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Abstract. We consider the problemof content searchand retrieval in peer-to-
peer(P2P)communities.P2Pcomputingis a potentiallypowerful modelfor in-
formation sharingbetweenad hoc groups of usersbecauseof its low cost of
entry andnaturalmodel for resourcescaling.As P2Pcommunities grow, how-
ever, locatinginformationdistributedacrossthe largenumberof peersbecomes
problematic.We addressthis problemby adaptinga state-of-the-arttext-based
documentrankingalgorithm,the vector-spacemodel instantiatedwith the TFx-
IDF rankingrule, to the P2Penvironment. We make threecontributions:(a) we
show how to approximateTFxIDF usingcompactsummariesof individual peers’
invertedindexesratherthanthe invertedindex of theentirecommunal store;(b)
we developa heuristicfor adaptively determiningthesetof peersthatshould be
contactedfor a query; and(c) we show thatour algorithmtracksTFxIDF’s per-
formancevery closely, giving P2Pcommunitiesa searchandretrieval algorithm
asgoodasthatpossibleassumingacentralizedserver.

1 Introduction

We considertheproblemof contentsearchandretrieval in peer-to-peer(P2P)commu-
nities.P2Pcomputing is apotentiallypowerful model for informationsharingbetween
ad hocgroupsof usersbecauseof its low costof entryandexplicit modelfor resource
scaling:any two userswishing to interactcanform a P2Pcommunity. As individuals
join the community, they will bring resourceswith them,allowing the community to
grow naturally. Measurementsof onesuchcommunity at Rutgersshow over500users
sharingover6TB of data.OpencommunitiessuchasGnutella[11] haveachievedmuch
greatersizes.

A number of open problemsmustbe addressed,however, beforethe potentialof
P2Pcomputing canbe realized.Contentsearchandretrieval is onesuchopenprob-
lem. Currently, existing communities employ eithercentralizeddirectory servers[16]
or variousfloodingalgorithms[11,5,26] for objectlocationwhengivena name.Nei-
therprovidesa viable framework for contentsearchandretrieval. On theonehand,a
centralizedserver presentsa singlepoint of failureandlimits scalability. On theother
hand, while flooding techniquescanin theoryallow for arbitrary content searches [17],
in practice,typically only a namesearch,perhapstogether with a limited number of
attributes,is performed.�
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Thesetechniquescurrently rely onheavy replicationof popular itemsfor successful
searches.More recent works studying how to scaleP2Pcommunities have put forth
moreefficient andreliabledistributedmethods for name-basedobject location[15,24,
21]. The focus, however, hasremainedon name-basedobject locationbecausethese
efforts wereintendedto support P2Pfile systems,wherethereis a natural model for
acquiring names.

As theamount of storageperperson/device is rapidly growing, however, informa-
tion managementis becoming moredifficult under the traditionalfile systemhierar-
chicalnamespace[10]. Thesuccessof Internet searchenginesis strongevidencethat
content searchandretrieval is anintuitive paradigm thatuserscanleverageto manage
andaccesslargevolumesof information.While P2Pgroupswill notgrow to thesizeof
theweb,with theexplodingcapacityanddecreasingcostof storage,even smallgroups
will sharea largeamount of data.Thus, we aremotivatedto explore a content search
and retrieval enginethat provides a similar information accessparadigm to Internet
searchengines.In particular, we presenta distributedtext-basedranking algorithmfor
content searchandretrieval in thespecificcontext of PlanetP, aninfrastructurethatwe
arebuilding to easethetaskof developingP2Pinformation-sharingapplications.

Currently, PlanetP[6] providesa framework for adhocsetsof usersto easilysetup
P2Pinformationsharingcommunities without requiring support from any centralized
server1. Thebasicideain PlanetPis for eachcommunity member to createaninverted
(word-to-document)index of the documentsthat it wishesto share,summarizethis
index in a compact form, anddiffusethesummarythroughout the community. Using
thesesummaries, any member can query against and retrieve matching information
from the collective informationstoreof the community. (We provide an overview of
PlanetPanddiscussthe advantagesof its underlying approach for P2Pinformation-
sharingin Section2.)

Thus,theproblemthatwefocusonis how to perform text-basedcontent searchand
retrieval usingtheindex summariesthatPlanetPuses.We have adopteda vectorspace
ranking model,usingtheTFxIDF algorithm suggestedby Saltonet al. [22], becauseit
is oneof the currently mostsuccessfultext-basedranking algorithm [25]. Underthis
model,a query is comprisedof a setof terms.For eachdocument in the collection,
TFxIDF usesthefrequency of eachquery termin thatdocumentandthefrequency of
the term acrossthe collectionto compute the likely relevanceof the documentto the
query.

