

Beyond Templates: a Study of Clones in the STL and
Some General Implications

Hamid Abdul Basit
Department of Computer Science

School of Computing
National University of Singapore

+65 6874 2834

hamid@nus.edu.sg

Damith C. Rajapakse
Department of Computer Science

School of Computing
National University of Singapore

+65 6874 2834

damith@nus.edu.sg

Stan Jarzabek
Department of Computer Science

School of Computing
National University of Singapore

+65 6874 2863

stan@comp.nus.edu.sg

ABSTRACT
Templates (or generics) help us write compact, generic code,
which aids both reuse and maintenance. The STL is a powerful
example of how templates help achieve these goals. Still, our
study of the STL revealed substantial, and in our opinion,
counter-productive repetitions (so-called clones) across groups of
similar class or function templates. Clones occurred, as variations
across these similar program structures were irregular and could
not be unified by suitable template parameters in a natural way.
We encountered similar problems in other class libraries as well
as in application programs, written in a range of programming
languages. In the paper, we present quantitative and qualitative
results from our study. We argue that the difficulties we
encountered affect programs in general. We present a solution
that can treat such template-unfriendly cases of redundancies at
the meta-level, complementing and extending the power of
language features, such as templates, in areas of generic
programming.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Software libraries; D.2.10 [Software Engineering]: Design –
Representations; D.2.13 [Software Engineering]: Reusable
Software - Reusable libraries, Domain engineering

General Terms
Design, Experimentation, Languages.

Keywords
Software Maintenance, Clones, Meta-programming

1. INTRODUCTION AND MOTIVATION
Code clones are identical or near identical fragments of source
code. The main problem with clones is their tendency to create
inconsistencies in updating, which hinders maintenance and
contributes towards ‘software ageing’ [26]. Code clones often hint
at the existence of design-level similarity patterns in a program
(or across programs). Such large granularity similarity patterns –
we call them “structural clones” - signify reuse opportunities that,
if properly exploited, could lead to simpler, easier to maintain,
and more reusable program solutions [19]. The reasons why
clones appear in source code have been analyzed [6][14][20] and
clone detection tools have been proposed [1][6][14][21]. Methods
for clone resolution include refactoring [1][2][3][15], macros [6]
and meta-level techniques [19].

In class libraries, clones often stem from the well-known “feature
combinatorics” problem [5][7][19]. A proper parameterization
mechanism can combat this emergence of clones, increasing
software reuse and easing software maintenance. At the language
level, generics (in Ada, Eiffel, and recently proposed additions to
Java [8] and C# [23]) and templates (in C++) are the main
parameterization techniques.

In our previous case study [11], we experimented with the
proposed generics in Java. We tried to unify classes in the Java
Buffer Library that differed in the type of a buffer element. We
observed that type variation also triggered many other non-type
parametric differences among similar classes, hindering
application of generics. As the result, despite striking similarities
across library classes, only a small part of the library could be
transformed into generic classes.

Careful examination revealed that most of the issues that hindered
a complete generic solution for the library were specific to Java
generics. However, some other issues were of more fundamental
nature. We thought further work was needed to draw the fine line
between the two.

The Standard Template Library (STL) [18] provides a perfect
example to strengthen the observations made in the Buffer
Library case study. Firstly, parameterization mechanism of C++
templates is more powerful than that of Java generics. Due to
light integration of templates with the C++ language core,
template parameters are less restrictive than parameters of Java
generics. Unlike Java generics, C++ templates also allow
constants and primitive types to be passed as parameters.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

Secondly, the STL not only uses the most advanced template
features and design solutions (e.g., iterators), but it is also widely
accepted in the research and industrial communities as a prime
example of the generic programming methodology.

The STL needs genericity for simple and pragmatic reasons:
There are plenty of algorithms that need to work with many
different data structures. Without generic containers and
algorithms, the STL’s size and complexity would be enormous.
Such simple-minded solution would unwisely ignore similarity
among data structures, and also among algorithms applied to
different data structures, which offers endless reuse opportunities.
Redundant code sparking from unexploited similarities would
contribute much to the STL’s size and complexity, hindering its
evolution. The object of the STL was to avoid these
complications, without compromising efficiency [18].

Still, we found much cloning in the STL. Our study confirmed
that these clones varied in certain ways that could not be easily
unified by template parameters. To demonstrate that such
unification was feasible and beneficial, we built a clone-free
representation with a meta-level parameterization supported by
XVCL1. With meta-level unification of clones, we can avoid
template-unfriendly clones, while still retaining the simple design
and the efficiency of the source code, as is the hallmark of the
STL. In the paper, we discuss trade-offs among template-based
and meta-level parameterization mechanisms.

The paper is organized as follows: Section 2 describes the parts of
the STL relevant to the experiment. Section 3 gives an overview
of experiment methodology. Section 4 discusses interesting
examples of cloning in the STL. Section 5 shows a meta-level
parameterization solution to STL clones, and in Section 6 we
discuss the results. Related work and conclusions end the paper.

