
Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 1

An Investigation of Cloning in Web Applications

Damith C. Rajapakse and Stan Jarzabek

Department of Computer Science
School of Computing

National University of Singapore
{damithch,stan}@comp.nus.edu.sg

Abstract. Cloning (ad hoc reuse by duplication of design or code) speeds up
development, but also hinders future maintenance. Cloning also hints at reuse
opportunities that, if exploited systematically, might have positive impact on
development and maintenance productivity. Unstable requirements and tight
schedules pose unique challenges for Web Application engineering that
encourage cloning. We conducted a systematic study of cloning in 17 Web
Applications of different sizes, developed using a range of Web technologies,
and serving diverse purposes. We found cloning rates 17-63% in both newly
developed and already maintained Web Applications. Contribution of this paper
is two-fold: (1) our results confirm potential benefits of reuse-based methods in
addressing the key challenges of Web engineering, and (2) a framework of
metrics and presentation views that we defined and applied in our study may be
useful in other similar studies.

1 Introduction

Today, web sites are changing from mere collections of static hypertext documents to
full blown software applications, commonly called Web applications (WA). In
contrast to static web sites, WAs are bigger, more complex, more business critical,
and more close to traditional software applications, requiring bigger initial
investments and longer payback periods. WAs also have dramatically short
development life-cycles, and fuzzy initial requirements resulting in frequent latent
changes. All these add to the challenge of engineering and maintaining WAs.

Cloning has been recognized as a pervasive problem in maintenance of traditional
software applications. It has been the focus of research for at least a decade. Cloning
increases the tendency for update anomalies (inconsistencies in updating). Cloning
also increases the effort required in program comprehension. Both these negatively
affect maintenance. Reasons for cloning are manifold; most of them are related to
programmer’s intent to reuse the implementation of some abstraction [1]. It is a
commonplace practice and cloning levels as high as 68% [8] have been reported in
traditional software. With the recent proliferation of WAs, cloning in web domain is
becoming an issue worthy of attention. As one benefit of cloning is the reduction of
initial development time, shorter time-to-market requirement of WAs makes them
ideal breeding grounds for clones. Also, the lack of suitable reuse and delegation

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 2

mechanisms in HTML makes WAs a good candidates for clone proliferation [5]. On
the positive side, the same similarity patterns that make cloning possible also signify
valuable reuse opportunities. By exploiting such reuse opportunities systematically,
we may cut development effort and ease future maintenance of WAs. Technologies
for realizing this potential exist (server side scripting, template engines, meta-level
techniques), but it is not known how well they fare in current state of the practice. As
per our knowledge, no systematic study of cloning in the web domain has been done
so far. In research on cloning in Web domain [3],[4],[5],[6],[11],[12], we did not find
a published work giving concrete evidence of the extent of cloning in Web domain.
Particularly, it is not known how the cloning problem in Web domain compares to
that in the traditional software domain.

The above observations encouraged us to conduct a study of cloning in the WA
domain, as described in this paper. The contribution of the paper is two-fold. (1) We
conducted a comprehensive study of cloning in many types of WAs. We used WAs of
different sizes, developed using a range of technologies, to cater for different
application domains, by teams of different structures, using different
development/business models, in different development environments. From our
study, we were able to confirm potential benefits of reuse-based methods in
addressing the key challenges of Web engineering. (2) We defined similarity metrics
and clone analysis presentation views to be used in evaluating the extent of cloning in
WAs. We adopted a general-purpose clone detector CCFinder [9] for analysis of the
many types of sources that form WAs. We used, and validated, our clone evaluation
framework in the study and we believe it will provide useful guidelines for future
similar studies done by others, not only in Web domain, but in other domains as well.

Our study indicates that the extent of cloning in WAs is indeed substantial,
exceeding cloning rates that we find in traditional applications. This shows the
importance of investigating engineering techniques capable of defining generic
solutions to avoid counter-productive cloning. Current technologies make a step in
the right direction, but our analysis shows that there is room for improvement.

The remainder of this paper is organized as follows. In Section 2 we describe the
experiment method, giving details of tools, metrics and graphs used. The results of
the study are presented in Section 3, followed by related work is given in Section 4.
Conclusions end the paper.