A naive application of TFxIDF would requireeachpeerin a community to have
accessto the invertedindex of theentirecommunal store.This is costlyboth in terms
of bandwidth andstorage.Instead,we show how TFxIDF canbeapproximatedgiven
PlanetP’s compact summariesof peers’inverted indexes.(Note that while we present
adaptation in the specificcontext of PlanetP, it should be generally applicable to any
framework thatmaintainssomeapproximateinformationabouttheglobal index ateach
peer.)

We make threecontributions:

1 We say“currently” becausewe areactively working to extendPlanetPto bea generalframe-
work for building P2Papplications,not just informationsharing.



1. weshow how theTFxIDF rulecanbeadaptedto rankthepeersin theorderof their
likelihoodto have relevantdocuments,aswell asranktheretrieveddocumentsin
theabsenceof completeglobal information;

2. we develop a heuristicfor adaptively determining the setof peersthat should be
contactedfor aquery; and

3. usingfive benchmark collectionsfrom Smart[3] andTREC [13], we show that
our algorithmmatchesTFxIDF’s performance,despitethe accuracy that it gives
up by usingonly summariesof the individual inverted indexesratherthanthe in-
vertedindex of the entirecommunal store.Furthermore,our algorithm preserves
themainflavor of TFxIDF, returning closeto thesamesetsof documentsfor par-
ticularqueries.

PlanetPtradessomebandwidth for good searchperformance.Using our heuristics,
PlanetPnearlymatchesthe searchperformance(we will defineperformancemetrics
morepreciselylater in Section4) of TFxIDF but, on average, will contact20–40%
morepeersthanif theentireinvertedindex waskeptateachpeer2.

2 PlanetP: Overview

PlanetPis aninfrastructurethatwe arebuilding to support theindexing, searchingand
retrieval of informationspreadacrossadynamic community of peers,possiblyrunning
on a setof heterogeneous devices[6]. This sectionbriefly discussesrelevant features
anddesign/implementationdetailsof PlanetPtoprovidecontext for therestof thepaper.

The basicdatablock in PlanetPis an XML snippet.Thesesnippetscontaintext,
from whichwe extracttermsto beindexed3, andpossiblylinks (XPointers) to external
files. To sharean XML document,theuserpublishesthedocument to PlanetP, which
indexesthedocumentandstoresa copy of it in a local datastore.To sharea non-XML
document, the userpublishesan XML snippetthat containsa pointer to the file and
possiblyadditional description of the file. PlanetPindexes the XML snippet andthe
external file if it is of a known type (e.g., PDF, Postscript,text, etc.).Also, PlanetP
storestheXML snippetin thelocaldatastorebut not theexternal file itself.

PlanetPusesaBloomfilter [1] tosummarizetheindex of eachpeer. Briefly, aBloom
filter is anarrayof bitsusedto representsomeset

�
—in thiscase,

�
is thesetof words

in the peer’s inverted index. The filter is computed by obtaining � indicesfor each
member of

�
, typically via � different hashing functions,andsettingthe bit at each

index to 1. Then,given a Bloom filter, we canask,is someelement� a member of
�

by computing � indicesfor � andchecking whetherthosebits are1.
Oncea peerhascomputedits Bloom filter, it diffusesit throughoutthecommunity

usinga gossipingalgorithm [7,6]. (This algorithm is alsousedto maintaina directory
2 40%only whenweaverageover runswhereweassumethatusersarewilling to sortthrougha

very largenumberof retrieveddocumentsto find whatheis looking for. Further, our stopping
heuristiccurrentlyallows for overly aggressivegrowth in peerscontactedasa functionof both
community sizeandof thenumber of documentsto be returned.We aretuning this function
to reducethenumberof peerscontactedwithout degradingTFxIPF’saccuracy.

3 Currently, we do not make useof the structureprovided by XML tags.We plan to extend
PlanetPto make useof this structurein thenearfuture.



of peerscurrentlyon-line.)Eachpeercanthenqueryfor communalcontentby querying
against the Bloom filters that it hascollected.For example, a peer � canlook for all
documentscontaining thewordcar by testingfor car in eachof theBloomfilters.Sup-
posethat this resultsin “hits” in theBloom filters of peers��� and �
	 . � thencontacts��� and �
	 to seewhether they indeedhave documentscontaining the word car; note
that thesepeersmaynot have any suchdocumentssincea Bloom filter cangive false
positives. Ontheotherhand,thissetof peers is guaranteedto becomplete—thatis, it is
guaranteedthatnopeerotherthan��� and�
	 canhaveadocumentcontainingtheword
car—becauseBloomfilters cannever give falsenegatives.

