

Using Server Pages to Unify Clones in Web Applications: A Trade-off
Analysis

Damith C. Rajapakse and Stan Jarzabek
Department of Computer Science

School of Computing, National University of Singapore
{damith,stan}@comp.nus.edu.sg

Abstract

Server page technique is commonly used for

implementing web application user interfaces. Server
pages can represent many similar web pages in a
generic form. Yet our previous study revealed high
rates of repetitions in web applications, particularly in
the user interfaces. Code duplication, commonly
known as ‘cloning’, signals untapped opportunities to
achieve simpler, smaller, more generic, and more
maintainable web applications. Using PHP Server
page technique, we conducted a case study to explore
how far Server page technique can be pushed to
achieve clone-free web applications. Our study
suggests that clone unification using Server pages
affects system qualities (e.g., runtime performance) to
an extent that may not be acceptable in many project
situations. Our paper discusses the trade-offs we
observed when applying Server pages to unify clones
in web applications. We expect our findings to help in
developing and validating complementary techniques
that can unify clones without incurring such trade-offs.

1. Introduction

Repeated similar program structures (aka ‘clones’)

make the code base larger than necessary. They hinder
program comprehension by injecting implicit
dependencies among program parts. Tracing and
updating all the clones is a tedious and error-prone
process, often resulting in update anomalies. Unifying
clones with unique generic representations reduces the
code size, explicates the dependencies, and reduces the
chance of update anomalies. In industrial projects
[12][21] and lab studies [20], we observed that using
suitable generic design techniques we can unify many
clones, achieving high reuse rates and productivity

gains during development and maintenance. Yet clones
continue to plague today’s software. We analyzed 17
web applications (WAs) of different sizes, developed
using different technologies, in different application
domains [15]. We found a high incidence of clones,
particularly in the user interface (UI) area.

Server page (aka dynamic page generation)
techniques are commonly used for implementing WA
UIs. ASP, JSP, and PHP are typical examples of web
technologies that use some form of dynamic page
generation. In essence, a Server page contains a
combination of HTML and programming language
scripts, and the web server uses it to generate web
pages at runtime. A Server page can represent many
similar web pages in a generic form, providing an
alternative to cloning. But how far this capability can
be pushed to achieve clone-free WAs is an intriguing
question yet to be answered.

In this paper, we present the trade-offs we
encountered when we attempted to use Server page
technique to unify clones in a WA. Our analysis is
based on a case study involving alternative designs of
a WA called Project Collaboration Environment
(PCE). We built PCE based on requirements from one
of our industry projects [12]. We selected the Server
page technique of PHP to implement PCE. We
incrementally applied design patterns and PHP features
to unify clones in PCE, progressively replacing clones
with generic representations. We did three consecutive
implementations of PCE, where each implementation
was a refinement of the previous one. As we moved
from the first implementation to the third, we were
able to unify most of the clones that were significant
enough to justify the effort. This resulted in a
significant reduction of the code size (by 78%), and a
lesser chance of update anomalies (number of

modification points dropped from 251 to 8 for certain
changes).

Throughout the experiment, we analyzed how
unifying clones in PCE was affecting other
engineering qualities of the PCE. We observed that
clone unification caused many trade-offs. While some
of these tradeoffs were well known in traditional
software development, the majority of them were less
obvious, and applicable only in the context of WA
development. These trade-offs resulted from the
interplay between clone reduction, realities of WA
development (such as fuzzy requirements, dramatically
short development schedules, constant evolution, and
shortened revision cycles [4]), and desirable
engineering qualities of WAs (such as high
performance, high information content, and good
aesthetics). We believe that some of these trade-offs
would be unacceptable in many WA development
situations.

Detailed analysis and description of these trade-offs
in both qualitative and quantitative terms is the main
contribution of our paper. It follows from the study,
that we need complementary methods that would allow
us to avoid unnecessary clones without compromising
other important properties of WAs. We expect our
findings to help in the development and validation of
such methods.

The rest of the paper is organized as follows. In
Section 2 we give an overview of our experimental
method. Section 3 gives the details of PCE and the
three alternative implementations of PCE we did, with
a comparison of size and cloning level at the end. In
Section 4 we describe various trade-offs caused by
clone unification. After related work (Section 5),
Section 6 presents conclusions and future directions.

2. Experimental method

We selected PHP as our Server page technology.

PHP is a free, popular (20 million web domains used
PHP by the end 2006 [13]), and versatile technology
specifically geared for WA development. Although
PHP started out as a simple scripting language, today it
has evolved into an industrial strength WA technology,
used by complex WAs such as sourceforge.net.