2 Experiment method

In this experiment, we analyzed 17 WAs covering the following.
• Languages/technologies - Java, JSP, ASP, ASP.net, C#, PHP, Python, Perl, Web

services, proprietary template mechanisms
• Application domains - collaboration portals, e-commerce applications, web

based DB administration tools, conference management, corporate intranets,
bulletin boards, etc.

• System sizes - 33 ~1719 files
• License types – free, commercial, internal use,

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 3

• Development models – open source, closed source
• Life cycle stage – pre/first/post release, dead
• Usage types – off-the-shelf, one-time-use, custom-built, model applications
• Team structures – single author, centralized teams, distributed teams
• Organizations – software development companies including Microsoft, Sun

Microsystems, and Apache Software Foundation, free lance software developers,
in-house development teams of non-software companies

In our choice of WAs, we have tried to represent the diversity of WA domain in an
unbiased manner. Due to practical limitations, the number of WAs we could include
in the study was limited to 17. Although it was possible to increase the sample size by
including many readily available open source WAs, we refrained from doing that, in
order to keep a balance between open source WAs and (less readily available) closed
source WAs. The scope of analysis was clones in any text file that is likely to be
maintained by hand, including files not normally considered ‘source code’. More than
11000 files were analyzed in total.

We used CCFinder [9] as our clone detector. CCFinder can detect exact clones and
parameterized clones. Our experiment needed to detect clones in files written in many
languages, not necessarily languages supported by CCFinder. Therefore, we
instructed CCFinder to assume all input files as ‘plain text’. In this mode, only exact
clones were detected. We also instructed CCFinder to ignore trivially short clones
(i.e. clones shorter than 20 tokens) and clones occurring within the same file, in order
to keep the volume of reported clones within manageable limits. We developed a Java
program called ‘Clone Analyzer’ to control the clone detection process and to analyze
the clones detected by CCFinder. Fig. 1 shows the steps of clone analysis process.
Next, we describe the metrics and visualizations used in the experiment.

Fig. 1. Clone analysis workflow

0%

20%

40%

60%

80%

100%

120%

0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80% 90 %
10 0%

FSAp

Q
FC

p

System X System Y System Z

Fig. 2. Sample FSCurves

Total Cloned Tokens (TCT): We defined TCT of a system as the sum of clone related
tokens, i.e., tokens that form a part of any of the clones in that system. TCTp is TCT
expressed as a percentage of total number of tokens in the system. When TCTp is
high, update anomaly risk (the risk of inadvertently creating an update anomaly while
modifying the system) is also high. If the TCTp is greater than 50%, system has more
clones than non-clones; every update to the system has a higher chance of involving a

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 4

clone than not; and hence runs a high risk of creating an update anomaly. We can call
such systems high update anomaly risks.

File Similarity (FSA): While TCTp is a good indication of the overall cloning level
of a system, it can be further complemented by a measure of file similarity. For
example, consider two systems X and Y of similar size, both having the same TCTp.
In X, clones are scattered across the system in such a way that no two files are
substantially similar. But In Y, clones are well concentrated into a certain set of files.
From a clone treatment perspective, system Y is more interesting than X because the
clones in Y are more easily treatable than that of X. To identify the similarity of a file
f to other files, we calculated the metric FSA(f). We defined FSA(f) as follows (This
is analogous to RSA(f) defined in [13]).

∑
∈

=
)(

)(
)(

1)(
fCFc

cTn
fTn

fFSA

Here, Tn(f) is the number of tokens in file f, CF(f) is a set of code fragments which
are included in file f and have a clone relation with some code fragments in other
files, and c is an element of CF(f). In this summation, overlapped code portions are
counted only once. FSA(f) is a direct measure of the similarity (resulting from
cloning) of file f to other files in the system. For example, FSA=0.6 for a given file f
means 60% of f has been cloned from other files of the system. For convenience, we
defined the metric FSAp as FSA given as a percentage (i.e., FSAp(f) = FSA(f) *
100%)

Qualifying File Count (QFC): We define Qualifying File Count for FSAp value v,
QFC(v), as the number of files for which FSAp is not less than v. For example,
QFC(30%) gives the number of files in the system having a FSAp value not less than
30%. QFCp is QFC expressed as a percentage of the total number of files in the
system. For example, QFCp(60%) = 43% means, in 43% of files in the system, 60%
or more have been cloned.