Ourapproachof diffusingindex-summariesusingBloomfiltershasanumberof ad-
vantages,themostsignificantof whichare:(1) TheBloomfilter is anefficientsummary
mechanism,minimizing therequired bandwidth andstorageat eachnode. In appendix
A, we show that PlanetPonly needsapproximately1% of the total dataindexed to
summarize the community’s content. (2) Previous studiesof file systemshave shown
thata majority of files changevery slowly [20,8]. If P2Pinformationcollectionsdis-
play the samecharacteristic, then,usingBloom filters, PlanetPwill placevery little
loadonthecommunity for searchesagainst thisbulk of slowly changing data.(3) Peers
canindependentlytrade-off accuracy for storage.For example, a peer � may choose
to combine the filters of several peersto save space;the trade-off is that � mustnow
contactthis setof peerswhenever a query hits on this combinedfilter. This ability for
independentlytradingaccuracy for storageis particularlyuseful for peersrunning on
memory-constraineddevices(e.g., hand-helddevices).(4) A peercanknow thatdocu-
mentsrelevant to a query might exist on peersthatarecurrently off-line.Thus,instead
of missingthesedocumentsasin current systems,thesearchingpeercouldarrangeto
rendezvouswith theoff-line peerswhenthey reconnectto obtaintheneededinforma-
tion.

Usingsimulation,we have shown thatPlanetPcaneasilyscaleto community sizes
of severalthousands.For example, usinga gossipingrateof oncepersecond4, PlanetP
canpropagatea Bloom filter containing 1000termsin lessthan40 secondsfor a com-
munitywith 1000peers.This spreadof informationrequiresanaverage of 24KB/s per
peer. For communitiesconnectedby low bandwidth links, we canreducethegossiping
rate:reducing thegossipingrateto onceevery 30 seconds would require 9 minutesto
diffusea new Bloomfilter, requiring anaverage of 2KB/s bandwidth.

3 Distributed Content Search and Retrieval in PlanetP

Themainproblemthatweareaddressingin thispaperis how to searchfor andretrieve
documentsrelevant to a queryposedby somemember of a PlanetPcommunity. Given
a collection of text documents,the problem of retrieving the subsetthat is relevant
to a particular query hasbeenstudiedextensively (e.g., [22, 19]). Currently, one of
themostsuccessfultechniquesfor addressingthis problemis thevectorspaceranking
model[22]. Thus,wedecidedto adapt this techniquefor usein PlanetP. In thissection,

4 Whenthereis no new informationto gossip,PlanetPdynamicallyreducesthis gossipingrate
over time to once-per-minute.



wefirst briefly providesomebackground onvectorspacebaseddocumentranking, then
we present ourheuristicsto adaptthis technique to PlanetP’s environment.

3.1 Vector Space Ranking

In avectorspaceranking model, eachdocumentandqueryis abstractlyrepresentedasa
vector, whereeachdimensionis associatedwith adistinctterm(word); thespacewould
have  dimensionsif therewere  possibledistinctterms.Thevalueof eachcomponent
of thevectorrepresentstheimportanceof thatword (typically referredto astheweight
of the word) to that document or query. Then,given a query, we rank the relevance
of documents to that query by measuring the similarity betweenthe query’s vector
andeachof the candidatedocument’s vectors.The similarity betweentwo vectors is
generally measuredas the cosineof the anglebetweenthem,computable using the
following equation: ��� ������������� ���! �"$# "�% �'& #)( % �* + � + & + � + (1)

where
# "�% �

represents theweightof term , for query � and
#-( % �

theweightof term ,
for document � . Observe that

�.� �����$�/���0�21 meansthat � doesnot have any term
thatis in � . A

�.� �3�4�$�������5� , on theotherhand, meansthat � hasevery termthatis
in � . Typically,

+ � + is droppedfrom thedenominatorof equation1 sinceit is constant
for all thedocuments.

A popular method for assigningtermweightsis calledtheTFxIDF rule.Thebasic
ideabehindTFxIDF is that by usingsomecombination of term frequency (TF) in a
documentwith the inverseof how often that term shows up in documentsin the col-
lection (IDF), we canbalance: (a) the fact that termsfrequently usedin a document
are likely important to describe its meaning, and(b) termsthat appearin many doc-
umentsin a collectionarenot usefulfor differentiating betweenthesedocumentsfor
a particular query. For example, if we look at a collectionof papers published in an
OperatingSystemsconference,wewill find thatthetermsOperating Systemappearsin
every documentandthereforecannot beusedto differentiatebetweentherelevanceof
thesedocuments.

Existingliteratureincludesseveral waysof implementing theTFxIDF rule [22]. In
ourwork, weadopt thefollowing systemof equationsassuggestedbyWittenetal. [25]:6 �87 � �:9<;>=?�@�BADC8EGF � � #B( % � �5�HAI9J;K=L��F ( % � � # "�% � � 6 �87 �
where C is thenumber of documentsin thecollection, F � is thenumber of timesthat
term , appearsin the collection,and F ( % � is the number of times term , appears in
document � .

Theresultingsimilarity measureis�.� �3�4�$���M��� � �! !"$#)( % �'& 6 �87 �+ � + (2)

where
+ � + � thenumberof termsin documentD.



