
An Empirical Study on Limits of Clone Unification Using Generics 

Hamid Abdul Basit, Damith C. Rajapakse, and Stan Jarzabek 
Department of Computer Science, School of Computing, National University of Singapore 

{hamidabd, damithch, stan}@comp.nus.edu.sg

Abstract 

Generics (templates) attempt to unify similar 
program structures to avoid redundancy. How well do 
generics serve this purpose in practice? We try to 
answer this question through empirical analysis from 
two case studies. First, we analyzed the Java Buffer 
library in which 68% of the code was redundant due to 
cloning. We were able to remove only 40% of the 
redundant code using the Java generics. Unification 
failed because the variations between cloned classes 
were either non-type parametric or non-parametric. To 
analyze whether this problem is specific to Java 
generics, we investigated the C++ Standard Template 
Library (STL), an exemplary application of C++ 
templates, as our second case study. Even though C++ 
templates are more powerful, we still found substantial 
cloning. We believe that we are dealing with a 
fundamental phenomenon that will cause many other 
class libraries and application programs to suffer from 
the code redundancy problem. 

1. Introduction 

Many modern programming languages support 
some form of generics (C++, Eiffel, Haskell, Ada, 
Modula-3 and recently Java). Generics are used to 
unify similar program structures (so called clones) to 
avoid explosion of redundant code. The main problem 
with clones is their tendency to create inconsistencies 
in updating, hindering maintainability. Clones signify 
reuse opportunities that, if properly exploited, could 
lead to simpler, easier to maintain, and more reusable 
program solutions [6]. In class libraries, clones often 
stem from the well-known “feature combinatorics” 
problem [2][3][6]. Generics can combat this emergence 
of clones, increasing software reuse and easing 
software maintenance. How well do generics serve this 
purpose in practice? We try to answer this question 
through empirical analysis from two case studies.   

In our earlier paper [6], we analyzed redundancies 
in the Buffer library and identified that 68% of the 
code is redundant. The Buffer library was built without 
generics. An interesting question is how much of the 
redundant code could be eliminated by applying 
generics? In our first case study we looked into this 
problem. We observed that type variation triggered 
many other non-type parametric differences among 
similar classes, hindering application of generics.  

For the second case study, we chose the Standard 
Template Library (STL) [5] as it provides a perfect 
case to strengthen the observations made in the first 
case study. Firstly, parameterization mechanism of 
C++ templates is more powerful than that of Java 
generics. Secondly, the STL is widely accepted in the 
research and industrial communities as a prime 
example of the generic programming methodology. 
Still, we found much cloning in the STL.  

Our overall observations show that while generics 
provide an elegant mechanism to unify a group of 
similar classes through parameterization, in practice, 
there are many other situations that also call for generic 
solutions, but cannot be tackled with generics.  

The remainder of this paper is organized as follows. 
After the related work section given next, Sections 3 
and 4 briefly describe Buffer library case study and 
STL case study, respectively. Section 5 analyzes the 
observations made in the two case studies and 
illustrates them with examples. Concluding Remarks 
section ends the paper by summarizing findings and 
outlining the directions for future work. 

2. Related work 

A comparison of generics in six programming 
languages is presented in [4]. The languages 
considered are C++, standard ML, Haskell, Eiffel, Java 
and Generic C# (proposed). A considerable part of the 
Boost Graph Library has been implemented in all these 
languages using their respective generic capabilities. 
The authors identified eight language features that are 
useful to enhance the generics capabilities beyond 



 

implementing simple type-safe polymorphic 
containers, namely multi-type concepts, multiple 
constraints, associated type access, retroactive 
modeling, type aliases, separate compilation, implicit 
instantiation and concise syntax. These features are 
essential to implement reusable libraries of software 
components, a fast emerging and a promising area 
where the generics can be effectively utilized. For the 
exact nature of these features, refer to [4]. However, 
the presence of all these features does not solve the 
problem discussed in this paper; rather it is only of 
help in avoiding “awkward designs, poor 
maintainability, unnecessary run-time checks, and 
painfully verbose code” [4].  