File Similarity Curve (FSCurve): To observe the overall file similarity characteristics
across an entire system, we used File Similarity Curve (FSCurve). An FSCurve is
created by plotting QFCp against FSAp. In the example FSCurve shown in Fig. 2, we
have marked points A, B and C to illustrate how to interpret FSCurves. Point A
indicates the invariant property that in 100% of files at least 0% has been cloned. At
the other extreme, point C indicates that 40% of the files in System X have been
completely (100%) cloned. Similarly, point B denotes that for System X, QFC(50%)
≈ 80%. i.e. in about 80% of the files in System X, at least 50% of the contents have
come from other files. From FSCurves we can also get an idea about relative file
similarity characteristics of different systems. For example, from the three FSCurves
in Fig. 2, we can clearly see that file similarity in system Y is generally less than that
of X but more than that of Z. i.e. Higher the position of the curve, higher the file
similarity.

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 5

3 Experiment Results
3.1 Overall Cloning Level

The initial phase of our investigation was focused on the overall cloning level in
WAs. Given in Fig. 3 is the TCTp of each WA we studied. Only one WA has a TCTp
below 20%. The average TCTp is 41% (with a standard deviation of 15%). Five WAs
are high update anomaly risks (TCTp>50%) while three more are close behind.

0%

10%

20%

30%

40%

50%

60%

70%

W
A

1
W

A
2

W
A

3
W

A
4

W
A

5
W

A
6

W
A

7
W

A
8

W
A

9
W

A
10

W
A

11
W

A
12

W
A

13
W

A
14

W
A

15
W

A
16

W
A

17

TC
Tp

Fig. 3. Cloning level in each WA

0%

20%

40%

60%

80%

100%

120%

FSAp

Q
FC

p

CCFinder-html 100% 70% 70% 70% 70% 60% 40% 30% 20% 10% 0%
WSFinder-html 100% 100% 100% 100% 100% 100% 60% 60% 20% 0% 0%
CCFinder-jsp 100% 100% 100% 100% 100% 100% 80% 70% 30% 20% 0%
WSFinder-jsp 100% 100% 100% 100% 100% 100% 90% 70% 70% 20% 0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 4. CCFinder Vs WSFinder

From these data alone, the level of cloning in WAs seems substantial. Still, these
data do not include clones with parametric variations (parameterized clones) and non-
parametric variations (gapped clones). As a result, the actual cloning level in WAs
could be even higher than the levels indicated by these data. We tested this hypothesis
by comparing cloning level reported by CCFinder and a web-specific clone detector
described in [3]. This clone detector (for convenience, we refer to it as WSFinder)
detects the similarity among web-specific files. We did not use it as our main clone
detector because it currently supports HTML and JSP files only. WSFinder reports
three different values of file similarity based on 1. HTML tags, 2. Text included
inside HTML tags, and 3. Scripts included in the file (only applicable to JSP pages).
For a small set of HTML and JSP pages, we applied both CCFinder and WSFinder to
compare results. To make the comparison least biased towards the hypothesis, we
compared the minimum of the three values reported by WSFinder against CCFinder
results. As shown in Fig. 4, CCFinder almost always reported a cloning level less than
or equal to that reported by WSFinder. This supports our hypothesis that actual
cloning level in WAs could be even higher than what is reported in this paper.