Given a collectionof documents,current searchenginesimplement this ranking
algorithm by constructing an inverted index over thecollection[25]. This index asso-
ciatesa list of documentswith eachterm, the weight of the term for eachdocument,
andthe positions wherethe termsappear. Further, informationlike the inversedocu-
mentfrequency (IDF) andotherusefulstatisticsarealsoaddedto theindex to speedup
queryprocessing.An enginecanthenusethis invertedindex to quickly determine the
subsetof documentsthatcontainoneor moretermsin somequery � , andto compute
thevectorsneededfor equation2. Then,theenginecanrankthedocumentsaccording
to their similarity to thequery andpresenttheresultsto theuser.

3.2 Search and Retrieval in PlanetP

Wecannot implementtheaboverelevancerankingdirectlyin PlanetPbecausewedonot
have all thenecessaryinformation.Instead, we approximatethis functionby breaking
the ranking problem into two sub-problems:(1) ranking peersaccording to the like-
lihood of eachpeerhaving documentsrelevant to the query, and(2) decidingon the
numberof peersto contactandranking thedocumentsreturnedby thesepeers.

Thenoderankingproblem. To rankpeers,we introducea measurecalledthe inverse
peerfrequency (IPF). For a term , , IPF

�
is computedas 9J;K=L�@�0ANC�EOC � � , where C is

numberof peersin thecommunity and C � is thenumberof peersthathaveoneor more
documentswith term , in it. Similar to IDF, the ideabehind this metric is thata term
that is presentin the index of every peeris not useful for differentiatingbetweenthe
peersfor a particularquery. Unlike IDF, IPF canconveniently becomputedusingthe
Bloomfilterscollectedateachpeer:C is thenumberof Bloomfilters, C � is thenumber
of hits for term , against theseBloomfilters.

Giventheabovedefinitionof IPF, wethenproposethefollowing relevancemeasure
for ranking peers: PRQ �4�S��� T�! �"�UV�! �WYXKZ IPF

�
(3)

which is simply a weightedsumover all termsin thequeryof whethera peercontains
thatterm,weightedby how usefulthattermis to differentiatebetweenpeers;, is aterm,� is thequery, [\7 Q is the setof termsrepresentedby theBloom filter of peer

�
, andP Q

is the resultingrelevanceof peer
�

to query � . Intuitively, this schemegives peers
thatcontain all termsin aquerythehighest ranking.Peersthatcontaindifferent subsets
of termsarerankedaccording to thepower of thesetermsfor differentiatingbetween
peerswith potentiallyrelevant documents.

Theselectionproblem.As communitiesgrow in size,it is neitherfeasiblenordesirable
to contacta large subsetof peersfor eachquery. Thus,oncewe have establisheda
relevance ordering of peersfor a query, we must thendecidehow many of themto
contact.To addressthis problem,we first assumethat theuserspecifiesanupper limit on thenumber of documentsthatshouldbereturned in responseto a query. Then,a
simplesolutionto theselectionproblem would be to contactthepeersoneby one,in
theorderof their relevanceranking, until wehaveretrieved  documents.



As shallbeseenin Section4, however, this obviousapproach leadsto terrible per-
formanceasmeasured by the percentage of relevant documentsreturned.The reason
behindthispoorperformanceis that,whenapeeris contacted, it mayreturnsay � doc-
uments.In mostcases,not all � returneddocumentsarehighly relevant to thequery.
Thus,by stoppingimmediately once we have retrieved  documents,a largesubsetof
theretrieved documentsmayhavevery little relevanceto thequery.

To addressthis problem,we introducethefollowing heuristicfor adaptively deter-
mininga stoppingpoint.Givena relevanceorderingof peers,contactthemone-by-one
from top to bottom. Maintain a relevance ordering of the documentsreturned using
equation 2 with IPF

�
substitutedfor IDF

�
. Stopcontacting peerswhenthedocuments

returned by a sequence of � peers fail to contribute to the top  ranked documents.
Intuitively, the idea is to get an initial set of  documentsand thenkeepcontacting
nodes only if thechanceof thembeingableto providedocumentsthatcontributeto the
top  is relatively high. Usingexperimentalresultsfrom a number of known document
collections (seeSection4), we proposethefollowing functionfor ��M�^]�	_A C` 1K1La Ab	�] c 1La (4)

whereC is thesizeof thecommunity.
Notethatwhile we havepresentedtheabovealgorithmascontacting peersone-by-

one,to reducequeryresponsetime, we might chooseto contact peersin groupsof �
peersat a time. Sucha parallelalgorithm trades off potentiallycontacting somepeers
unnecessarilyfor shorterresponsetime.