The experiment involved a WA called Project
Collaboration Environment (PCE), created based on
requirements received from our industry partner. We
designed PCE based on CPG-Nuke
(www.cpgnuke.com), an open source web portal.
CPG-Nuke is an adaptation of PHP-Nuke
(http://phpnuke.org), a popular open source WA,
averaging ½ million downloads per year during the
2004-2006 period. As our focus was on the UI layer of

PCE, we kept the other layers (i.e., business logic and
database layers) simple.

We carried out three different implementations of
PCE (see Figure 1), each one functionally equivalent
to the other two. The first implementation was based
on a very simple design, without much effort to
minimize clones. We call this PCEsimple. In the second
implementation, named PCEpatterns, we tried to unify
clones by applying suitable design patterns to
PCEsimple. In PCEunified, we unified any remaining
clones that, in our judgment, were worth this effort.

In this experiment, we considered as ‘clones’ code
structures that displayed enough textual similarity. A
‘code structure’ could be as small as a HTML/PHP
code fragment, as large as a whole module, or anything
in between such as a collection of functions/files. We
considered clones as ‘worth unifying’ if they were of
considerable length (at least 20 tokens long) and if
their unification deflates the code involved by at least
of 25% (i.e., unified code is at least 25% smaller than
the size of total clone instances). We used ‘CCFinder’
clone detection tool [8] to detect clones.

PCEsimple PCEpatterns PCEunified
apply design
patterns

further unify
clones

PCE
requirements

First
implementation

Second
implementation

Third
implementation

Figure 1. The three PCE implementations

We categorized clones into intra-module clones
(clones occurring within the same module) and inter-
module clones (clones occurring across modules). In
PCEpatterns, we focused on intra-module clones, as they
are more localized and easier to tackle. In PCEunified we
widened our focus to cover inter-module clones as
well. Once clones were selected for unification, we
used a combination of following strategies to unify
them. We give concrete examples of each strategy in
Section 3.
• Applying design patterns – Some clones were

unified by applying a design pattern that aims to
reduce code duplication. We selected the suitable
design pattern by comparing the clone characteristics
against design patterns drawn from industry best
practices in J2EE [1], .NET [18], and from platform-
independent recommendations [7][5].

• Applying known refactoring techniques – Some
clones were unified by applying commonly known
refactorings, such as given in [6].

• Context-specific restructurings – When a clone did
not fit into a known design pattern or a refactoring,
we applied PHP features and context-specific
design/code restructuring to unify the clones.
Since our study was a controlled lab experiment, a

question arises as to what extent our findings would be

relevant to the industry practice. We tried to mitigate
this shortcoming in the following ways:
• We used functional requirements and the conceptual

model of a real WA built by our industry partner.
• We followed design best practices from the industry

(captured by design patterns) in PCE design.
• We used industry accepted architectures and

frameworks as the core of our PCE implementation.
• We maintained a tight feedback loop with our

industry partner throughout the experiment to
validate our findings.

• The three implementations were done by the first
author who is a trained software engineer having
prior industry experience in WA building.
In the end, the size and the cloning level of PCE

were also comparable to a similar WA built by our
industry partner [12].

3. Details of the experiment
3.1 Project Collaboration Environment (PCE)

PCE supports project record keeping, task

assignment to staff, task progress tracking, and a range
of other activities related to project planning and
execution. It has six modules corresponding to six
entity types in PCE domain, namely Staff, Project,
Product, Task, Notes, and File. PCE maintains
records of those entities and relationships among them.
For example, Staff module maintains records of staff
members, Product module tracks the status of project
deliverables, Staff and Project modules maintain data
about which staff members belong to which project
teams, and Task and Staff modules maintain data
about project tasks assigned to staff members. Figure 2
depicts main PCE entity types and relationships among
them. A screenshot from the Staff module given in
Figure 3 shows a listing of staff members.

Project

1

*

Product
**

Staff

**

** Leader

Worker

Related
project

Sub-
project

Related
product

File Note

Task

0..1

*

1

*

0..1

*

0..1

*

0..1*

0..1

*

*

*

Product
docs

Project
file

W
or

k
no

te

R
el

at
ed

pr

oj
ec

t

Follow-up
 doc

Action
item

Related
file

0..1 *

Urgent
matters

+create()
+edit()
+delete()
+...()

+Full Name
+Job Title
-CreateTime
-UpdateTime
-ReadCount
-...

Staff

1

* Deliverabl
e

Figure 2. Domain model of PCE
Figure 4 depicts similarities and variations between

PCE modules as a feature diagram [9]. A typical
module M in PCE has a name (e.g., ‘Staff’), and a

number of attributes (e.g., Staff module has attributes
Full Name, Job Title, … cf Figure 2). Some attributes
are common to all modules, while others – optional –
are module-specific. Each module supports actions
(create, edit, delete, …). Some actions are further
divided into sub-actions, some of which are optional.
A module may optionally have one of three types of
relationships with another module: a simple
association, an aggregation type association, or a
composition type association.

