the algorithms are captur-
ing common cases of containment, and therefore we are
witnessing the savings. Furthermore, the experience we
gleaned from the experiments shows that the most sig-
nificant source of incompleteness is that we do not ex-
ploit integrity constraints (e.g., keys) in our algorithms.
We plan to incorporate keys in our next version and ex-
pect that it will make the minimization algorithm more
effective. 2

Finally, we note that when the second condition for
pruning is not satisfied, i.e., g1 and g2 are related through
AND nodes, some optimizations are still possible. Con-
sider the situation in Figure 10, where AND nodes are
depicted by the arcs across their children. One of the
two pairs of A(x) and B(x) subgoals can be pruned but
none of the individual subgoals can be pruned because
their parents P1 and P2 are AND nodes. While it is
possible to extend our pruning technique to handle sets
of nodes rather than individual goal nodes, it is likely
to be very expensive, with relatively little payoff. For
similar reasons, we feel that employing techniques such
as memoization will not produce significant benefits in
our context.

4.3 Search Strategies
When the entire AND-OR tree needs to be constructed

and pruning is not applied, the specific search strategy
we use to build the tree, i.e., the choice of which refor-
mulation goal to pursue next, is not important. How-
ever, the search technique interacts in an interesting way
with pruning. Intuitively, if a node is ultimately going
to be pruned, then we would like to prune it before any
(or much) of its subtree is constructed.

We considered two strategies: depth-first search (DFS)
and breadth-first search (BFS). DFS works by expand-
ing goals in longer semantic paths first. We predicted
that DFS would be relatively inefficient because refor-
mulation nodes further down the tree are likely to be

pruned by nodes closer to the root that would be gener-
ated later. BFS, on the other hand, is likely to produce
smaller trees because it creates the non-pruned refor-
mulations first.

Figure 8 confirms our prediction. The figure considers
the scaled versions of the two original data sets (the dif-
ferences between the two search strategies are less pro-
nounced on smaller PDMSs). For both datasets, BFS
clearly outperforms DFS by a large margin. The sizes
of the pruned AND-OR trees constructed by the two
methods compare similarly. DFS constructs huge rule-
goal trees (several thousand nodes) that eventually get
pruned by a factor of ten, whereas BFS does not waste
as much work.

Pipelining reformulation and execution: The ef-
fect of the search strategy is especially important if we
want to pipeline the reformulations, i.e., every time a
new reformulation is generated, the execution engine
sends it to the appropriate peer. Now the cost of ex-
ecuting a reformulation that would have been pruned
is much higher, since execution takes much longer and
involves consuming resources that may have other costs.

A simple way to reduce the ratio of redundant queries
that get executed is to delay query execution until more
queries have been generated for each peer. Then, if a
redundant query is generated early on, the query is de-
layed and can still be pruned by later queries. The dis-
advantage of the above approach is that response time
may suffer, because we need to wait for several reformu-
lations for a given peer before we query it. Furthermore,
with BFS we expect that the queries generated early are
less likely to be redundant.

Based on this observation, we implemented a layered
delay strategy, when the queries corresponding to a layer
of an AND-OR tree are delayed until the entire layer is
generated. Since the higher layers of a tree are usually
much smaller than the lower layers, we expect better
response time with this strategy.

Figure 11 considers the naive delay and the layered
delay strategies for two of our queries (but the results
for the others were similar). It shows the fraction of
queries sent to peers that would be been pruned (i.e.,
a better reformulation was generated at a later time),
as we increase the number of reformulations we wait for
(e.g., 3 means that we wait for 3 reformulations for a
given peer before sending it a single query). We observe
that the layered delay strategy results in much fewer

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

Delay, queries

R
at

io
 o

r
re

du
nd

an
t q

ue
ri

es
Q1
Q1: layered delay
Q2
Q2: layered delay

Figure 11: The ratio of redundant queries sent
to peers for the Naive delay and Layered delay

strategies. XML.org dataset, scale=2, rank=3.
Layered delay produces fewer redundant queries
and outputs them sooner.

redundant queries. In fact, layered delay produces the
same ratio of redundant queries as a delay of 2-3 queries,
but with the advantage that queries can be sent to peers
much earlier.

To study the effect further, we were interested in how
the strategies affect the first query received by each
peer. We observed that with naive delay, up to a quar-
ter of the peers were receiving a redundant query as
their first one, while layered delay reduced that ratio to
5-10%.