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 6

0%

20%

40%

60%

80%

100%

W
A

1
W

A
2

W
A

3
W

A
4

W
A

5
W

A
6

W
A

7
W

A
8

W
A

9
W

A
10

W
A

11
W

A
12

W
A

13
W

A
14

W
A

15
W

A
16

W
A

17

To
ta

l c
lo

ne
s

in
 th

e
sy

st
em

>100 90-100 80-90 70-80 60-70 50-60 40-50 30-40 20-30

Fig. 5. Distribution of clone size

0%

20%

40%

60%

80%

100%

120%

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

FSAp

Q
FC

p

Fig. 6. FSCurves for all WAs

A high level of cloning does not necessarily mean a high reuse potential. The
clones detected could be too small, too dispersed, or false positives. Since our
minimum clone length was 20 tokens, these results could include clones as short as 20
tokens. (We did not use a higher minimum clone length, in the hope of capturing
some of the parameterized clones or gapped clones; a parameterized/gapped clone
contains a number of smaller exact clones). This could prompt one to argue that
clones detected are trivially short ones, not worthy of elimination. To address this
concern, we used the breakdown of the clones by length, in each system (as shown in
Fig. 5). Clone size increases from 20 to 100+ as we go from top to bottom of each
bar. Increasingly larger clones are shown in increasingly darker colors. As an average
LOC is accounted by 6-8 tokens, a 100 token clone is roughly 15 LOC long.
Therefore, this graph shows that most clones we detected are longer than 15 LOC.

To address the issue of clones dispersed across the system too thinly, we generated
FSCurves for each system. To save space, we show all the FSCurves together in Fig.
6, with the average, the minimum, and the maximum curves marked with dashed
lines. According to the average curve, close to 50% of the files have at least 50% of
their content cloned. Fig. 7 represents two cross sections of Fig. 6, namely, at
FSAp=50% and FSAp=90%. We use this graph to give a bit more detailed view of the
clone concentration in each WA. It shows the percentage of files in each system that
we can consider ‘cloned’ (FSAp≥50%) and ‘highly cloned’ (FSAp≥90%). In eleven of
the WAs, we find more than 10% of the files have been highly cloned. In five, we
find more than 20% of the files have been highly cloned. Aggregating all the WAs,
the percentages of cloned and highly cloned files are 48% and 17% respectively.
These data suggest that there is good clone concentration in files.

With regards to the issue of false positives, it is not practical to manually weed out
the false positives in a study of this scale. However, since we detected only exact
clones, we believe the false positives are at a minimum.

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 7

3.2 Cloning Level in WAs Vs Cloning Level in Traditional Applications

Since cloning in Traditional Applications (TAs) has been widely accepted as a
problem, we wanted to compare cloning levels of WAs to that of TAs. We started by
separating the files in WAs into two categories:
• WA-specific files – files that use WA-specific technologies, e.g., style sheets,

HTML files, ASP/JSP/PHP files
• General files – files equally likely to occur in WAs and TAs. e.g., program files

written in Java/C/C#, build scripts

We found 13 of the WAs had both type of files, while some smaller WAs had only
Web-specific files. For WAs with both type of files, we calculated TCTp_W (TCTp
for WA-specific files) and TCTp_G (TCTp for general files) as given in Fig. 8. The
last two columns show that overall TCTp_W was 43% and overall TCTp_G was 35%.
The TCTp comparison of individual WAs shows that in 6 WAs TCTp_W is
significantly higher (TCTp_W > TCTp_G by more than 10%), in 3 WAs levels are
similar (|TCTp_W-TCTp_G|≤10%), and only in 4 WAs TCTp_G was significantly
higher (TCTp_G > TCTp_W by more than 10%). These figures suggest that WA-
specific files have more cloning than general files. But we can reasonably assume that
cloning in full fledged TAs is not worse than cloning in these general files. This infers
that cloning in WAs is worse than cloning in TAs.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
A

1
W

A
2

W
A

3
W

A
4

W
A

5
W

A
6

W
A

7
W

A
8

W
A

9
W

A
10

W
A

11
W

A
12

W
A

13
W

A
14

W
A

15
W

A
16

W
A

17
To

ta
l

%
 o

f t
ot

al
 fi

le
s

highly cloned files cloned files

Fig. 7. Percentage of cloned files

0%

10%

20%

30%

40%

50%

60%

70%

80%

W
A

1

W
A

2

W
A

3

W
A

4

W
A

5

W
A

6

W
A

7

W
A

8

W
A

9

W
A

11

W
A

13

W
A

16

W
A

17

To
ta

l

TC
Tp

_W
, T

C
Tp

_G

WA-specific General

Fig. 8. WA-specific files Vs General files

3.3 Factors Affecting the Cloning Level

Our investigation also included collecting quantitative data on different factors that
might affect cloning in WAs. We started by investigating whether system size has any
effect on the cloning level. However, a comparison of average cloning level in small,
medium, and large WAs (Table 1) showed that cloning level does not significantly
depend on the system size.