4 Evaluating PlanetP’s Search Heuristics

We now turn to assessingtheperformance of TFxIPFtogether with our adaptive stop-
pingheuristicasimplementedin PlanetP. Wemeasureperformanceusingtwo accepted
metrics,recall (

P
) andprecision( d ), whicharedefinedasfollows:P �4�S��� no.relevant docs.presentedto theuser

totalno.relevantdocs.in collection
(5)

d����S��� no.relevant docs.presentedto theuser
total no.docs.presentedto theuser

(6)

where � is thequerypostedby theuser.
P �4�S� captures thefractionof relevantdocu-

mentsa searchandretrieval algorithm is ableto identify andpresentto theuser. d��4�S�
describeshow muchirrelevant materialtheusermayhave to look through to find the
relevant material.Idealperformanceis given by 100%recalland100% precision.

We assesstheperformanceof PlanetPby comparing its achievedrecallandpreci-
sionagainsttheoriginal TFxIDFalgorithm.If wecanmatchtheTFxIDF’sperformance,
thenwe canbeconfident thatPlanetPprovidesstate-of-the-art searchandretrieval ca-
pabilities5, despitetheaccuracy that it gives up by gossipingBloom filters ratherthan
theentireinvertedindex.

5 whenonly usingthetextual contentof documents,ascomparedto link analysisasis doneby
Googleandotherwebsearchengines[2]



Trace Queries Documents Number of words Collection size (MBs)

CACM 52 3204 75493 2.1
MED 30 1033 83451 1.0
CRAN 152 1400 117718 1.6
CISI 76 1460 84957 2.4
AP89 97 84678 129603 266.0

Table 1. Characteristicsof thecollectionsusedto evaluateour search andretrieval engine.

Finally, in addition to recallandprecision, we alsoexaminetheaverage number of
peersthatmustbecontactedperqueryunder PlanetP. Ideally, wewouldwantto contact
asfew peersaspossibleto minimize resource usageper query. We studythe number
of peersthat mustbe contactedasa function of the number of documentsthe useris
willing to view andthesizeof thecommunity.

4.1 Experimental Environment

We usefive collections of documents(and associatedqueries and human relevance
ranking) to measurePlanetP’s performance;Table1 presents the main characteristics
of thesecollections.Four of the collections, CACM, MED, CRAN, and CISI were
previously collectedandusedby Buckley to evaluateSmart[3]. Thesecollections are
comprisedof smallfragmentsof text andsummariesandsoarerelatively smallin size.
The last collection,AP89,wasextractedfrom the TREC collection[13] andincludes
full articlesfrom AssociatedPresspublishedin 1989.

To measurePlanetP’s recallandprecisionon theabove collections,we built a sim-
ulator that first distributesdocumentsacrossa setof virtual peersandthenrunsand
evaluatesdifferent searchandretrieval algorithms.To compare PlanetPwith TFxIDF,
we assumethefollowing optimistic implementationof TFxIDF: eachpeerin thecom-
munityhasthefull invertedindex andwordcountneededto runTFxIDF usingranking
equation 2. For eachquery, TFxIDF would computethe top  ranking documentsand
thencontacttheexactpeersrequired to retrieve thesedocuments.In bothcases,TFx-
IDF andTFxIPF, thesimulatorwill pre-processthetracesby doingstopword removal
andstemming. Theformer triesto eliminatefrequentlyusedwords like"the", "of", etc.
andthesecondtriesto conflatewordsto their root (e.g."running" becomes"run").

We study PlanetP’s performance under two different distributions of documents
amongpeersin thecommunity: (a) uniform, and(b) Weibull. We studya uniform dis-
tribution of documentsbecauseit presentsthe worst casefor a distributedsearchand
retrieval algorithm. Thedocumentsrelevant to a query arelikely spreadacrossa large
numberof peers.Thedistributedsearchalgorithmmustfind all thesepeersandcontact
them.

The motivation for studying a Weibull distribution arisesfrom measurementsof
current P2Pfile-sharingcommunities. For example, Saroiuet al. found that7% of the
usersin the Gnutella community sharemore files thanall the rest together [23]. We
havealsostudiedacommunity thatmayberepresentativeof futurecommunities based
onPlanetP;studentswith accessto theRutgers’sdormitory network havecreatedafile-
sharingcommunity comprisedof morethan500users,sharingmorethan6TB of data.



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100
No. documents requested

R
ec

al
l

IDF

IPF Ad.W

IPF Ad.U

IPF First-k

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100
No. documents requested

P
re

ci
si

on

IDF

IPF Ad.W

IPF Ad.U

IPF First-k

(a) (b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300
No. documents requested

R
ec

al
l

IDF

IPF Ad.W

IPF Ad.U

IPF First-k

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300
No. documents requested

P
re

ci
si

on

IDF

IPF Ad.W

IPF Ad.U

IPF First-k

(c) (d)

Fig. 1. Average (a) recall and(b) precisionfor theMED collectiondistributedamong100peers.
Average (c) recall and(d) precisionfor theAP89collectiondistributedamong400peers. IDF is
TFxIDF. IPF Ad.Wis TFxIPFwith theadaptive stoppingheuristicon theWeibull distribution of
documents. IPF Ad.Uis TFxIPF with theadaptivestoppingheuristicon theuniformdistribution
of documents. IPF First-k is TFxIPF that stopsimmediatelyafter first e documentshavebeen
retrieved.