2. THE STRUCTURE OF THE STL
The Standard Template Library (STL) is a general-purpose library
of algorithms and data-structures. It consists of containers,
algorithms, iterators, function objects and adaptors. Algorithms
and data structures commonly used in computer science are
provided in the STL. All the components of the library are heavily
parameterized to make them as generic as possible. A major part
of the STL is also incorporated in the C++ Standard Library. A
full description of the STL is beyond the scope of this paper and
can be found in [18]. We provide enough description here to
facilitate the understanding of the experiment that is described
next.

Generic containers form the root of the STL. These are either
sequence containers or associative containers. In sequence
containers, all members are arranged in some order. In associative
containers, the elements are accessed by some key and are not
necessarily arranged in any order. All the STL containers are
parameterized by type so that a single implementation of the
container template can be used for all types of contained
elements.

1 XVCL: XML-based Variant Configuration Language, is a public
domain meta-language, method and tool for enhanced reusability
and maintainability, available at: fxvcl.sourceforge.net

The second major component in the STL is the algorithms that
work on the generic containers. Algorithms in the STL are
decoupled from the containers, and are implemented as global
functions rather than member functions. Further generalization of
algorithms is achieved by implementing them to work on a range
of elements rather than knowing the container that holds those
elements.

Iterators are used in the STL to achieve the decoupling of
algorithms from containers. Iterators are generalization of pointers
in C++. This ensures that all algorithms that take in an iterator as
a parameter also work with normal pointers. Iterators provide an
abstraction of the containers free of their storage details. For
example, the operator ++ of an iterator for a linear container will
simply increment a pointer, while the same operator will perform
a tree walk on a tree container.

3. EXPERIMENT OVERVIEW
We analyzed the STL code from the SGI website [18]. Our
analysis went through two stages, namely (1) automatic detection
of similar code fragments such as class methods or parts of them
(so-called simple clones), and (2) manual domain analysis with
the objective of discovering design-level similarities. Group of
similar associative container templates, as discussed in section
4.1, is an example of this design-level similarity found in the
STL.

For clone detection we used CCFinder [21]. CCFinder can find
simple clones – code fragments that differ in parametric ways.
Since container classes form the backbone of the STL, they were
the first to be analyzed for clone detection. CCFinder revealed a
lot of clones when the minimum clone size was set at 30 tokens.
When it was set at 50 tokens, the smaller clones were filtered out.
Examination of clones revealed that cloning in container classes
was not an ad-hoc phenomenon. We found extensive cloning in
the associative containers and in the container adaptors - stack
and queue.

We did not find significant cloning in the algorithms (in file
‘stl_algo.h’). Some clones were observed in the set functions, e.g.,
set union, set intersection, set difference and set symmetric
difference, but they were restricted to the checking of pre-
conditions rather than the actual implementation of the algorithm.
Iterators were also relatively clone-free, but the supporting files
‘type_traits.h’ and ‘valarray’ exhibited excessive cloning.

Having identified clones, we studied the nature of variations
among them, and tried to understand the reasons why cloning
occurred. Heavily cloned areas led us to identifying groups of
templates that exposed enough similarity to become candidates
for generic design solutions.

We also analyzed the impact of both simple and structural clones
on understanding and evolution of the STL.

Finally, we built a clone-free representation for the STL templates
under study. For this, we applied a meta-level parameterization
technique of XVCL (section 5).

4. ANALYSIS OF CLONES IN THE STL
In this section, we give examples of clones we found, and
possible causes for their presence in the STL. Then, we comment
on the problems such clones may cause.

4.1 Cloning in Containers
CCFinder detected a substantial amount of cloning in the
container classes as shown in Table 1.

Table 1 Summary of cloning in the STL

No of Clone Pairs
File Group No of

Files Clone size >=
30 Tokens

Clone size >=
50 Tokens

Associative
Containers

6 616 94

All Containers 21 1051 171
All Analyzed
Files

482 1273 204

Table 1 shows that of the total number of clone pairs detected by
CCFinder, majority are present in the container classes. Given
next are some interesting simple clones that were detected in the
containers.

Differences in operator symbols were a common variation. Figure
1 shows a generic form of such clones. @op marks the two
variation points of this set of clones.

Figure 1. A clone that varies by operators

Figure 2 shows two clone examples where @op is ’==’ and ‘<’
respectively. Clones of this type are difficult to unify using C++
templates.

Figure 2. Two clone instances that differ by operator

2 Note that a total of 43 files were excluded from the analysis as
they were merely present for backward compatibility and consist
of a few “include” statements only.

Some variations were caused by keywords. Figure 3 provides an
example of such a variation between iterators for Map and Set.