Figure 3. A screenshot from the Staff module

Functionality of a given PCE module is a
combination of features given in the feature diagram.
The high proportion of mandatory features implies that
modules are highly similar to each other, creating a
possibility of cloning. However, optional features and
alternative features inject some variations between the
modules. Our feature diagram only depicts high-level,
inter-module variations. There are also lower level
variations among modules. For example, create action
of the File module carries extra functionality to upload
a file. And at a finer granularity, there are intra-module
similarities. For example, copy action and edit action
are very similar, as both involve retrieving an existing
record, editing it, and storing it in the database
(overwrite in the case of edit, save as a new record in
the case of copy).

Figure 4. Feature diagram of a PCE module

Figure 5 shows the PCE architecture, which was
common to all three PCE implementations. The
Foundation part of PCE consists of Admin Modules

(used for administration of PCE) and Service Modules
(used to provide various infrastructure services like
database connectivity, logging, etc.). Foundation acts
as a platform on which we deploy various User
Modules. It provides a framework for implementing
modules, and administration facilities to manage those
modules. General User Modules provide common
facilities to users (e.g., polls, message boards,
preference management, etc.). For the Foundation and
General User Modules, we reused CPG-Nuke code as
is whenever possible, and with minimal changes when
necessary. The six PCE modules were deployed as
another set of User modules.

Staff Messages

Note

Project Surveys/Polls
Product

Search

Stories

Statistics

Topics
Forums

Preferences

Users
Service ModulesAdmin Modules

Archiving

Languages
Modules

Layout

Task
File

PCE Modules General User Modules

Posts
News Albums

Database access… …

Foundation

W
eb

 S
er

ve
r

User Modules

admin

…
user

Figure 5. High-level architecture of PCE

The reuse of CPG-Nuke reduced the PCE
implementation to just these six modules. We built
them in conformance with the Foundation
requirements, so that they too could use Foundation
services, and could be managed using the Foundation
(e.g., we used the Foundation services for
implementing a common look and feel). With the reuse
of CPG-Nuke we hoped not only to reduce the
implementation workload, but also to ensure that our
implementation was based on an industry-accepted
architecture.

3.2 PCEsimple: a first-cut solution

<<Server
page>>

createStaff

<<Server
page>>

editStaff

<<Server
page>>

deleteStaff

calls to Foundation

St
af

f M
od

ul
e

…
<<Server
page>>

createProj.

…

Pr
oj

. M
od

ul
e

Figure 6. Design of PCEsimple

We followed a so-called KISS principle (i.e., Keep
It Simple, Straight-forward) when implementing
PCEsimple. This initial version of PCE exemplifies a
first-cut solution that is likely to emerge when
developing a new WA under time pressure. The
priority was to ‘get PCE done’, with maintainability
concerns such as ‘clone avoidance’ taking a low

priority. Each action (or sub-action) of the module in
PCEsimple was implemented as a single independent
Server page, as shown in Figure 6. For example,
createStaff.php page implemented the create action for
Staff module. Cloning was liberally used when dealing
with intra/inter-module similarities. For example, we
implemented one module and used it to implement
other modules by simply cloning it. Two forces heavily
influenced the design of PCEsimple:
1. Architectural guidelines implied by the Foundation
– although our design was simple, we still adhered to
the guidelines implied by the Foundation.
2. Conceptual design of a similar WA implemented by
our industry partner [12] (source code was not
available as it was a commercial application). PCE
conceptual model (Figure 2), direct mapping of
modules to entities, and the page-per-action
organization in PCEsimple were direct results of this.

With the above two, we expected our PCE to
closely match an industrial implementation.

3.3 PCEpatterns: a pattern-based solution

The objective of PCEpatterns was to reduce cloning in

PCEsimple by applying design patterns. We first re-
organized our design around the Model-View-
Controller (MVC) pattern that is widely used for UI-
intensive applications. As per this pattern, each PCE
entity consisted of a Model, a number of Views, and a
number of Controllers that updated the model and
selected the appropriate View to visualize the Model.
This is depicted in the top half of the meta-model of a
PCE Entity shown in Figure 7.

Figure 7. Meta-model of a module in PCEpatterns

Figure 8 shows a module designed by following this
meta-model. Application of MVC was not meant to
affect the cloning level directly. However, this was a
necessary precursor to applying other design patterns
that unify clones, since those patterns are targeted for
an MVC architecture.

Figure 8. Design of Staff module in PCEpatterns
Then, we applied design patterns to unify identified

intra-module clones. We applied these patterns within
the scope of a module, repeatedly applying the same
patterns to each module. Some examples of clone
situations we found and the matching patterns selected
are given next (the rest is omitted for brevity):
• Similar preprocessing sequences were repeated for

each page request (e.g., session validation, parameter
decoding). We applied the Front Controller
[1][5][18] pattern to unify such clones into a single
location. As per this pattern, each module has one
Front Controller that receives all user requests and
performs control tasks common to all requests
(FrontController in Figure 7, StaffFrontController in
Figure 8).