3. Case study 1: Java Buffer library 

The Buffer library in our case study is part of the 
java.nio.* package in JDK since version 1.4.1. The 
concept ‘buffer’ refers to a container for data to be 
read/written in a linear sequence. The (partial) class 
diagram of the Buffer library given in Fig. 1 shows the 
explosion of the many variant buffers that populates 
the library, a classic incarnation of the feature 
combinatorics problem. Even though all the buffer 
classes play essentially the same role, there are 74 
classes in the Buffer library (In this analysis, we only 
consider the 66 classes that contribute to code 
duplication, leaving out helper classes, exception 
classes etc.). 

 
Fig. 1. Partial class hierarchy of Buffer library  

Feature diagrams [8] are a common approach used 
in domain analysis to illustrate the variability of a 
concept. Feature diagram for the Buffer library is given 
in Fig. 2. It shows four mandatory feature dimensions 
and one optional feature dimension. ‘Element Type 
(T)’ is a mandatory feature dimension that represents 
the type of elements held in the buffer. It has seven 
alternative features corresponding to seven valid 
element types: int, short, double, long, float, char and 
byte.   

To describe the feature diagram, we use the concept 
of ‘peer classes’:  

Definition 1.  Peer classes - A set of classes that differ 
along a given feature dimension only. For example, 
classes HeapIntBuffer and HeapDoubleBuffer are 
peers along the Element type dimension because the 
only variation between the two buffers is element type.  

Feature dimension ‘Access Mode (AM)’ has two 
alternative features corresponding to read-only buffers 
and writable buffers respectively. Writable 
HeapByteBuffer and read-only HeapByteBufferR are 
peers along this dimension.  

 
Fig. 2. Feature diagram for Buffer library 

Other feature dimensions with alternate features are 
‘Memory Access Scheme (MS)’ and ‘Byte Order 
(BO)’. Feature dimension ‘View Buffer’ is optional. 
Each legal combination of these feature dimensions 
yields a unique buffer class. (e.g., DirectIntBufferRS, 
represents the combination T = int, AM = read-only, 
MS = direct, BO = non-native, and VB = false)  

3.1. Analysis method 

For this case study, we manually analyzed the 
Buffer library to identify groups of similar buffer 
classes. Then, we studied differences among classes in 
each group, and attempted to unify groups of similar 
buffers with suitable Java generics. Upon careful 
observation of the Buffer library, we found that only 
15 buffer classes fall neatly into the generics-friendly 
layout and could be replaced by 3 generic classes 
Buffer<T>, HeapBuffer<T>, and HeapBufferR<T> 
(The solution can be viewed at [12]).  According to this 
result, generics can reduce only 40% (calculated in 
terms of physical lines of code (LOC), excluding 
comments, blank lines and trivially short lines) of 
redundant code from the Buffer library. This solution 
still relies on wrapper classes for primitive types (as 
Java generics do not allow parameterization with 
primitive types).  

A detailed analysis of the different types of generic-
unfriendly situations that we encountered in the Buffer 



 

library will be given in Section 5. More information on 
this case study can be found at [12]. 

4. Case study 2: Standard Template 
Library 

The Standard Template Library (STL) is a general-
purpose library of algorithms and data-structures. It 
consists of containers, algorithms, iterators, function 
objects and adaptors. Most of the basic algorithms and 
structures of computer science are provided in the STL. 
All the components of the library are heavily 
parameterized to make them as generic as possible. A 
major part of the STL is also incorporated in the C++ 
Standard Library. A full description of the STL can be 
found at [5].  

Generic containers form the core of the STL. These 
are either sequence containers or associative 
containers. Among the containers, we selected the 
associative container slice for detailed analysis because 
of its high level of cloning. Feature diagram of Fig. 3 
depicts features of associative containers in the STL.  
‘Ordering’, ‘Key Type’ and ‘Uniqueness’ are the 
feature dimensions. Any legal combination of these 
features yields a unique class template (eight in total). 
For example, the container ‘set’ represents an 
associative container where Storage=sorted, 
Uniqueness=unique, and Key type=simple. 