Figure 3. Keyword variation example

Other types of variations included the following cases (we omit
specific examples to save space):

• Extra typedefs in cloned fragments

• Extra functions in cloned classes

• Fine grained algorithmic variations in cloned functions

• Extra parameters in cloned template definitions or template
instantiations

• Different class and function names in cloned classes and
functions

• Type variations in cloned typedefs

We selected associative containers for further detailed manual
analysis because of its high level of cloning. An associative
container is a variable-sized container that supports efficient
retrieval of its elements based on keys. Feature diagram of Figure
4 depicts features of associative containers in the STL.
‘Ordering’, ‘Key Type’ and ‘Uniqueness’ are the feature
dimensions. Relevant features are shown below the respective
feature dimension boxes. In this diagram, we omit feature
dimensions already successfully parameterized in the STL (e.g.,
‘Element type’).

Figure 4. Feature diagram for associative containers

There are several variations of the associative containers in the
STL. The elements of a ‘hashed’ associative container are not
guaranteed to be in any meaningful order. ‘Sorted’ associative
containers use an ordering relation on their keys. ‘Key Type’
dimension describes the nature of the keys used. In a ‘Simple’
associative container, elements are their own keys. A ‘Pair’

iterator begin() const {
return _M_t.begin();
}
iterator begin(){
return _M_t.begin();
}

template <class _Key, class _Compare, class _Alloc>
inline bool operator== (
 const set<_Key,_Compare,_Alloc>& __x,
 const set<_Key,_Compare,_Alloc>& __y) {
 return __x._M_t ==__y._M_t;
}
template <class _Key, class _Compare, class _Alloc>
inline bool operator< (
 const set<_Key,_Compare,_Alloc>& __x,
 const set<_Key,_Compare,_Alloc>& __y) {
 return __x._M_t <__y._M_t;
}

template <class _Key, class _Compare, class _Alloc>
inline bool operator@op (
 const set<_Key,_Compare,_Alloc>& __x,
 const set<_Key,_Compare,_Alloc>& __y) {
 return __x._M_t @op__y._M_t;
}

associative container associates a key with some other object. In a
‘Unique’ associative container each key in the container is
unique, which need not be the case in a ‘Multiple’ associative
container.

Any legal combination of these features yields a unique class
template (Table 2). For example, the container ‘set’ represents an
associative container where Storage=sorted, Uniqueness=unique,
and Key type=simple. There is much similarity across associative
containers independently of the specific features they implement
which leads to clones.

Table 2. Feature combinations of associative containers

Feature dimensions
Class template

Storage Uniqueness Key type

Set sorted unique simple

Map sorted unique pair

Multimap sorted multiple pair

Multiset sorted multiple simple

Hash set hashed unique simple

Hash multiset hashed multiple simple

Hash map hashed unique pair

Hash Multimap hashed multiple pair

Our analysis showed that all four ‘sorted’ associative containers
and all four ‘hashed’ associative containers could be unified into
two generic containers, reducing the size of related code by 57%,
from 827 LOC to 358 LOC 3.

4.2 Other Examples of Cloning
Container adaptors also had a high level of cloning. A container
adaptor is implemented on top of some underlying container type
to provide a restricted subset of container functionality. Three
classes – stack, queue and priority queue – are considered
container adaptors. They vary along the feature dimension
‘Retrieval method’. Stack uses last-in-first-out (LIFO) strategy,
queue uses first-in-first-out (FIFO) strategy, and priority queue
returns the element with the highest priority. We found that 37%
(LOC: 194→123) of the related code could be eliminated through
clone unification. Given next are some variations we found
between stack and queue:

• Retrieval functions in stack and queue are called top() and
front() respectively, to reflect the different retrieval
methods, with minor implementation difference between the
two

• The difference in retrieval method causes small algorithmic
variations in some functions

• Certain overloaded operator definitions appear with inline
keyword in queue, but without it in stack. This could

3 All non-trivial text lines in the code segment under
consideration are counted towards LOC.

probably be an oversight by the programmers resulting from
inconsistent updating of the cloned fragments

• Queue has a few more functions and macro calls than stack

Figure 5. Variants of set algorithms

In algorithms, we found that set union, intersection, difference,
and symmetric difference (along with their overloaded versions)
form a set of eight clones that could be unified into one. Generic
form of this clone is shown in Figure 5. @opType represents the
varying method name. Break points/regions show other variation
points where variation may occur in some instances, but not in all.
Unifying these eight segments shrinks the related code by 52%
(LOC: 196→95).

Among the iterators (in file ‘stl_iterator.h’), we found code
segments which were exact clones, like the two copies of the code
given in Figure 6.