• Some views exhibited much similarity among them.
We applied the Template View [5] pattern to unify
such clones. That is, we put the similar parts of
views in to a template (ActionView in Figure 7,
createStaffView in Figure 8), and used that template
to generate various different cloned views it unifies.

• Data retrieval code was cloned in multiple views.
We used the View Helper [1] pattern to unify the
cloned code into a common helper class.
Accordingly, some PCE Views are aided by helper
classes (ActionViewHelper in Figure 7,
createStaffViewHelper in Figure 8).

• Some fragments of UI recurred in multiple places
(e.g., attribute display code was cloned in Edit page
as well as in Display page). Following the
Composite View pattern [18], we unified such
fragments into a smaller view that was then reused to
compose larger views.
As mentioned earlier, we kept the non-UI parts of

PCE as simple as possible; each module has minimal
domain logic and is represented in the database as a
single table. As recommended by [5] for such
situations, we used the Table Module pattern and the
Table Data Gateway patterns for this portion (i.e.,
Table module and TableDataGateway in Figure 7,
omitted in Figure 8). In the controller portion, we also

used the Page Controller [5][18] pattern to control the
complexity of controllers. As per this pattern, each
Front Controller uses a number of Page Controllers,
one per each action supported by the module
(ActionController in Figure 7, createStaffController in
Figure 8), rather than have a single controller for all
the actions.

3.4 PCEunified: further clone unification

PCEunified was an all-out effort to unify any

remaining clones. First, we identified remaining intra-
module clones in PCEpatterns and unified them using a
combination of the following techniques:
• We extracted duplicated code fragments into

methods using ‘extract method’ refactoring [6].
• We unified largely similar functions using ‘add

parameter’ refactoring [6], conditional branches, and
Template Method pattern [7].

• We converted similar HTML fragments to PHP
Server pages, using PHP scripts to handle variations
in HTML clones (an example of a ‘context-specific
restructuring’ using PHP).

• further, more intensive, application of Composite
View pattern to unify common parts of Views.

unified moduleunified module

Figure 9. Design of PCEunified
After the intra-module clones were dealt with, we

shifted our focus to inter-module clones. Our clone
detection indicated that there were enough inter-
module clones to consider each whole module as a
coarse-grain clone of the others. This was not
surprising since modules initially implemented were
used as blueprints for later modules. To remedy this
situation, we unified the six modules into one generic
module in the following manner: We pulled the six
Front Controllers out of the modules and unified
clones among them by creating two layers of
Controllers. The top layer consisted of a common
Front Controller that unified common control tasks.
The second layer consisted of six module-specific
controllers (e.g., StaffFrontController,
ProjectFrontController, … in Figure 9). The rest of the
six modules were unified into one module (called
‘unified module’ in Figure 9). Variations found were

handled using the same techniques that we used to
handle variations in intra-module clones.

3.5 Overall comparison

We start by comparing the size and the cloning

level in the three implementations of PCE. To measure
the cloning level, we use the percentage of non-unique
(i.e., cloned) code, calculated based on clones detected
by CCFinder tool [8]. This measure is directly related
to the probability of update anomalies. For instance, if
35% of the system is non-unique, any change to that
35% of the system risks an update anomaly. To
minimize distortions created by false-positives and
trivially short clones, only exact duplicates that are
longer than 20 tokens were counted as clones. The
details of this calculation can be found in [15].

Table 1 summarizes the cloning percentage (C%),
LOC count, and number of files (#F), calculated for a
typical module (we chose Project module as the
typical module because it was used as the blueprint for
other modules), and for all modules. The last column
shows the inter-module cloning level (we chose
Project module and Product module to calculate this
metric). These data indicate a very high (98%) overall
cloning level in PCEsimple, i.e., almost all code in
PCEsimple is repeated in multiple locations. This is
because we copied existing modules to create new
modules, resulting in many inter-module clones. This
number is also comparable with findings of our
industry case study [12], which reported that up to
90% of a new module may be implemented by reusing
code from existing modules.

Table 1. Size and cloning level comparison

We also see a noticeable drop in intra-module

cloning from PCEsimple to PCEpatterns (from 55% to
32%). This shows that application of patterns has
indeed reduced the cloning level. However, the
repeated application of same patterns for each module
has maintained the level of inter-module clones (cf last
column of Table 1), and the overall cloning levels still
high. Further unification of intra-module clones,
followed by unification of modules has reduced both
intra-module and overall cloning levels in PCEunified. A
manual examination revealed that the remaining clones
in PCEunified are either too small to warrant unification,

or not practical to unify (Section 4.3 gives an
example).