Studying this community, we observed a datadistribution that is very similar to that
found by Saroiuetal.,where9%of theusersareresponsiblefor providing themajority
of thefiles in thecommunity. Usingthecollecteddata,we fitted a Weibull distribution
with parameters ( fI�g1ihkj , lI�nm>o ) andusedit to drive thepartitioning of a collection
amongasimulatedcommunity.

4.2 Search and Retrieval

To evaluatePlanetP’s searchandretrieval performance,we assumethatwhenposting
a query, the useralso provides the parameter  , which is the maximum number of
documentsthat he is willing to acceptin answerto a query. Figure1 plots TFxIDF’s
andPlanetP’saveragerecallandprecisionoverall providedqueriesasfunctionsof  for
theMED andAP89collections.Weonly show resultsfor theMED collectioninsteadof
all four Smartcollectionstosavespace.Resultsfor theMED collectionis representative



of all four. We refer the readerto our web site,http://www.panic-lab.rutgers.edu/,for
resultsfor all collections.

We make severalobservations.First,usingTFxIPFandour adaptive stopping con-
dition, PlanetPtracksthe performanceof TFxIDF closely. For the AP89 collection,
PlanetPperforms slightly worsethanTFxIDF for :pq� c 1 but catchesup for larger ’s.For theMED collection, PlanetPgivesnearlyidenticalrecallandprecisionto TFx-
IDF. In fact,at large  , TFxIPFslightly outperforms TFxIDF. While theperformance
differenceis negligible, it is interestingto considerhow TFxIPFcanoutperform TFx-
IDF; this is possiblesinceTFxIDF is notalwayscorrect.In thiscase,TFxIPFis finding
lower rankeddocumentsthatweredetermined to berelevant to queries,while someof
thehighly rankeddocumentsreturnedby TFxIDF, but notTFxIPF, werenot relevant.

Second, PlanetP’s adaptive stopping heuristicis critical to performance. If we sim-
ply stoppedretrieving documentsassoonaswe have gotten  documents,recall and
precisionwould bemuchworsethanTFxIDF, asshown by the IPF First-k curves.Fi-
nally, asexpected,as  increases,recall improvesat theexpenseof precision,although
for both collections,precisionwasstill relatively high for large  ’s (e.g., at r�sm>1 ,
precisionis about40%andrecallis about60%for theMED collection.)

Figure 1 plottedtheperformanceof PlanetPagainst  for a singlecommunity size:
100 peersfor MED and 400 peersfor AP89. In Figure2a, we plot the recall when is 20 againstcommunity size to studyPlanetP’s scalability. We only show results
for the AP89 collectionas the otherswere too small to accommodatea wide range
of community sizes.We show the performanceof TFxIPF with two variants of the
stoppingheuristic: onethatis a functionof both  and C , thenumberof peers,andone
thatis just a functionof  .

We make two observations.First, PlanetP’s recall remains constant evenwhenthe
community sizechangesby an order of magnitude, from 100 to 1000 peers.Second,
the fact that our adaptive stoppingheuristic is a function of both  and community
sizeis critical. Whentheadaptivestoppingheuristiconly accounts for varying  , recall
degradesas community size grows. This is becausethe relevant documentsbecome
spreadoutmorethinly among peersasthecommunity sizeincrease.Thus,thestopping
heuristicshouldallow PlanetPto widenits searchby contactingmorepeers.

4.3 Number of Peers Contacted

To betterunderstandtheeffectsof ouradaptivestopping heuristic,wepresentin Figures
2cand2dthenumberof nodescontactedwhenusingTFxIDFandall variantsof TFxIPF
aswell asthelowerboundonthenumberof nodesthatneedtobecontacted.Tocompute
thelowerbound,wesortthenodesaccording to thenumberof relevant documentsthey
store(assuming global knowledgeof thehumanranking) andthenwe plot the lowest
number of nodesneeded to get  relevant documents(for 100%precision). Note that
the lower boundis different thanthenumberof peerscontactedby TFxIDF becauseit
is basedon theprovidedhumanrelevancemeasure(which is binary), not theTFxIDF
ranking.