Figure 6. Exact clones found among iterators

_Self& operator++() {
 --current;
 return *this;
 }
 _Self operator++(int) {
 _Self __tmp = *this;
 --current;
 return __tmp;
 }
 _Self& operator--() {
 ++current;
 return *this;
 }
 _Self operator--(int) {
 _Self __tmp = *this;
 ++current;
 return __tmp;
 }

template <class _InputIter1, class _InputIter2, class
_OutputIter<break moreParam1>>
_OutputIter @opType(_InputIter1 __first1, _InputIter1
 __last1, _InputIter2 __first2, _InputIter2 __last2,
 _OutputIter __result<break moreParam2>) {
__STL_REQUIRES(_InputIter1, _InputIterator);
__STL_REQUIRES(_InputIter2, _InputIterator);
__STL_REQUIRES(_OutputIter, _OutputIterator);
__STL_REQUIRES_SAME_TYPE(
 typename iterator_traits<_InputIter1>::value_type,
 typename iterator_traits<_InputIter2>::value_type);
 <break variantMacro>
 __STL_REQUIRES(typename
iterator_traits<_InputIter1>::value_type,
 _LessThanComparable);
 </break>
 <break algorithm>
}

Figure 7. access level variation example

In iterators, we also found cloned classes having different access
modifiers for the same class members, a possible case of
inconsistent updating. In the clone given in Figure 7, @access
was ‘private’ in one instance while it was ‘protected’ in the other.

Intense cloning was also present in the ‘type_traits.h’ header file
that provides a framework for allowing compile time dispatch
based on type attributes. The fragment shown in Figure 8 was
cloned a remarkable 22 times within the same file, unification of
which brings an 83% (LOC: 132→23) reduction to the related
code. The only variation point @type is a type name (int, float,
long, bool, char, short … 22 types in all). This is interesting
because templates are supposed to unify type variations.
However, these clones are template specializations for 22 types.
Therefore, these clones cannot be unified by usual template
techniques.

Figure 8. A clone found among type traits

The header file ‘valarray’ declares types and functions for
operating on arrays of numerical values. This file contained eight
different code fragments that had been cloned between 10 to 30
times each (137 times in total). The related code is reduced by
83% (LOC 815→144) when we unify these clones.

Figure 9. Clones due to swapping

One interesting type of variation we noticed is due to swapping of
code fragments in order to make overloaded operators symmetric.
Figure 9 gives an example. Note how the parameter pair (const
valarray<_Tp>&, const _Tp& __c) and operand pair (__x[__i],
__c) are swapped from one clone to the other.

Another example of the cloning is the copyright notices that
appear in all files (truncated generic form is shown in Figure 10).

Figure 10. Cloned copyright notice

Some files carried two instances of this clone (one where
@owner=‘Silicon Graphics Computer Systems, Inc.’ and another
where @owner=‘Hewlett-Packard Company’. Though clones in
comments like this may not be regarded as critical as clones in
code, comments still have to be maintained.

4.3 Effects of Clones in the STL
There are many advantages of explicating similarities and
differences in programs, and problems caused by failing to do so.
The main problem with clones is their tendency to create
inconsistencies in updating during maintenance, as shown by a
few examples discussed above. In the STL, we found clones that

__STL_TEMPLATE_NULL struct __type_traits<@type> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
typedef __true_type has_trivial_destructor;
typedef __true_type is_POD_type;
};

/* *
* Copyright (c) @years
 * @owner
 * Permission to use, copy, ...
 * in supporting documentation. @owner makes no
 * representations about the suitability of this software
 * for any purpose. It is provided "as is" without
 * express or implied warranty.
*/

template <class _Tp>
inline valarray<_Tp> operator+(
 const valarray<_Tp>& __x, const _Tp& __c) {
 typedef typename valarray<_Tp>::_NoInit _NoInit;
 valarray<_Tp> __tmp(__x.size(), _NoInit());
 for (size_t __i = 0; __i < __x.size(); ++__i)
 __tmp[__i] = __x[__i] + __c;
 return __tmp;
}
template <class _Tp>
inline valarray<_Tp> operator+(
 const _Tp& __c, const valarray<_Tp>& __x) {
 typedef typename valarray<_Tp>::_NoInit _NoInit;
 valarray<_Tp> __tmp(__x.size(), _NoInit());
 for (size_t __i = 0; __i < __x.size(); ++__i)
 __tmp[__i] = __c + __x[__i];
 return __tmp;
}

template <class _Tp <break moreParams> >
class ostream_iterator {
public:
 <break moreTypedefs>
 typedef output_iterator_tag iterator_category;
 typedef void value_type;
 typedef void difference_type;
 typedef void pointer;
 typedef void reference;
 ostream_iterator(@streamType& __s)
 : _M_stream(&__s), _M_string(0) {}
 ostream_iterator(@streamType& __s,

 const @stringType* __c)
 : _M_stream(&__s), _M_string(__c) {}
 ostream_iterator<_Tp>& operator=(const _Tp& __value) {
 *_M_stream << __value;
 if (_M_string) *_M_stream << _M_string;
 return *this;
 }
 ostream_iterator<_Tp>& operator*() { return *this; }
 ostream_iterator<_Tp>& operator++() { return *this; }
 ostream_iterator<_Tp>& operator++(int) { return *this; }
@access:
 @streamType* _M_stream;
 const @stringType* _M_string;
};

were repeated up to 30 times. This means, there is a need to
modify up to 30 locations when one of the clones is modified. To
change a clone, the maintainer must find all its instances, analyze
them in different contexts to see which clones need to be changed
and how. All these steps are error prone and tedious when done
manually.