Table 2. Change propagation comparison

Change 1. Link all attribute names to a Glossary page.
Change 2. Move ‘last edited time’ to another location.
Change 3. Record each request to PCE in a log file.

How does this affect maintainability? First, there is
a significant drop in the size of code to be maintained.
There is a 23% reduction in code size (in terms of
LOC) within a module, from PCEsimple to PCEunified.
The overall system size has dropped much more (by
78%) largely due to unification of six modules into
one. Second, the chance of update anomalies has
reduced. Table 2 shows the distribution of the impact
of three hypothetical evolutionary changes when
carried out for one module, or for all modules. It
illustrates how the number of modified files (#F) and
modified locations (#L) decreases from PCEsimple to
PCEunified, reducing the chance of an inconsistency
during the update.

4. Trade-off analysis

PCEsimple PCEpatterns PCEunified

more cloning less cloning

Figure 10. Cloning level in three PCEs

Figure 10 shows how the cloning level decreases as
we go from PCEsimple to PCEunified. However, there are
many other ways to design PCE, and a design different
from ours could land anywhere in this axis. In our
experiment, we observed how clone unification can
lead to trade-offs in other WA properties that often
should not be compromised. Such trade-offs can push
the final result towards the left. This section describes
these trade-off situations in detail. For each such
situation, we discuss the WA engineering realities that
set the context for the trade-off, and give concrete
examples from PCE to illustrate how clone unification
creates the trade-off.

4.1 Performance

Some of the WAs operate in the highly competitive

environment of the Internet. As slower performance
can drive users away, ‘criticality of performance’ is

one important characteristic of such WAs [4].
Unfortunately, clone unification can affect
performance negatively by introducing additional
function calls, function parameters, and 'include'
directives. As an example, a simple comparison of
page generation time for five randomly selected pages
of Staff module is shown in Figure 11 (all other things
being equal, averaged over 10 page requests, when
PCE was hosted on a Pentium IV, 3GHz machine
having 1 Gb memory). In all cases, page generation
times of the three PCEs followed the pattern: PCEsimple
<<< PCEpatterns < PCEunified. On average (shown in
extreme right), PCEunified is more than three times
slower than PCEsimple. This example shows how clone
unification, although feasible, can incur performance
trade-offs.

0

100

200

300

400

create Staff edit Staff delete Staff display Staff list Staff averagepagege
ne

ra
tio

n
tim

e
(m

s)

PCEsimple PCEpatterns PCEunified

Figure 11. Page generation time comparison

4.2 WYSIWYG editor compatibility

Three important characteristics of a WA are

‘aesthetics’, ‘information content’, and ‘constant
evolution’ [4]. Therefore, the creation and maintenance
of WA UIs require continuous involvement of
multimedia authors (e.g., graphic designers), content
authors (e.g., technical writers), and programmers.
The first two categories typically prefer to work with
WYSIWYG authoring tools. Overzealous clone
unification however, can interfere with such
WYSIWYG editing. For example, the PCE UI was
constructed as an HTML based template, and the
program logic was placed in helper classes. Typically,
a graphic designer creates the UI template using a
WYSIWYG editor (e.g., Macromedia Dream Weaver),
while a programmer builds helper classes. ‘Hooks’
(very short PHP scripts) in the template are used to
extract the dynamic parts from the helper class. Except
during the time programmer places hooks in the
template, both experts work in parallel. We observed
that intensive clone unification in PCEunified had a
negative impact on this setup. It brought more
programming logic into the template (in the form of
extra parameters, conditional branches, function calls),
fragmented the template (e.g., when using Composite
View pattern), and made rendering of the WYSIWYG
editor increasingly different from the actual result.

This shows that clone unification can force a trade-off
in the ability of the WA UI to be edited using
WYSIWYG editors.

4.3 Platform/framework conformance

It is typical to build WAs by using available

platforms/frameworks, rather than build from scratch.
Such platforms/frameworks have conformance
requirements. For instance, some may require certain
code/file to be physically present in a given location.
We encountered two such examples in our experiment:
1. PCE Foundation required a certain security check to

be placed at the beginning of each file, to prevent
direct access to it.

2. PCE Foundation required each module to be in a
separate folder (bearing the same name as the
module), and a file named ‘index.php’ to be present
in each such folder.
Clone unification can interfere with such

requirements. In the first example, we didn’t unify the
said clone because such unification prevents us from
using the built-in security mechanisms of the
Foundation. In the second example, we modified the
Foundation (generally a risky, undesirable option) to
remove that requirement. These examples show how
clone unification can force a trade-off in our ability to
utilize platforms/frameworks.