Again, we makeseveralobservations.First,ouradaptive stoppingheuristicis criti-
cal for increasingrecallwith increasing becauseit causesmorenodesto becontacted.
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Fig. 2. Average (a) recall and(b) number of peers contactedasa functionof thecommunitysize
( e =20). Numberof peers contactedvs. e for (c) theMED collectiondistributedacross100peers
and (d) the AP89collectiondistributedacross400 peers. IPF Ad-k variable N is TFxIPF with
the adaptive stoppingheuristic.IPF Ad-k constantN is TFxIPF with a stoppingheuristic that
is only a functionof e and not of communitysize. IDF W is TFxIDF. IPF Ad.Wis TFxIPF with
the adaptivestoppingheuristic.IPF Ad.U is TFxIPF with the adaptive stoppingheuristic.IPF
First-k is TFxIPF that stopsimmediatelyafter first e documentshavebeenretrieved.Bestis the
minimumnumberof nodesthatmustbecontactedto retrieve e relevantdocuments.All theseplots
usea Weibull distribution of documentsexceptfor IPF Ad.U, which usesa uniformdistribution.

In fact,to matchTFxIDF’s performance,PlanetPhasto contactmore peersthanTFx-
IDF atlarge  ’s.Thisis becausePlanetPhaslessinformationthanassumedfor TFxIDF,
andsomaycontactpeers thatdon’ t have highly rankeddocuments.On theotherhand,
simplystoppingassoonaswehaveretrieved  potentiallyrelevant documentgivesvery
little growth in thenumber of peers contacted.As a result,it contactsmany lesspeers
thanthelowerbound imposedby therelevancejudgments.Thishelps to explainthere-
call andprecisionfor thevariousalgorithms shown earlier. Second, beyondacertain ,
50 for MED and150for TREC,PlanetPstartsto contactsignificantlymorepeers than
TFxIDF. At corresponding utJv , PlanetP’s recall improvesrelative to TFxIDF: PlanetP
outperformsTFxIDF slightly for MED andbecomesessentiallyequal to TFxIDF. This
impliesthateitherequation4 is too stronglydependenton  or thattherelationshipis
not linear. We arecurrently working to refineour stoppingheuristicto seewhetherwe



canreducethenumberof peerscontactedat large  without degrading performancetoo
much.Third, PlanetPhasto work muchharder under theuniform distribution because
relevant documentsarespreadoutthroughout thecommunity. Thus,actualobservations
of Weibull-lik e distributions with shapeparametersof 0.7 actuallywork in favor of a
distributedsearchandretrieval enginesuchasPlanetP. Notethattheresultsfor PlanetP
under theuniform distribution is not directly comparableto thosefor TFxIDF because
weonlystudiedTFxIDF undertheWeibull distribution;wedidnotstudyTFxIDFunder
theuniform distribution becausethedistribution doesnot change TFxIDF’s recalland
precision; only thenumberof peerscontacted. Finally, our adaptive stopping heuristic
allows PlanetPto work well regardlessof thedistribution of relevant documents.It al-
lowsPlanetPto widenits searchwhendocumentsaremorespreadout.It helpsPlanetP
to contractits searchwhenthedocumentsaremoreconcentrated.

Finally, we studytheeffect of making our adaptive stoppingheuristic a function of
community size;Figure2bplotsthenumberof nodescontactedagainstcommunity size
for theAP89collectionfor TFxIPFwith anadaptivestopping heuristic thatadaptsto the
community sizeandonethatdoesnot.Previously, we saw thatadaptingto community
sizewasimportantto maintainaconstantrecallascommunity sizeincrease.Thisfigure
shows thereason:if wedonotadapt to community size,thestopping heuristic throttles
thenumberof peerscontactedtooquickly. With increasingcommunity size,thenumber
of nodescontacteddrops below thatof TFxIDF, resultingin lower recallaspreviously
shown.

4.4 Does PlanetP Retrieve Similar Documents to TFxIDF?

Weconcludeourstudyof PlanetP’ssearchandretrievalalgorithmbyconsideringwhether
themodifiedTFxIPFrule finds thesamesetof relevant documentsasTFxIDF. Com-
paringthesetsof resultsreturned,for theMED collection,by TFxIDF andTFxIPFat
recall levelsbetween14%and44%,we found intersections of 68%to 79%.We only
studiedtheintersections for low recallvaluesbecauseat high recall,by definition, the
intersectionwill approach100%.Having, on average,anintersectioncloseto 70%,in-
dicatesthat TFxIPF finds essentiallythe samesetof relevant documentsasTFxIDF.
This gives usconfidencethatouradaptations did not changetheessentialideasbehind
TFxIDF’s ranking.

5 Related Work

While currentP2PsystemssuchasNapster[16], Gnutella[11], andKaZaA [14] have
beentremendously successfulfor musicandvideo sharingcommunities, their search
engines have beenfrustratingly limited. Our goal for PlanetPis to increasethepower
with which userscanlocateinformation in P2Pcommunities.Also, we have focused
moretightly on text-basedinformation,which is moreappropriate for collectionsof
scientificdocuments,legal documents,inventorydatabases,etc.