By revealing design-level similarities (i.e., structural clones), we
reduce the number of distinct conceptual elements a programmer
must deal with. Not only do we reduce an overall software
complexity, but also enhance conceptual integrity of a program
which Brooks calls “the most important consideration in system
design” [9].

5. META-LEVEL PARAMETERIZATION
In this section, we present a meta-level parameterization that can
unify all the similarity patterns we found in the STL. Our solution
uses XVCL [28], a static meta-programming language, a modern
incarnation of Bassett’s frames [4]. We introduce XVCL concepts
by example. Other projects with XVCL are described in
[19][29][30] and the XVCL Web site [28] contains XVCL
specifications, processor and case studies.

Meta-components – that is, generic program structures we build
with XVCL – can be parameterized in fairly unrestrictive ways.
Parameters range from simple values (such as strings), to types
and to other meta-components that can represent program
elements of arbitrary kind, structure and complexity. XVCL is
language-independent in that it can be applied on top of any
programming language. As a result, we can use built-in language
features such as templates to unify classes that differ in type
parameters, and then use XVCL to unify classes that differ in
more complex, template-unfriendly ways. Figure 11 illustrates
how XVCL is used.

Figure 11. Generic solutions in XVCL

Any similar program structures – methods, classe, templates or
architectural patterns - can be unified by generic solutions built as
meta-component structures. XVCL processor instantiates such
generic solutions to generate specific variant instances of program
structures Parameter values and the generation logic are specified
in a specification file (SPC for short). By varying the SPC we can
use the same generic meta-components to generate different
concrete instances of the code. Figure 11 shows how the meta-
component ‘S_A_Container’, together with the appropriate SPC,
is used to generate the multiple variants of sorted associative
containers given in Table 2.

All the generic forms of clones we presented so far (e.g., Figure
1) are in fact XVCL meta-components after clone unification.
Next, we illustrate how these meta-components are used in the
code generation process.

Figure 12. A sample meta-component

A meta-component of Figure 12 has its variation points marked
by variables (e.g., @className) or break points (e.g.,
extraParam). The SPC given in Figure 13 first assigns values to
variables using the <set> command. Variable ‘className’ is a
single valued variable while the other two are multi-valued.
Multi-valued variables can be used as control variables of the
<while> loops. Then, it adapts the meta-component in a <while>
loop to generate two variants of the clone. After changing the
value of ‘className’ variable, it uses a second <while> loop to
adapt the same meta-component, while inserting an extra
parameter to the break. This generates another two variants of the
clone.

Figure 13. Sample SPC

The resultant code generated is given in Figure 14. In this
example, we have reduced the number of generated clones to
four. Thus, it appears as if the difference in code size is not
significant. But in the real XVCL code for the STL, it is used to
generate 24 clones, shrinking the related code by 81% (LOC:
96→18).

XVCL solves the inconsistent updating problem mentioned in
section 4.3 as follows. First, the maintainer does not need to
search for clones, as only one copy of the clone exists at the meta-

SPC : stl_associative_containers
…
<set className=map />
<set operator= ‘==’, ‘!=’ />
<set expression= ‘__x._M_t == __y._M_t’,
 ‘!(__x == __y)’ />
<while operator,expression>
 <adapt opDefinition>
</while>
…
<set className=multimap />
<while operator,expression>
 <adapt opDefinition>
 <insert extraParam>class _Tp, </insert>
 <adapt />
</while>
…

Meta-component : opDefintion
template <class _Key,
 <break extraParam> class _Compare,
 class _Alloc>
inline bool operator@operator (
 const @className<_Key,_Compare,_Alloc>& __x,
 const @className<_Key, _Compare,_Alloc>& __y) {
return @expression; }

level. Second, the maintainer does not have to investigate
variations between each clone – XVCL explicates these variations
at the meta-level. Third, the maintainer does not have to update
multiple copies of clones – updates at the meta-level are
propagated to all the clones in program level, in a consistent
manner.

6. DISCUSSION OF RESULTS
Cloning is a pervasive problem not confined to the STL or C++
[21]. Our other experiments have uncovered extensive cloning in
different applications, implemented in different languages: in a
Java library [19] and in a C# CAD application [11]. We found
that in many cases, intensive cloning of code fragments signified
design-level similarities. An important finding from these studies
was that clones could not be successfully treated using
conventional programming techniques alone.

Figure 14. Sample generated code

We start the discussion by analyzing the trade-offs between
various forms of parameterization for clone unification.

At the language level, we have two flavors of programming
language extensions that help us define generic solutions. Firstly,
there are techniques tightly integrated with the underlying
language, e.g., generics (Ada, Java) and higher order functions
[27] (also “function pointer” parameters in C++, used in STL).
Secondly, there are language extensions loosely integrated with
the underlying language, e.g., C++ templates.