 
Fig. 3. Feature diagram for associative 

containers 

4.1. Analysis method 

We analyzed the STL code from the SGI website 
[5].  For clone detection we used CCFinder [7]. Having 
identified clones, we studied the nature of variations 
among them, and tried to understand the reasons why 
cloning occurred. 

In our analysis of associative containers, we found 
that if all four ‘sorted’ associative containers and all 
four ‘hashed’ associative containers, were unified into 
two generic containers, the Reduction in Related Code 
(RRC) is 57%. RRC is an approximation calculated by 

comparing the LOC of clones before and after a meta-
level unification. A detailed description of this meta-
level unification is presented in [1]. In container 
adaptors – stack, queue and priority queue – we found 
that 37% of the code in stack and queue could possibly 
be eliminated through clone unification. Cloning in the 
algorithms (in file ‘stl_algo.h’) was localized to the set 
functions, i.e., we found that set union, intersection, 
difference, and symmetric difference (along with their 
overloaded versions) form a set of eight clones that 
could be unified into one (RRC=52%). Iterators were 
relatively clone-free, but the supporting files 
‘type_traits.h’ and ‘valarray’ exhibited excessive 
cloning. In the ‘type_traits.h’ header file, a code 
fragment had been cloned a remarkable 22 times 
(RRC=83%).The header file ‘valarray’ contained eight 
different code fragments that had been cloned between 
10 to 30 times each (137 times in total, where 
RRC=83%).  

More information on this case study can be found in 
[1]. 

5. Where generics failed 

In this section, we illustrate the situations in the two 
case studies, in which the generics were unable to 
unify similar program structures.  

5.1. Non-parametric variations 

It is common to find non-parametric variations in 
code. Extra or missing code fragments between similar 
program structures are such variations not addressed by 
generics. For example, CharBuffer of the Buffer 
library has some additional methods not present in 
other buffer types. On the other hand, 
DirectByteBuffer is missing a method common to all 
its peers. ‘Extra’ or ‘missing’ code fragments can be of 
any granularity as shown by the next example. 

 
Fig. 4. Declaration of class CharBuffer and 

DoubleBuffer 

CharBuffer class implements an extra interface 
none of its peers implement, resulting in the class 
declaration code shown in first part of Fig. 4. Now 
compare it with the declaration clause of 

... 
public abstract class CharBuffer 
    extends Buffer implements Comparable, CharSequence{ 
... 
... 
public abstract class DoubleBuffer 
    extends Buffer implements Comparable { 
... 



 

DoubleBuffer given second to note the offending extra 
bit of code in CharBuffer. Fig. 5 provides an example 
of a non-parametric variation of keywords between 
iterators for Map and Set in STL. 

 
Fig. 5. Keyword variation example  

Some algorithmic differences are too extensive to 
be parameterized. For example, toString() method of 
CharBuffer differs semantically from toString() 
method of its peers, as shown in Fig. 6. 

 
Fig. 6. Method toString() of CharBuffer and its 

peers 

Due to this reason, we cannot use generics to unify 
CharBuffer with its peers despite the similarity of the 
rest of the code. A solution based on inheritance looks 
feasible, but not without adding another layer to the 
already complex inheritance hierarchy. Another option 
is to use template specialization, but Java generics do 
not support this feature. 

 
Fig. 7. Clones due to swapping 

One interesting type of non-parametric variation we 
spotted in STL is due to swapping of code fragments in 
order to make overloaded operators symmetric. Fig. 7 
gives an example. Note how the parameter pair (const 

valarray<_Tp>&, const _Tp& __c) and operand pair 
(__x[__i], __c) are swapped between the two clones. 

5.2. Non-type parametric variations 

Some parametric variations cannot be represented 
by types and hence cannot be unified using Java 
generics. A prime example of a non-type parametric 
variation is constants. The clone given in Fig. 8 is 
repeated several times inside the Buffer library with 
different constant values (2, 3, and 4) for @size. 

 
Fig. 8.  Generic form of method ix() 

Though parameterization using constants is 
supported in C++, the question remains whether we 
should force the user to specify this parameter 
manually when the value is inferable from another type 
parameter. One solution is to use traits template idiom 
[11], at the expense of increased complexity, to encode 
the type dependent information into the type and pass it 
as a parameter. 