4.4 Pre-computing Reformulation Paths
Another opportunity for optimization in a PDMS is to

pre-compute some or all possible paths between peers,
which can be done with the mapping-composition algo-
rithm described in Section 3.4. With pre-computation,
given a query Q on p, we only need to reformulate Q
using each of the pre-computed mappings. Note that
the order in which we apply the mappings makes a dif-
ference. Specifically, if we reformulate Q using a refor-
mulation corresponding to a path P in the PDMS, and
the result is an empty query, then there is no reason
to reformulate Q with the mappings corresponding to
paths starting with P . (Recall that a composed map-
ping may not be empty, but may yield an empty refor-
mulation when used for reformulating a particular query
Q). Hence, we apply a reformulation corresponding to
a path only after applying all of its prefixes.

The primary advantage of pre-computation is reduced
reformulation time due to early pruning of redundant
paths. The disadvantage of pre-computing mappings is
that the mappings need to be maintained in the face of
schema and mapping changes. Fortunately, while such
changes will happen quite often in a large scale decen-
tralized system, their frequency is still low in compar-
ison to the time taken to pre-compute the paths. A
second disadvantage, at least of our composition algo-
rithm, is that composed mappings are harder to mini-
mize. Recall that our composition algorithm begins by
reformulating the identity mapping on a peer. That
mapping tends to be larger than typical queries, and
hence harder to minimize as the composition is built.
Here too, more aggressive use of integrity constraints in

0

0.5

1

1.5

2

2.5

3

3.5

Q1 Q2 Q3 Q4 Q5
queries

S
pe

ed
up

 d
ue

 to
 p

re
-c

om
pu

ta
tio

n DB-Research
XML.org

Figure 12: The speed up in reformulation time
due to pre-computation (scale=1, rank=3).

the minimization will help address this problem.
Figure 12 shows the speed up in reformulation time

that we were able to obtain through pre-computation.
On the DB-Research domain, pre-computation improves
performance by up to a factor of 3. We have observed
similar results for the scale factor of 2 and different peer
ranks. The results for the XML.org dataset were mixed.
While we still obtained savings of up to 50%, one of the
queries (Q4) actually takes longer to reformulate with
pre-computation, due to the aforementioned minimiza-
tion challenge.

Figure 12 does not show the time for the pre-compu-
tation. While this time can be high (upto a minute in
our experiments), it should be noted that pre-compu-
tation boils down to reformulation of a complex identity
query. As a result, pre-computation can pay off rather
quickly for larger queries. Furthermore, our experi-
ments show that many of the benefits of pre-computation
can be obtained even by pre-computing only to a cer-
tain depth as that is likely to prune many redundant
paths early.

5. RELATED WORK
Peer-data management systems have attracted sig-

nificant attention recently (see the September 2003 is-
sue of the SIGMOD Record which is dedicated to this
topic). This paper builds on recent work in the Piazza

Project [20]. Initially, in [22] we examined the theoret-
ical properties of query reformulation in a PDMS, but
in the relational context. We showed how to build a
rule-goal tree for query reformulation, and alluded to a
few possible optimizations, but did not consider them
in detail or evaluate their impact. In [19] we described
an XML version of Piazza, including an algorithm for
query reformulation on which we build here. In [10] the
authors describe an alternative query reformulation al-
gorithm. In this work, we consider the reformulation
algorithm a black box.

The paper [5] describes the Hyperion project that fo-
cuses on generating schema mappings and on applying
rules (triggers) to propagate data in a PDMS accord-
ing to mapping expressions and mapping tables. The
work [27] proposes PeerDB, a P2P-based system for
distributed sharing of relational data. Similar to Pi-

azza, PeerDB does not require a global schema. Un-
like Piazza, PeerDB does not use schema mappings for

mediating between peers. Instead, PeerDB employs an
Information Retrieval based approach for query refor-
mulation. In their approach, a peer relation (and each
of its columns) is associated with a set of keywords.
Given a query over a peer schema, PeerDB reformu-
lates the query into other peer schemas by matching
the keywords associated with the two schemas. There-
fore, PeerDB does not have to follow semantic paths to
reach a distant peer. The resulting reformulated queries
in PeerDB may not be semantically meaningful, and ul-
timately the system requires user input to decide which
queries are to be executed. Xyleme [8], which stores
data from multiple sources in a warehouse, uses a more
elaborate approach to discovering and defining map-
pings than PeerDB, based on path-to-path mappings
(rather than tag-to-tag). Piazza, on the other hand, is
based on schema-to-schema mappings.