Meta-level techniques [13] work on top of the programs. There is
no integration with language rules.

As we move from tightly integrated language-level techniques to
the meta-level techniques, we increase the expressive power of
the parameterization mechanism, and decrease type-safety of the
solutions. The examples given in this paper illustrate this point. A
positive aspect of XVCL is that it can be applied on top of other
languages and design techniques, complementing and enhancing
them in areas where conventional techniques fail to provide a
satisfactory solution. For example, in this experiment, we applied
XVCL on top of the template solution, to unify only those clones
that could not be unified with templates.

Removing clones at the language level requires changes to the
code. In real systems, clones are often tolerated in spite of their
negative effect on maintenance, to avoid the risk of breaking a
running system while trying to remove them [12]. When clones
are specifically created for performance considerations, it is not
advisable to remove them altogether. Similarly, at times the clone
resolution may be possible through refactoring [15], but the result
may conflict with other design goals that cannot be compromised
[19]. Since XVCL works at the meta-level without altering the
program, there is no risk involved in terms of breaking a running
system, loss of performance or compromising other design goals.
For example, XVCL can be applied to unify clones in the STL
with no risk of breaking it or any other system that uses the STL.

It is important to notice that a clone-free XVCL representation of
the STL is visible only to the maintainers of the STL.
Programmers – i.e., users of the STL – need not be aware of
XVCL, as the code generated by XVCL is exactly the same as the
original STL.

Having to deal with an additional meta-level adds a certain
amount of complexity to the problem. However, the feedback
from our industry partner indicates that, in practice, the benefit of
being able to deal with complexity at two levels outweighs the
cost of the added complexity. We are currently collecting
empirical evidence to confirm this observation. The syntax of
XVCL is easy to learn and in our lab, we are working on ‘XVCL
Workbench’4 that incorporates a number of tools that help in
editing, visualizing, debugging and static analysis of XVCL code.
Properly designed meta-structures and tools help mitigate this
problem of added complexity at the meta-level.

As a final remark, although XVCL pushes the envelope further on
unifying clones, one should apply it only when the benefit is
worth the effort. For example, we decided to leave some clones
intact because similarity level was not worth the effort of
unification. On the other hand, we found that unifying design-
level similarities with XVCL is almost always beneficial, as it
considerably reduces perceived program complexity. So we can
always weigh pros and cons of applying XVCL and decide
accordingly.

7. RELATED WORK
Other options for clone resolution are refactoring and macros. We
discuss the strengths and limitations of these techniques in the
context of the problem addressed in this paper.

4 to be released soon at [28]

template <class _Key,
 class _Compare,
 class _Alloc>
inline bool operator==(
 const map<_Key,_Compare,_Alloc>& __x,
 const map<_Key,_Compare,_Alloc>& __y)
{ return __x._M_t == __y._M_t; }
template <class _Key,
 class _Compare,
 class _Alloc>
inline bool operator!=(
 const map<_Key,_Compare,_Alloc>& __x,
 const map<_Key,_Compare,_Alloc>& __y)
{ return !(__x == __y); }
template <class _Key,
 class _Tp, class _Compare,
 class _Alloc>
inline bool operator==(
 const multimap<_Key,_Compare,_Alloc>& __x,
 const multimap<_Key,_Compare,_Alloc>& __y)
{ return __x._M_t == __y._M_t; }
template <class _Key,
 class _Tp, class _Compare,
 class _Alloc>
inline bool operator!=(
 const multimap<_Key,_Compare,_Alloc>& __x,
 const multimap<_Key,_Compare,_Alloc>& __y)
{ return !(__x == __y); }

Refactoring is the state-of-the-art technique to improve the
internal structure of systems while preserving their external
behavior [15][25]. Refactorings that could be applied for the
removal of duplicated code are extract method (the duplicated
code is extracted into a separate method), remove method (the
duplicated methods are merged), pull up method (the duplicated
methods are moved up the class hierarchy and inherited by all
subclasses), or any combination of the above. The good thing
about refactoring is that we stay in the same paradigm but it is not
always feasible to resolve all the clones by this technique.

Refactoring based on design techniques (design patterns,
inheritance with dynamic binding) is a clone unification option
that is fairly independent of the underlying programming
language but is closely tied with the design of the program. To
eliminate the redundant code in a Java software system,
Balazinska et al. [2][3] applied the refactoring based on ‘strategy’
and ‘template’ design patterns, by factoring out the commonalities
of methods and parameterizing the differences according to the
design patterns. However, the scope of the applicability of this
technique is restricted only to specific types of clones.

In the context of the STL, it would be interesting to see what
refactoring techniques could be applied and how much could be
achieved. Although the STL is written in an Object-Oriented
language, yet it has a flat class structure with no inheritance.
There are many stand-alone template functions implementing
algorithms separately from the data structures, which itself is not
in tune with Object-Oriented concepts. Still, such structure of
classes, along with powerful concept of iterators, paved the way
for genericity of the STL solution.