4.4 Ease of indexing by search engines

Success of some WAs depends on how easy it is for

search engines to index them (e.g., e-commerce web
sites). Clone unification using Server pages increases
the amount of dynamic code in the WA UI. Since
dynamic contents are less likely to be indexed by
search engines, clone unification can force a trade-off
in the WA’s ability to get indexed by search engines.
A good example is an e-commerce application
preferring not to unify cloned static pages in its
product catalog.

Note: This trade-off is not directly related to PCE
experiment. It was pointed out by one of our industry
collaborators, based on their own experience in
building e-commerce product catalogs.

4.5 Ability to use of multiple content types

While applications written in several languages are

certainly nothing new, multilingualism is taken to a
new level in WA development [17]. WAs are
implemented using a mixture of content types (ASP,
C#, CSS, DTD, HTML, Java, JavaScript, etc.). In our
previous study [15], we found 59 content types in 17
WAs (we considered all text files that are likely to be

maintained by hand); on average, one WA involved 10
different content types. Furthermore, some clones can
involve multiple content types intertwined with each
other. To give an example from PCE, two cloned files
can include HTML, PHP, Java Script, and SQL. While
each content type may have its own clone unification
facilities, intermixing of multiple content types
complicates clone unification. Therefore, a drive
towards a high level of clone unification can force a
trade-off in the ability to mix content types in a WA
implementation.

4.6 Rapid development capability

Our experiment started with a clone-ridden

implementation (i.e., PCEsimple), and progressively
unified clones to arrive at a clone-free implementation
(PCEunified). But in a production environment we might
prefer to achieve PCEunified as our first implementation,
rather than go through three iterations. Clone
unification is implicit in such a scenario. That is,
clones are unified before they are created at all (in
other words, ‘clone avoidance’). We can extrapolate
our observations in ‘unifying’ clones to show that such
‘avoiding’ clones in an initial implementation too can
incur a trade-off in another important property of a
WA, as we shall explain next.

Being the ‘first-in-the-market’ can be a significant
advantage for a commercial WA. Consequently, WAs
have ‘compressed development schedules’ [4].
However, clone avoidance requires additional effort,
which may not be affordable for a WA project done
under a compressed schedule. A comparison of the
three PCE designs supports this argument; there are
additional concepts, more indirection, and more layers
as we go from PCEsimple to PCEunified requiring more
initial planning, analysis, and modeling. Therefore,
despite the drop in LOC, the upfront development
effort and time-to-market increases as we go from
PCEsimple to PCEunified. Although PCEunified is the
smallest of the three, it is unlikely that we could have
achieved the same high degree of clone unification in
the first attempt, within the same time it took us to
develop PCEsimple. This shows that intense clone
avoidance can force a trade-off in the ability to quickly
release a working WA.

4.7 Rapid evolution capability

WA projects typically start with ‘insufficient

requirement specification’ [4], and continuously have
to evolve to match volatile requirements/technologies.
This requires WAs to evolve rapidly. However, high
level of clone unification can force a trade-off in this
ability. This line of argument may appear to contradict

Section 3.5, in which we illustrated how the number of
modified files/locations decreases as we unify more
clones (cf Table 2). This is not so, as we shall illustrate
with the following example.

Table 3. Effort for adding composition

Let us consider the effort required to add a new

feature to the three PCEs. Table 3 shows what is
involved in adding composition relationships to only
one of the modules (assuming it only supported the
other two types of relationships before). It shows that
the number of files that may be affected by this new
feature, number of files actually modified, number of
independent locations modified, and the number of
LOC modified tend to increase as we move from
PCEsimple to PCEunified. Functionality of all six modules
needs to be tested in PCEunified, although the change
affects only one module. This could be a major burden,
given the immaturity of WA testing techniques. In
general, clone unification limits the degree of freedom
with which individual clones can evolve independently
of the others. Therefore, while clone unification may
ease certain kind of modifications (typically,
modifications that needs to be repeated for multiple
clones, such as given in Table 2) it can also render
certain other kind of changes more difficult to do
(typically, localized modifications applicable to a
minority of the clones, such as given in Table 3).

4.8 Efficiency of source code packaging

Often, the Server page portion of a WA is delivered

in source form. In such cases it is desirable to eliminate
all the unused code from the delivered code. This may
be due to space/time efficiency concerns (e.g., severe
space constrains on the server) or to avoid transfer of
unused client-side scripts over the network. Or this
may be to minimize impact of modifications. Most
WAs are accessed globally, and need to be available
24/7. Downtime caused by updates to an unused part
of the code is unacceptable for such WAs.
Unfortunately, clone unification sometimes injects
unused code into the delivered code. For example, in
PCEunified, Staff module uses only 77% of the unified
module. If the unified module is reused in another WA
to serve as a Staff module, it results in carrying over
23% of the code that will not be used at all. Therefore
clone unification can sometimes inject unused code

into the distribution package, forcing a trade-off in our
ability to distribute a clean, minimal, source code
package.