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 8

Table 1. Average cloning for WAs of different
size

Size
 (in # of files)

Avg
TCTp

Std.
Deviation

Small
(size < 100) 40% 21%

Medium
(100 ≤ size < 1000) 42% 14%

Large
(size ≥ 1000) 40% 16%

All 41% 15%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

TC
Tp

WA7 22% 24% 27% 35% 41% 43% 41% 40% 42% 43% 44% 42%
WA8 26% 26% 27% 27% 28% 30% 31%
WA4 20% 24%
WA6 22% 23% 21% 20% 20%
WA9 24% 23% 23% 22% 22% 22% 22% 22% 22%
WA17 17% 17% 18% 19% 20% 35% 40% 45% 35% 35% 35% 35%
WA16 21% 28% 36% 38% 39% 38% 38% 37% 37% 36% 35%

Fig. 9. Movement of cloning level over time

Continuing, we also investigated the progression of cloning level over time. For
this, we used seven of the WAs for which at least four past releases were readily
available. All seven suitable WAs were open source, and of medium or large size. In
the Fig. 9, we show the moving average (calculated by averaging three neighboring
values) of TCTp over past versions, up to the current version. According to this graph,
all WAs show an initial upward trend in the cloning level. Some WAs have managed
to bring down the TCTp during the latter stages, even though current levels still
remain higher than the initial levels. This indicates that the cloning level is likely to
get worse over time. WA9, and to a smaller extent WA6, are the only exceptions, but
this may be due to non-availability of the versions corresponding to the initial stage.

3.4 Identifying the Source of Clones

Finally, we attempted to obtain some quantitative data that could be useful for
devising a solution to the cloning problem. We were interested to find which of the
following file categories contributed most clones
i. Static files (STA) – files that needs to be delivered ‘as is’ to the browser.

Includes markup files, style sheets and client side scripts (e.g., HTML, CSS,
XSL, JavaScripts).

ii. Server pages (SPG) – files containing embedded server side scripting. These
generate dynamic content at runtime (e.g., JSP, PHP, ASP, ASP.NET).

iii. Templates (TPL) – files related to additional templating mechanisms used.
iv. Program files (PRG) – files containing code written in a full fledged

programming language (e.g., Java, Perl, C#, Python)
v. Administrative files (ADM) – build scripts, database scripts, configuration files

vi. Other files (OTH) – files that do not belong to other five types.

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

W
A

1

W
A

2

W
A

3

W
A

4

W
A

5

W
A

6

W
A

7

W
A

8

W
A

9

W
A

11

W
A

12

W
A

13

W
A

14

W
A

15

W
A

16

W
A

17

To
ta

l

To
ta

l T
ok

en
s

STA SPG TPL PRG ADM OTH

Fig. 10. Contribution of different file types to
system size

0%

20%

40%

60%

80%

100%

W
A

1

W
A

2

W
A

3

W
A

4

W
A

5

W
A

6

W
A

7

W
A

8

W
A

9

W
A

11

W
A

12

W
A

13

W
A

14

W
A

15

W
A

16

W
A

17

To
ta

l

TC
T

STA SPG TPL PRG ADM OTH

Fig. 11. Contribution of different file types to
cloning

Fig. 10 gives the contribution of each file type towards system size while Fig. 11
gives the contribution of each file type towards cloning. The rightmost column of
each graph shows the overall situation (aggregation all the WAs). The salient feature
of these graphs is that there is no single file type that clearly dominates the
composition of the system, or the composition of the clones. At least three types
(STA, SPG, and PRG) shows dominant influence, while the influences of TPL and
ADM are smaller, but not negligible. This shows that a successful solution to the
cloning problem has to be applicable equally to the entire range of file types.
Moreover, the high influence of WA-specific types (STA, SPG and to a lesser extent,
TPL) suggests that a solution rooted in TAs might not be successful in solving the
cloning problem in WAs.

4 Related Work

Clones have been defined in slightly different ways by different researches. These
differences are usually related to different detection strategies used and the different
domains focused on by each researcher. Accordingly, there are clone definitions
specific to web domain; [5] defines HTML clones as pages that include the same set
of tags while [4] defines clones as pages that have the same, or a very similar
structure. In [3], web page clones are classified into three types based on similarity in
page structure, content, and scripts. Since our study considers all text files for clone
detection, not just HTML pages or script files, we use a simpler definition of clones,
i.e., clones are similar text fragments.