Refactoring aims at totally removing clones from the source code.
However, this objective is not always achievable nor is it
desirable as discussed in Section 6.

Baxter et al. proposed to replace clones with macros [6]. Most of
the macro systems are merely implementation level mechanisms
for handling variant features (or changes, in general). Failing to
address change at analysis and design levels, macros never
evolved towards full-fledged “design for change” methods
[4][22]. Programs instrumented with macros tend to be difficult to
understand and test. Unlike macros, XVCL is a full-fledged
method for generic design, in which variant features are directly
addressed at both program design and implementation levels.
Over time, an XVCL meta-component structure emerges as a
well-organized architecture that explicates the impact of variant
features on components (or classes) and automates production of
custom components. XVCL has unique features to support reuse
and evolution such as propagation of meta-variables across meta-
components, meta-variable scoping rules that allow us to adapt
generic meta-components at inclusion points, meta-expressions to
formulate generic names, code selection or insertion at designated
breakpoints and a while loop construct to implement generators.

Higher order functions from the functional programming
paradigm offer an attractive reuse option [27]. Skeleton objects
are introduced by [10] as an object-oriented alternative for the
higher order functions and mechanism to build adaptable
components using these skeleton objects are discussed. However,
the approach may be difficult to implement in languages that do
not support function pointers. Even in C++, passing long lists of

function pointers as arguments to class constructors severely
degrades the readability of the code.

A comparison of generics in six programming languages is
presented in [17]. A considerable part of the Boost Graph Library
has been implemented in all six languages using their respective
generic capabilities. The authors identified several language
features that are useful to enhance the generics capabilities
beyond implementing simple type-safe polymorphic containers.
These features are essential to implement reusable libraries of
software components, which is fast emerging as a promising area
where the generics can be effectively utilized. However, the
presence of all these features does not solve the problems
discussed in this paper; rather it is only of help in avoiding
“awkward designs, poor maintainability, unnecessary run-time
checks, and painfully verbose code” [17].

C++ templates also offer the possibility of meta-programming
that is useful in several occasions, for example in generative
programming [13]. But this meta-programming technique is an
accidental discovery, not a planned language feature. Because of
its accidental nature, this powerful mechanism has several
drawbacks like complex and hard to understand syntax, lack of
debugging facilities, and limited compiler support [13].

8. CONCLUSIONS
Generic design has to do with maintenance and reuse, the two
central themes in software engineering research and practice. The
goal of generic design is to identify similarity patterns, at the
design and code levels, in order to avoid counter-productive
repetitions, so called clones. Parameterization is an important
paradigm for generic design. In this paper, we presented a study
of parameterization via templates in the STL. We found
substantial cloning in certain parts of the STL that could not be
treated with templates. However, we could create meta-level
generic structures unifying those clones with the meta-level
parameterization technique of XVCL. While some observations
and lessons learned from this experiment are specific to the STL,
others are of a more general nature. In particular, we believe that
many types of variations among similar program structures are
difficult to unify with language-level parameterization techniques
such as templates or generics. In the paper, we provided empirical
evidence and analytical arguments to support this claim. We also
showed how a meta-level parameterization mechanism can deal
with template-unfriendly variations, enhancing maintainability
and reusability of programs in areas where conventional
techniques do not yield a satisfactory solution. Finally, as none of
the solutions is without pitfalls, we evaluated pros and cons of
various parameterization mechanisms.

In our future work, we plan to extend our studies on the structural
clones emerging from analysis and design levels. Structural
clones usually represent large parts of programs; therefore their
treatment is most beneficial for programmers’ productivity. We
also plan to extend our comparative studies of various techniques
for clone treatment, to better understand their strengths,
weaknesses, and areas where the synergy exists among different
techniques. We believe productive technological solutions can be
built in that way.

9. ACKNOWLEDGEMENTS
This work was supported by NUS Research Grant R-252-000-
178-112. Authors wish to thank Toshihiro Kamiya (PRESTO,
Japan), Katsuro Inoue and Shinji Kusomoto (Osaka University,
Japan) for providing us with the tools CCFinder and Gemini (GUI
for CCFinder).

10. REFERENCES
[1] Baker, B. S., “On finding duplication and near-duplication in

large software systems,” Proc. 2nd Working Conference on
Reverse Engineering, 1995, pages 86-95.

[2] Balazinska, M., Merlo, E., Dagenais, M., Lagüe, B., and
Kontogiannis, K.A., “Partial redesign of Java software
systems based on clone analysis,” Proc. 6th IEEE Working
Conference on Reverse Eng., 1999, pp. 326-336.

[3] Balazinska, M., Merlo, E., Dagenais, Lagüe, B., and
Kontogiannis, K.A., “Advanced Clone-Analysis to Support
Object-Oriented System Refactoring,” Proc. Seventh
Working Conference on Reverse Engineering (WCRE '00)
pp. 98 – 107.