4.9 Ability to vary runtime structure

Occasionally it may be necessary to have a different

runtime structure between cloned systems. Possible
reasons for this include:
• to fit a new API/framework/platform (e.g., to deploy

PCE modules on a different Foundation)
• when one WA variant requires better performance

than the rest (e.g., PCEsimple Vs PCEunified)
• for compatibility with other legacy systems at the

deployment-site (e.g., to integrate with a legacy
system that uses an old version of PHP)
Although our reasons for having three PCEs were

quite different from those given above, we too found
ourselves in a similar scenario: We had to maintain
three separate WAs having drastically different
runtime structures, yet having much similarity among
them. For example, 55% of the code of PCEsimple was
found to have a cloned counterpart in PCEpatterns.
Unification of such clones requires some re-alignment
in the runtime structures, forcing trade-offs in the
motives behind varying the runtime structures in the
first place.

5. Related work

Cloning is a well known problem in traditional

software development, and it has been under research
for more than a decade. Recently, cloning in web
domain has started to attract interest from the research
community (e.g., [2][17]). Our work adds to this body
of knowledge, by providing an in-depth treatment of
clone unification trade-offs in WAs.

Coming from non-Web domain, Cordy’s work [3]
in critical financial systems reports that the risk of
breaking an existing system is a great deterrent to
clone unification. We can formulate this as a trade-off,
i.e., clone unification forces a trade-off in system
reliability. He also mentions that certain clones speed
up development/maintenance by introducing a ‘degree
of freedom’. Although not the main focus of their
work, Synytskyy et al. [17] point out that overzealous
clone unification can result in hard-to-understand
spaghetti code. We agree with both these views, as
implied by Sections 4.6 and 4.7. They also mention
how multiple content types complicate clone detection
in web domain. We observed that the same is true for
clone unification (cf Section 4.5). Boldyreff and
Kewish [2] propose to store unified clones in a
relational database, and to retrieve the clone at runtime

using scripts. A somewhat similar approach used by
Ricca and Tonella [16]. Clone unification by storing
cloned web page fragments in a database in this
manner is a powerful mechanism with its own merits.
However, it should be used in moderation as it may
aggravate trade-offs in a number of areas, such as in
performance, WYSIWYG editing, and indexing by
search engines. Clone unification proposed by [2][16]
and [17] is automatic ([16] allows manual refinements
to the generated result). Work by Ping and
Kontogiannis [14] proposes an approach to
automatically refactor web sites that removes some
‘potential duplication’. Such automation is a step
forward as it greatly reduces the effort required in
clone unification. However, one needs to be careful
not to setoff the advantages of automation with the
cost of tradeoffs we have highlighted here. Other
researchers who observed that clones are not always
appropriate to remove include Kim et al [11], and
Kapser and Godfrey [10]

6. Conclusions and future work

This work is a follow up on our earlier discovery of

high levels of cloning in WAs [15]. Using an empirical
study, we showed that it was technically feasible to use
Sever pages to unify most of the clones. Such
unification greatly reduced the code size and the
chance of update anomalies. However, this approach
forced trade-offs in many important WA properties. In
a real-world WA project, these trade-offs limit how far
we can practically push Server pages towards clone
unification. These findings shed more light on why
clones persist in software: although there are many
techniques to avoid clones, their application incurs
trade-offs that in many situations may not be
acceptable. This, however, should not be interpreted as
an argument against clone unification. On the contrary,
understanding these trade-offs provides us with a
critical criterion against which solutions to cloning
should be evaluated.

In future work, we plan to expand this study to
cover technologies other than PHP. For example,
J2EE™ and .NET™ - two advanced platforms for
implementing WAs. They provide rich sets of general
middleware-level infrastructure services (e.g., for
managing security, transactions, resources). In our
PHP solution, the Foundation provides similar service,
but in addition, it also provides more application-
specific infrastructure services. Therefore, PCE
implemented on the .NET or J2EE is likely to follow
the same high-level architecture shown in Figure 5,
possibly with a thinner Foundation (since some
middleware-level services are provided by the platform

itself). As the design patterns we applied in our
experiment are also applicable to .NET and J2EE, we
expect to see similar cloning situations across PHP,
.NET and J2EE platforms. Also, the basic role of
Server pages remains the same whether we use PHP,
ASP.NET or JSP on J2EE. Therefore, we believe that
the limits involved in using Server pages, at least in the
context of situations discussed in Section 4, apply
independently of the platform on which these
techniques are used. But further work is required to
support or dismiss this hypothesis. Other related
technologies requiring similar further work include
web application frameworks/generators (e.g., Struts,
Ruby on Rails), incarnations of Server page technique
in other languages (e.g., ColdFusion), template engines
(e.g., Velocity), client-side technologies (e.g., AJAX)
and transformation techniques (e.g., XSLT).