Existing research in clone detection (CD) is based on two major approaches [7]:
(1) Using structural information about the code. E.g., metrics, AST, control/data flow,
slices, structure of the code/expressions, PDG, etc. (2) Using string-based matches.
Our main detection tool CCFinder [9] falls into the 2nd category. It was developed at
Osaka University, Japan. Since then, it has been used [10] and evaluated [2] by
independent researchers. The string based approach of CCFinder is well suited for
studies like ours involving text written in many languages including natural

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 10

languages. Clone detection (CD) have many applications, like detecting plagiarism,
program comprehension, reengineering, quality evaluation etc. and is an area
extensively studied in the context of traditional software domain. Syntax errors and
routine use of multiple programming languages make clone detection in the web
domain harder [12]. There are CD tools/techniques specific to web being proposed
[4],[5],[6],[12]. Technique in [5] detects clones in static pages only, but in [4] it was
extended to include ASP pages. A (semi) automatic process aimed at identifying
static web pages that can be transformed into dynamic ones, using clustering to
recognize a common structure of web pages, is described in [11]. Technique in [3]
identifies HTML and JSP pages that are more similar to each other than a specified
threshold.

Gemini [13] is a maintenance support environment that augments CCFinder.
Gemini provides the user with functions to analyze the code clones detected by
CCFinder. It primarily provides two visualizations: scatter plot and metrics graph.
The scatter plot graphically shows the locations of code clones among source codes.
The metrics graph shows different metric values for clones. We regularly use Gemini
in our research and have found it to be a very useful tool. However, there were three
main limitations of Gemini that led us to write our own Clone Analyzer. First, when
using Gemini, it is difficult to grasp the total cloning activity in the system [10]. Size
of the clone metric graph in particular grows out of control when a large number of
files are involved. Second, Gemini does not provide an API to access the analysis
data. When using Gemini, it is not possible to analyze the clones beyond the visual
data provided by the tool itself. And third, due to its visual nature, Gemini is more
resource intensive compared to CCFinder; the number of clones it could handle is
limited. Our Clone Analyzer overcomes these issues and was very useful in cutting
down the time required to analyze the large amount of clone data generated in this
study.

5 Conclusions and Future Work

We conducted a study of cloning in 17 Web Applications of different sizes,
developed using a range of Web technologies, and serving diverse purposes. We
found cloning rates 17-63% in both newly developed and already maintained Web
Applications. To emphasize the reuse potential signified by these clones, we showed
that most of the clones are substantially long, well concentrated and unlikely to be
false positives. With the aid of a Web-specific clone detector, we substantiated our
hypothesis that actual cloning level could be even higher than the levels reported
here. We also showed that cloning equally affect small, medium or large WAs, and
cloning gets worse over time. More importantly, we showed that cloning in WAs
could be even worse than that of traditional applications. Firstly, our findings provide
the concrete evidence of cloning in WAs we set out to produce at the start of this
study. In doing so, it confirms the potential benefits of reuse-based methods in
addressing the key challenges of Web engineering. Secondly, our study defines and
validates a framework of tools, metrics, and presentation views that may be useful in
other similar studies.

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 11

One explanation of substantial cloning we found is extensive similarity within WA
modules, across modules and across WAs. The existence of those similarities,
exceeding the rates of similarity we are likely to find in traditional software,
underlines the importance of investigating techniques to improve the effectiveness of
reuse mechanisms in Web Engineering. The study itself revealed an important
consideration when devising such mechanisms. That is, it shows that a number of
files categories – some of which use Web-specific technologies – contribute towards
cloning in WAs. This suggests that any successful solution need to be uniformly
applicable to all text sources, not just code written in a particular language.

In our future work, we hope to complement this quantitative analysis with more
qualitative analysis. We hope such work will result in further insights into the nature
of problem of cloning in WAs. We also plan to address design-level similarities, so-
called structural clones. Structural clones usually represent larger parts of programs
than the ‘simple’ clones detected by current clone detectors like CCFinder; therefore
their treatment could be even more beneficial.