[4] Bassett, P., Framing software reuse - lessons from real
world, Yourdon Press, Prentice Hall, 1997.

[5] Batory, D., Singhai, V., Sirkin, M. and Thomas, J. “Scalable
software libraries,” ACM SIGSOFT’93: Symp. on the
Foundations of Software Engineering, Los Angeles, Dec.
1993, pp.191-199

[6] Baxter, I., Yahin, A., Moura, L., and Anna, M. S., “Clone
detection using abstract syntax trees,” Proc. Intl. Conference
on Software Maintenance (ICSM ’98), pp. 368-377.

[7] Biggerstaff, T. “The library scaling problem and the limits of
concrete component reuse,” 3rd Int’l. Conf. on Software
Reuse, ICSR’94, 1994, pp. 102-109

[8] Bracha G. et al. “JSR 14: Add Generic Types to the JavaTM
Programming Language,” Java Community Process,
http://www.jcp.org/en/jsr/detail?id=14 .

[9] Brooks, P.B The Mythical Man-Month, Addison Wesley,
1995

[10] Brown, T.J., Spence, I., Kilpatric, P., and Crookes, D.,
“Adaptable Components for Software Product Line
Engineering”, LNCS, vol 2379, Chastek, G. (Ed.), Springer-
Verlag Berlin Heidelberg, 2002, pp. 154-175.

[11] Case Studies on XVCL Website,
http://fxvcl.sourceforge.net/CaseStudy.htm .

[12] Cordy, J. R., "Comprehending Reality: Practical Challenges
to Software Maintenance Automation," Proc. 11th IEEE Intl.
Workshop on Program Comprehension, (IWPC 2003), pp.
196-206.

[13] Czarnecki, K. and Eisenecker, U., Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000.

[14] Ducasse, S, Rieger, M., and Demeyer, S., “A language
independent approach for detecting duplicated code,” Proc.
Intl. Conference on Software Maintenance (ICSM ’99), pp.
109-118.

[15] Ernst, M., Badros, G., and Notkin, D. “An Empirical
Analysis of C Preprocessor Use,” IEEE Transactions on
Software Engineering, Dec. 2002, pp. 1146-1170

[16] Fowler M. Refactoring - improving the design of existing
code, Addison-Wesley, 1999.

[17] Garcia, R. et al., “A Comparative Study of Language
Support for Generic Programming,” Proc. 18th ACM
SIGPLAN Conf. on Object-oriented Programming, Systems,
Languages, and Applications, 2003, pp. 115-134.

[18] Home page of SGI STL, http://www.sgi.com/tech/stl/ .
[19] Jarzabek, S. and Shubiao, L., "Eliminating Redundancies

with a “Composition with Adaptation” Meta-programming
Technique," Proc. ESEC-FSE'03, European Software
Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ACM Press, pp.
237-246.

[20] Johnson, J. H., “Substring Matching for Clone Detection and
Change Tracking,” Proc. Intl. Conference on Software
Maintenance (ICSM ‘94), pp. 120–126.

[21] Kamiya, T., Kusumoto, S, and Inoue, K., “CCFinder: A
multi-linguistic token-based code clone detection system for
large scale source code,” IEEE Trans. Software Engineering,
vol. 28 no. 7, July 2002, pp. 654 – 670.

[22] Karhinen, A., Ran, A. and Tallgren, T. “Configuring designs
for reuse,” Proc. International Conference on Software
Engineering, ICSE’97, Boston, MA., 1997, pp. 701-710.

[23] Kennedy, A. and Syme, D., “Design and implementation of
generics for the .Net Common Language Runtime,” Proc.
ACM SIGPLAN ’01 Conf. on Programming Languages
Design and Implementation (PLDI -01), New York, June
2001, pp 1-12.

[24] Musser, D. R. and Saini A., STL Tutorial and Reference
Guide, Addison-Wesley, Reading, MA, 1996.

[25] Opdyke, W., Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[26] Parnas, D., “Software aging,” Proc. 16th International
Conference on Software Engineering (ICSE 1994), pages
279 -287.

[27] Thompson, S., “Higher Order + Polymorphic = Reusable”,
unpublished manuscript available from the Computing
Laboratory, University of Kent.
http://www.cs.ukc.ac.uk/pubs/1997

[28] “XML-based Variant Configuration Language,” XVCL
Website, http://fxvcl.sourceforge.net

[29] Zhang, H. and Jarzabek, S. “An XVCL approach to handling
variants: A KWIC product line example,” Proc. 10th Asia-
Pacific Software Engineering Conference (APSEC’03),
IEEE CS Press., pp 116-125.

[30] Zhang, H. and Jarzabek, S., “An XVCL-based Approach to
Software Product Line Development”, Proc. 15th
International Conference on Software Engineering and
Knowledge Engineering (SEKE’03), San Francisco, USA, 1
- 3 July, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