Another parametric variation not supported by 
generics is keywords. In stl_iterator.h, the clone given 
in Fig. 9, @access was ‘private’ in one instance while 
it was ‘protected’ in the other (a possible case of 
inconsistent updating).  

 
Fig. 9. Access level variation example 

 
Fig. 10. Generic form of method order() in 

direct buffers 

At times, code fragments differed in operators, as 
illustrated in the example from the Buffer library 
shown in Fig. 10. @operator is ‘==’ in 
DirectDoubleBufferS but it is ‘!=’ in 
DirectDoubleBufferU. Such variations also cannot be 
unified with Java generics. 

template <class _Tp>  
inline valarray<_Tp> operator+( const valarray<_Tp>& __x, 
const _Tp& __c) { 
    typedef typename valarray<_Tp>::_NoInit _NoInit; 
    valarray<_Tp> __tmp(__x.size(), _NoInit()); 
    for (size_t __i = 0; __i < __x.size(); ++__i) 
        __tmp[__i] = __x[__i]  + __c; 
    return __tmp;} 
template <class _Tp>  
inline valarray<_Tp> operator+( const _Tp& __c, const 
valarray<_Tp>& __x) { 
    typedef typename valarray<_Tp>::_NoInit _NoInit; 
    valarray<_Tp> __tmp(__x.size(), _NoInit()); 
    for (size_t __i = 0; __i < __x.size(); ++__i) 
      __tmp[__i] = __c + __x[__i]; 
    return __tmp;} 

  iterator begin() const {  return _M_t.begin();  } 
  iterator begin(){ return _M_t.begin();  } 

//In CharBuffer: 
public String toString() { 
 return toString(position(), limit());} 
//In IntBuffer,FloatBuffer,LongBuffer etc. 
    public String toString() { 
    StringBuffer sb = new StringBuffer(); 
 sb.append(getClass().getName()); 
 sb.append("[pos="); 
 ... 
 sb.append("]"); 
 return sb.toString(); } 

template <class _Tp @moreParams  > 
class ostream_iterator { 
public: 
  …  
  ostream_iterator<_Tp>& operator*() { return *this; } 
  ostream_iterator<_Tp>& operator++() { return *this; } 
  ostream_iterator<_Tp>& operator++(int) { return *this; } 
@access: 
  @streamType* _M_stream; 
  const @stringType* _M_string; 
}; 

public ByteOrder order() { 
return ((ByteOrder.nativeOrder() @operator 
    ByteOrder.BIG_ENDIAN)?ByteOrder.LITTLE_ENDIAN: 
         ByteOrder.BIG_ENDIAN);} 

private long ix(int i) { 
  return address + (i << @size); 
} 



 

An indirect solution of the above problem can be 
through function objects. The different operators can 
be turned into function objects and passed on to the 
generic class as a parameter. But this indirect solution 
may create more clones among the different function 
objects.  

A similar problem is found in STL with operator 
overloading in the associative containers of STL. Fig. 
11 shows a generic form of such clones. @op was 
replaced by different operators (e.g. ‘==’, ‘<’ etc.) in 
different instances of the clone. Since these code 
fragments relate to operator overloading, function 
objects cannot be used to unify these clones.  

 
Fig. 11. A clone that vary by operators 

Also, copyright notices that appear in all STL files 
exhibit non-type parametric variations. 

5.3. Restrictions on type-parametric 
variations 

Type parametric variations between code fragments 
are the ideal targets for code reuse through generics. 
Yet idiosyncrasies of generic implementations can 
sometimes get in the way, even in these ideal 
situations. For example, parameterization using 
primitive types (int, short, long, double, etc.) is not 
allowed in Java.  

In STL iterators, we found another case of 
restrictions on type parameters for templates. In this 
clone (shown in Fig. 12) the only variation point 
@type is a type (int, float, long, bool, char, short … 22 
types in all). These clones are template specializations 
for 22 types. Therefore, they cannot be unified by usual 
template techniques. 