In contrastto existing systems,recentresearchefforts in P2Pseekto provide the
illusion of having aglobalhashtablesharedby all membersof thecommunity. Frame-
workslikeTapestry[27], Pastry[21], Chord[24] andCAN [18] usedifferent techniques



to spread(key, value)pairsacrossthecommunity andto routequeriesfrom any mem-
ber to wherethe datais stored.Thesesystemsdiffer from PlanetPin two key design
decisions.First, in PlanetP, we explicitly decidedto replicatethe global directory ev-
erywhereusinggossiping, whichlimits PlanetP’sscalability. Theadvantagethatweget,
however, is thatwedonothaveto worry aboutwhathappensto partsof theglobal hash
table if members sign off abruptly from the community. Also, the entirecommunity
collaborateto spreadinformationabout whateachpeerhasto share,insteadof putting
the publishing burden entirely on the sharingpeer. Second, we have focusedon con-
tentsearchandretrieval, attemptingto providea similarserviceto websearchengines,
whichnone of thesesystemshaveexplored.

More relatedto PlanetP’s informationretrieval goals,Cori [4] andGloss[12] ad-
dresstheproblemsof databaseselectionandranking fusionon distributedcollections.
Recentstudiesdoneby Frenchet al. [9] show that both scalewell to 900 nodes.Al-
though they arebasedondifferent ranking techniques,thetwo rely onsimilarcollection
statistics.In both casesthe amount of informationusedto ranknodesis significantly
smallerthanhaving a global invertedindex. Glossneeds only 2% of thespaceusedby
a global index. Both GlossandCori assumethe existenceof a server (or a hierarchy
of servers) that will be available for usersto decidewhich collectionsto contact.In
PlanetPwe want to empower peersto work autonomouslyandtherefore we distribute
Bloom filters widely so they cananswerqueriesevenon thepresenceof network and
nodefailures.

6 Conclusions

P2Pcomputingis apotentiallypowerful model for informationsharingbetweenadhoc
communities of users.As P2Pcommunities grow in size,however, locatinginforma-
tion distributedacrossthe large number of peersbecomesproblematic. In this paper,
we have presenteda text-basedranking algorithmfor content searchandretrieval. Our
thesisis that the searchparadigm, wherea small setof relevant termsis usedto lo-
catedocuments,is asnatural aslocatingdocumentsby name.To be useful,however,
thesearchandretrieval algorithm mustsuccessfullylocatethe informationtheuseris
searchingfor, withoutpresentingtoomuchunrelatedinformation.

To explorecontent searchandretrieval in P2Pcommunities,wehaveapproximated
a state-of-the-arttext-baseddocumentranking algorithm, the vector-spacemodel, in-
stantiatedwith theTFxIDF ranking rule,in PlanetP. A naiveimplementationof TFxIDF
would require eachpeerin a community to haveaccessto theinvertedindex of theen-
tire community. Instead,we show how TFxIDF canbeapproximatedgivena compact
summary(theBloomfilter) of eachpeer’s invertedindex. Wemakethreecontributions:
(a)weshow how theTFxIDF rulecanbeadaptedto usethesummariesof individual in-
dexes,(b) weprovideaheuristic for adaptively determining thesetof peersthatshould
be contactedfor a query, and(c) we have shown that our algorithm tracksTFxIDF’s
performancevery closely, regardlessof how documentsaredistributedthroughout the
community. Finally, our algorithmpreservesthe main flavor of TFxIDF by returning
muchthe samesetof documentsfor a particular query. Our resultsprovide evidence



thatdistributedcontent searchandretrieval in P2Pcommunitiescanperform aswell as
searchandretrieval algorithmsbasedon theuseof centralized servers.

Appendix A - PlanetP’s memory usage

In this appendix, we presenthow we estimatedtheamount of memory neededby each
PlanetP’s member to keeptrack of the community’s content. Note that the memory
usagedependsmainlyon theBloomfilter sizeandthenumber of peerson thecommu-
nity. In our calculation we have chosenBloom filters thatareableto storeeachpeer’s
setof termswith lessthan5% of falsepositives.For example, if we spreadtheAP89
collectionacrossa community of 1000peers,eachpeerwill receive on average 4500
terms.On this scenarioa 4.6KB filter will storea singlepeer’s data,which meansthat
thewholecommunity canbesummarized with 4.6MB of memory. Becausenodesex-
change filters in compressedform, the bandwidth required by a singlenode to gather
theremaining 999filters will be3.3MB.

Table2 shows the resultsobtained for different community sizesusing the same
calculations aspresentedabove.

No. peers Memory used (MB) % of collection size

10 0.45 0.18%
100 1.79 0.70%
1000 4.48 1.76%

Table 2. Amountof memoryusedpernodeto storeBloomfilterssummarizingthewholecommu-
nity on AP89.
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