General Matching

* More difficult than bipartite matching:

Presence of Blossoms (odd length alternating cycles)
(In bipartite graphs, all cycles are even length)

Bipartite Graphs General Graphs

There are only even cycles. There are odd cycles (blossoms!).
(May cause problem if not
correctly handled.)

-- Cannot ignore the back edges
(will miss some augmenting path)

If the back edge is ignored,
then will never find the
augment path a-c=b-d

Graph Alternating tree

-- Cannot just simply use back edge to “grow” the tree
(will create a wrong augmenting path)

aN c d © If the back edge is just simply used as a leaf
edge, then may get wrong augmenting path.
b
f eg: a-c=d-e=f-d=c-b

(General Matching - Page 1)

General Matching - Blossoms

Blossom Shrinking:

Whenever a blossom is detected,
it is shrunk into a a single pseudonode,
which is an outer node.

[, N
1 10
Shrinking
—_—| 2 8 2
{3,45,6,7}
-)
Lemma: (Edmonds, 1965)
1 augmenting 1 augmenting
pathin G & pathin G
before shrinking after shrinking

“ However, two key issues to handle

e detection of blossoms
* shrinking of blossoms

* expansion of blossoms

© Edmond’s algorithm, 1965 O(n#)
(Details in [PaSt82] and [Edmo65])

J. Edmonds, “Path, Trees and Flowers,” Canadian J. Math, 17, (1965), pp. 449-467.

(General Matching - Page 2)

General Matching - History

% Algorithms for General Matching

Year |Time |Authors Remarks

1957 Berge, Augmenting Path Theorem

1965 O(n4) Edmonds, Blossom Shrinking

1965 O(mn?) |Witzgall & Zahn |Modified Edmonds’ alg

1967 On3) Balinski

1974 O(mn) Kameda & Munro |better blossom handling

1976 On3) Gabow Better blossom handling,

1976 Lawler no explicit shrinking/expansion

1980 On3) Pape & Conradt |simple blossom handling,
FORTRAN code

1983 O(mn) Gabow & Tarjan

1975 On2d) |Even & Kariv not-practical, high storage
extremely complicated

1980 O(\/;l m) Micali & Vazirani |theoretically fastest, not-pract.

(General Matching - Page 3)

Pape and Conradt’s Algorithm

“ Pape and Conradt’s Implementation, 1980

Syslo, Deo, Kowalik, Prentice-Hall, 1983
Discrete Optimization Algorithms (Ch-3.7)

o Instead of shrinking a blossom,
it “grows” blossom in two alternating paths

4)
2 Blossom {3,4,5,6,7} is grown
in two different alt-paths .
3 Node 5 is an inner node on
path P1, and an outer node

4 7| on path P2.

S 6 | Similarly, each node in the
blossom is both an inner
6 5 | and outer node

- J

P1 P2

node v is v is both an outer node

on a blossom and an inner nodein T

¥ Greedy Initial Matching

Start with all vertices unmatched ;
for every exposed nodev € V do
Try to match v with an unmatched vertex we Adj(v) ;

(General Matching - Page 4)

Pape & Conradt’s Algorithm (cont)

Implementation Details...

© Maintain the following data-structures

mate[v] : vertex matched with v, (=0 if exposed)

Q : aqueue of unexplored outer nodesin T

gt [v]: grandfather of node v in T, (used in back-tracing)
inner[v] : boolean (=1 if node v is a root or an inner node in T)

o Initialization of these data structures

mate[v] =0 forallveV;

Q =0;

gf [v]:=0 forallveV;

inner[v] :=false forall veV; inner[root] := true;

(General Matching - Page 5)

Pape & Conradt’s Algorithm (cont)

Note: 3 serious flaw in Alg 3-8(b) of [SDK83], p329.

* Use this pseudo-code instead, (and catch any bugs in it)

Algorithm Maximum Matching:

1. Start with initial matching ;

2. forevery exposed r € V do

3. begin (* Grow alternating tree rooted at r *)

4, for all veV do inner|[v] := false; (* Init inner *)
5. inner[r] = true;

6. Q={r};

7. while (Q # ¢) and (not found) do

8. begin

9. Delete x from Q ;

10. for yeAdj(x) do

11. case 1: (inner[y]=true)

12. (* Even cycle -- Ignore node y *)

13. case 2: (inner[y]=false) & (y is exposed)
14. Augmenting M ;

15. found := true ;

16. case 3 : (inner[y]=false) and (y not ancestor x)
17. inner[y] = true; (* Grow Tree T; *¥)

18. gf[mate[y]] =x;

19. Insert mate[y] into Q ;

20. case 4 : (inner[y]=tfalse) and (y ancestor of x)
21. (* Blossom found -- Ignore node y ¥)

22. endcase ;

23. end ; {while (Q#...}

24. end; {for...}

(General Matching - Page 6)

Pape & Conradt’s Algorithm - Example

Augmenting
Path !

10

Augmenting
Path !

(General Matching - Page 7)

Pape & Conradt’s Algorithm - Analysis

 Initial Matching O(m)

¢ Growing Alternating Tree

Total-cost
® Step 6,7,9,19. Queue Operations O(Tl)
® Step 4,5. Initialize/Updating arrays inner, gf O(n)
® Step 10. Checking (inner[y]=false) O(m)
® Case 1. Step 11,12. O(m+n)
® (ase 2. Step 13,14,15.
® Case 3. Step 16,17,18,19. O(n)
® Case 4. Step 20,21. O(n)
Observation:

In each tree-growing phase,
inner[v]=true at most once!

Homework: Complete the O(n3) analysis!
[Read also [SDK&83].

(General Matching - Page 8)