 
Fig. 12. Generic form of a clone found in 

“type_traits.h” 

5.4. Coupling  

Coupling among classes and modules can also play 
a role in restricting the use of generics. Given in Fig. 

13 is an example of this situation from the Buffer 
library. 

 
Fig. 13. Method get(int) of DirectIntBufferS and 

DirectFloatBufferS 

To unify these two methods into a generic method, 
we need to unify getInt() and getFloat() methods as 
well. Sometimes this is not possible: these two 
methods can be out of scope or they can be generics-
unfriendly. Now, we have two ways to proceed. The 
first is to convert the variant functions into function 
objects and ask the user to furnish the required function 
object as a parameter. But this breaks the basic design, 
since this parameter is not one of the feature 
dimensions. The second is to find a way (possibly 
using run-time type information) to infer the proper 
function to call based on the type parameter. This will 
introduce further indirections and runtime overheads.   

6. Concluding remarks  

Generic design solutions have to do with both 
reusability and maintainability, the two economically 
desirable – but also difficult to achieve - software 
engineering goals. However, in many cases, genericity 
is difficult to achieve in the confines of conventional 
techniques. This is evidenced by high rate of similarity 
we find in programs. Type parameterization is an 
important means to achieve genericity. In the paper, we 
have analyzed the situations in which, despite 
similarities among program structures, generics fell 
short of providing suitable clone-free, generic 
solutions. We have illustrated the problem with 
examples from the Java Buffer library and the STL in 
C++.  

Cloning is a pervasive problem, not confined to 
C++ or Java, with much negative impact on 
maintenance and reuse [7]. Our other experiments have 
uncovered extensive cloning in command and control 
applications implemented in C# and J2EE, and Web 
portals [12]. Effective generics should allow us to 
unify program structures (such as functions, methods, 
classes or any patterns of such program elements) 
resulting from similar domain concepts, to avoid 
counter-productive redundancy. Generics are a prime 
language feature for parameterization. Our empirical 
studies have revealed that generics could unify code 
portions differing in the type parameters most of the 

__STL_TEMPLATE_NULL struct __type_traits<@type> { 
    typedef __true_type    has_trivial_default_constructor; 
    typedef __true_type    has_trivial_copy_constructor; 
    typedef __true_type  has_trivial_assignment_operator; 
    typedef __true_type    has_trivial_destructor; 
    typedef __true_type    is_POD_type;}; 

template <class _Key, class _Compare, class _Alloc> 
inline bool operator@op (const 
set<_Key,_Compare,_Alloc>& __x,   
                    const set<_Key,_Compare,_Alloc>& __y) { 
  return __x._M_t @op__y._M_t; } 

 public int get(int i) { 
  return Bits.swap( 
    unsafe.getInt(ix(checkIndex(i))));} 
public float get(int i) { 
  return Bits.swap( 
  unsafe.getFloat(ix(checkIndex(i))));} 



 

time, but failed to provide a neat solution in the 
presence of other variations in code details.  

In future, we plan to analyze other class libraries 
and application programs, written in various 
programming languages, using a range of design 
techniques. We hope such work will result in further 
insights into the nature of problems presented in this 
paper. We also plan to address so-called structural 
clones, that is, patterns of repetitions emerging from 
analysis and design levels. Structural clones usually 
represent larger parts of programs than the ‘simple’ 
clones discussed in this paper, therefore their treatment 
could be even more beneficial. Design of generic 
solutions unifying similar program structures at all 
levels, in particular structural clones, is at the heart of 
designing software architectures for reuse. Effective 
parameterization is one of the prime techniques to 
achieve reuse goals. In our current and future work, we 
investigate a meta-level parameterization technique 
such as described in [6]. Meta-level parameterization is 
less restrictive than generics or templates, and has 
demonstrated a potential to overcome the limitations 
we encountered in this study [12]. We plan to conduct 
comparative studies of various techniques for clone 
treatment, to better understand their strengths, 
weaknesses, and areas where the synergy exists among 
different techniques.  

This paper is a first attempt at presenting limitations 
of language-level parameterization for defining clone-
free generic program solutions. We hope our results 
will encourage others to pursue further studies in the 
direction of programming language support for 
effective parameterization. 
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