6. CONCLUSIONS
Peer data management systems offer a very attrac-

tive architecture for data sharing because they do not
require any central management. They represent the
next natural step, generalizing current data integration
architectures. In order for PDMS to be a viable archi-
tecture, a query processor must be able to efficiently
reformulate a query posed at a peer on all the relevant
peers in the network. We described a set of basic re-
formulation optimizations, which, in aggregate, enable
scaling reformulation to large PDMS. In particular, we
described how to prune redundant reformulations, to
minimize reformulations, to pre-compose paths and to
carefully select the search strategy. All put together, our
optimizations enable reformulating queries on a PDMS
of size 60-80 peers in under 2 seconds. In support of
these optimizations we described a set of algorithms of
independent interest for XML query containment, min-
imization and for mapping composition.

There are several opportunities for future work. As
a first step, we believe further performance improve-
ments in reformulation can be obtained by incorporat-
ing knowledge of integrity constraints into our algo-
rithms. Second, PDMS raise a more general challenge of
managing large networks of peer mappings. As networks
of peer mappings grow, there are additional opportuni-
ties for analysis: finding contradictory mappings, find-
ing sets of peers that are not well connected by map-
pings (yet still seem to share data in the same domain),
and dealing with mappings of different quality.

Acknowledgements
We want to thank Luna Dong and Zack Ives for many
helpful discussions. This work was supported by NSF
ITR grant IIS-0205635 and NSF CAREER grant IIS-
9985114.

7. REFERENCES
[1] K. Aberer, P. Cudre-Mauroux, and M. Hauswirth. A

framework for semantic gossiping. SIGMOD Record,
31(4), 2002.

[2] S. Abiteboul and O. Duschka. Complexity of answering
queries using materialized views. In Proc. of PODS,
pages 254–263, Seattle, WA, 1998.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Weseley, 1995.

[4] S. Amer-Yahia, S. Cho, L. Lakshmanan, and
D. Srivastava. Minimization of tree pattern queries. In
Proc. of SIGMOD, 2001.

[5] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa,
R. J. Miller, and J. Mylopoulos. The hyperion project:
From data integration to data coordination. SIGMOD
Record, September 2003.

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, May 2001.

[7] P. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data
management for peer-to-peer computing : A vision. In
Proceedings of the WebDB Workshop, 2002.

[8] S. Cluet, P. Veltri, and D. Vodislav. Views in a large
scale XML repository. In Proc. of VLDB, 2001.

[9] A. Deutsch and V. Tannen. Containment and integrity
constraints for xpath fragments. In KRDB, 2001.

[10] A. Deutsch and V. Tannen. Mars: A system for
publishing xml from mixed and redundant storage. In
Proc. of VLDB, 2003.

[11] H.-H. Do and E. Rahm. COMA - a system for flexible
combination of schema matching approaches. In Proc.
of VLDB, 2002.

[12] A. Doan, P. Domingos, and A. Halevy. Reconciling
schemas of disparate data sources: a machine learning
approach. In Proc. of SIGMOD, 2001.

[13] X. Dong, A. Halevy, and I. Tatarinov. Containment of
nested XML queries. Submitted for publication, 2004.

[14] O. M. Duschka and M. R. Genesereth. Query planning
in Infomaster. In Proc. of the ACM Symposium on
Applied Computing, 1997.

[15] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. In Proc. of PODS, 2004.

[16] M. Fernandez, W.-C. Tan, and D. Suciu. Silkroute:
Trading between relations and xml. In Proc. of the Int.
WWW Conf., 1999.

[17] S. Flesca, F. Furfaro, and E. Masciari. On the
minimization of xpath queries. In VLDB, 2003.

[18] D. Florescu, A. Levy, and A. Mendelzon. Database
techniques for the world-wide web: A survey. SIGMOD
Record, 27(3):59–74, September 1998.

[19] A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza:
Data management infrastructure for semantic web
applications. In Proc. of the Int. WWW Conf., 2003.

[20] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management systems. In Proc.
of ICDE, 2003.

[21] A. Y. Halevy. Answering queries using views: A
survey. VLDB Journal, 10(4), 2001.

[22] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov.
Schema mediation in peer data management systems.
In Proc. of ICDE, 2003.

[23] M. Lenzerini. Data integration: A theoretical
perspective. In Proc. of PODS, 2002.

[24] A. Y. Levy and D. Suciu. Deciding containment for
queries with complex objects and aggregations. In
Proc. of PODS, Tucson, Arizona., 1997.

[25] J. Madhavan and A. Halevy. Composing mappings
among data sources. In Proc. of VLDB, 2003.

[26] G. Miklau and D. Suciu. Containment and equivalence
for an xpath fragment. In Proc. of PODS, 2002.

[27] B. Ooi, Y.Shu, and K.-L. Tan. Relational data sharing
in peer-based data management systems. SIGMOD
Record, 23(3), 2003.

[28] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB Journal,
10(4):334–350, 2001.