The long-term goal of our research is to find
effective methods to combat cloning. One promising
direction we are pursuing is the use of generative
programming to tackle clones. Our approach (called
XVCL [19]) does not unify clones in the program
code, but it does so at the meta-level program
representation, from which an executable program can
be automatically obtained. This is particularly suitable
in situations such as described in this paper, when
removing clones triggers undesirable impact on other
software qualities that cannot be compromised. It also
applies in situations when clones in the program serve
some useful purpose (e.g., to improve performance, or
to conform to platform requirements). The
maintenance of a program is done at the non-redundant
meta-program level. Industrial application [12][21] and
lab studies [20] indicate that such an approach may
bring considerable productivity gains. We plan to
investigate how this approach can fare in terms of
avoiding the trade-offs we observed in this study.

7. References

[1] Alur, D., Crupi, J., and Malks, D., Core J2EE Patterns:
Best Practices and Design Strategies, Prentice Hall, 2003
[2] Boldyreff, C., Kewish, R., “Reverse engineering to
achieve maintainable WWW sites,” Proc. 8th Working Conf.
on Reverse Eng. (WCRE 01), pp. 249 – 257
[3] Cordy, J. R., “Comprehending Reality: Practical
Challenges to Software Maintenance Automation,” Proc.
11th IEEE Intl. Workshop on Program Comprehension,
(IWPC 2003), pp. 196-206.
[4] Deshpande et at. “Web Engineering,” Journal of Web
Engineering, Vol. 1, No. 1, 2002, pp 3-17.
[5] Fowler, M., Patterns of Enterprise Application
Architecture, Addison-Wesley, 2003

[6] Fowler M., Refactoring - improving the design of
existing code, Addison-Wesley, 1999
[7] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,
Design patterns: Elements of reusable object-oriented
software, Addison-Wesley, 1997
[8] Kamiya, T., Kusumoto, S, and Inoue, K., “CCFinder: A
multi-linguistic token-based code clone detection system for
large scale source code,” IEEE Trans. Software Engineering,
vol. 28 no. 7, July 2002, pp. 654 – 670
[9] Kang, K., et al. Feature-Oriented Domain Analysis
(FODA) Feasibility Study (CMU/SEI-90-TR-21, ADA
235785). Software Engineering Institute, CMU, 1990
[10] Kapser. C., and Godfrey. M. W. ““Cloning Considered
Harmful” Considered Harmful”, Proc. of the 2006 Working
Conference on Reverse Engineering (WCRE'06), pp 19-28.
[11] Kim, M., Sazawal, V., Notkin, D., and Murphy, G. C.,
“An Empirical Study of Code Clone Genealogies,” Proc.
10th European Software Eng. Conf. & the 13th Foundations
of Software Eng. (ESEC/FSE’2005), pp. 187–196
[12] Pettersson, U., and Jarzabek, S. “Industrial Experience
with Building a Web Portal Product Line using a
Lightweight, Reactive Approach,” European Software Eng.
Conf. and ACM SIGSOFT Symposium on the Foundations of
Software Eng. (ESEC-FSE'05), 2005, pp 326-325
[13] PHP usage stats, http://www.php.net/usage.php
[14] Ping, Y., Kontogiannis, K., “Refactoring Web sites to
the Controller-Centric Architecture,” Eighth Euromicro
Working Conference on Software Maintenance and
Reengineering (CSMR'04), 2004, pp. 204-213
[15] Rajapakse, D. C., and Jarzabek, S., “An Investigation of
Cloning in Web Applications,” 5th Intl Conference on Web
Engineering (ICWE'05), 2005, pp 252 - 262
[16] Ricca, F. and Tonella, P., “Using Clustering to Support
the Migration from Static to Dynamic Web Pages,” Proc.
11th IEEE Intl. Workshop on Program Comprehension
(IWPC’03), 2003, pp. pp. 207 – 216.
[17] Synytskyy, N. Cordy, J. R., Dean, T., “Resolution of
static clones in dynamic Web pages,” Proc. 5th IEEE Intl.
Workshop on Web Site Evolution, (IWSE'2003), pp. 49 - 56.
[18] Trowbridge et al., Enterprise Solution Patterns Using
Microsoft .NET (Version 2.0), Microsoft Press, 2003
[19] XVCL (XML-based Variant Configuration Language)
http://xvcl.comp.nus.edu.sg
[20] Yang, J. and Jarzabek, S. “Applying a Generative
Technique for Enhanced Reuse on J2EE Platform,” 4th Int.
Conf. on Generative Programming and Component
Engineering, (GPCE'05), 2005, pp. 237-255
[21] Zhang, W. and Jarzabek, S. “Reuse without
Compromising Performance: Experience from RPG Software
Product Line for Mobile Devices,” 9th Int. Software Product
Line Conf. (SPLC’05), pp. 57-69