All the WAs included in this study are one-off products. Going further, a
promising area we hope to work on is cloning in WA product lines. In the absence of
effective reuse mechanisms, whole WAs could be cloned to create members of the
product line, resulting in much worse levels of cloning than reported here. Server
side scripting, current technology of choice for adding run time variability to WAs,
may fall well short of the construction time variability a product line situation
demands. We plan to explore this area to find synergies between run time and
construction time technologies in solving the cloning problem of WA domain in
general, and WA product lines in particular.

6 Acknowledgements

Authors thank following persons for their contributions during the study: Andrea De
Lucia and Giuseppe Scanniello (Università di Salerno, Italy), Katsuro Inoue, Shinji
Kusumoto, and Higo Yoshiki (Osaka Uni. Japan), Toshihiro Kamiya (PRESTO,
Japan), Sidath Dissanayake (SriLogic Pvt Ltd, Sri Lanka), Ulf Pettersson (SES
Systems Pte Ltd., Singapore), Yeo Ann Kian, Lai Zit Seng, and Chan Chee Heng
(National University of Singapore).

References

1. Baxter, I., Yahin, A., Moura, L., and Anna, M. S., “Clone detection using abstract
syntax trees,” Proc. Intl. Conference on Software Maintenance (ICSM ’98), pp.
368-377.

2. Burd, E., and Bailey, J., “Evaluating Clone Detection Tools for Use during
Preventative Maintenance,” Second IEEE Intl. Workshop on Source Code Analysis
and Manipulation (SCAM'02) pp. 36-43.

Accepted for 5th Intl. Conference on Web Engineering (ICWE’05)

 12

3. De Lucia, A., Scanniello, G., and Tortora, G., "Identifying Clones in Dynamic
Web Sites Using Similarity Thresholds," Proc. Intl. Conf. on Enterprise
Information Systems (ICEIS'04), pp.391-396.

4. Di Lucca, G.A., Di Penta, M., Fasolino, A.R., “An approach to identify duplicated
web pages,” Proc. 26th Annual Intl. Computer Software and Applications
Conference (COMPSAC 2002), pp. 481 – 486.

5. Di Lucca, G. A., Di Penta, M., Fasilio, A. R., and Granato, P., “Clone analysis in
the web era: An approach to identify cloned web pages,” Seventh IEEE Workshop
on Empirical Studies of Software Maintenance (WESS 2001), pp. 107–113.

6. Lanubile, F., Mallardo, T., “Finding function clones in Web applications,” Proc.
Seventh European Conference on Software Maintenance and Reengineering,
(CSMR’ 2003). pp.379 – 386.

7. Marcus, A., and Maletic, J. I., “Identification of High-Level Concept Clones in
Source Code,” Proc. Automated Software Engineering, 2001, pp. 107-114.

8. Jarzabek, S. and Shubiao, L., "Eliminating Redundancies with a “Composition
with Adaptation” Meta-programming Technique," Proc. European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC-FSE'03), pp. 237-246.

9. Kamiya, T., Kusumoto, S, and Inoue, K., “CCFinder: A multi-linguistic token-
based code clone detection system for large scale source code,” IEEE Trans.
Software Engineering, vol. 28 no. 7, July 2002, pp. 654 – 670.

10. Kapser, C., and Godfrey, M. W., “Toward a taxonomy of clones in source code: A
case study,” In Evolution of Large Scale Industrial Software Architectures, 2003.

11. Ricca, F., Tonella, P., “Using clustering to support the migration from static to
dynamic web pages,” Proc. 11th IEEE International Workshop on Program
Comprehension, (IWPC’ 2003), pp. 207 – 216.

12. Synytskyy, N. Cordy, J. R., Dean, T., “Resolution of static clones in dynamic Web
pages,” Proc. Fifth IEEE Intl. Workshop on Web Site Evolution, (IWSE’2003), pp.
49 – 56.

13. Ueda, Y., Kamiya, T., Kusumoto, S., and Inoue, K., “Gemini: Maintenance
Support Environment Based on Code Clone Analysis,” Proc. Eighth IEEE
Symposium on Software Metrics, pp. 67-76, 2002.

