
Techniques for De-fragmenting Mobile Applications: a Taxonomy

Damith C. Rajapakse
School of Computing, National University of Singapore

damith@comp.nus.edu.sg

Abstract

 Fragmentation, in the context of mobile
applications, is the inability to "write once and run
anywhere". Fragmentation increases the effort
required in all aspects of application development.
This paper analyzes various aspects of fragmentation,
and presents a taxonomy of techniques used to combat
such fragmentation. Our aim is to establish a set of
useful terminology for the benefit of researchers and
practitioners working in this area.

1. Introduction
Fragmentation is the term used in the industry to

describe the inability to "write once and run
anywhere", often resulting in multiple versions of an
application. More formally, we define fragmentation
as the “inability to develop an application against a
reference operating context and achieve the intended
behavior in all operating contexts suitable for the
application”. Further, we define the operating context
(OC) for an application as the “external environment
that influences its operation”. Therefore an OC is
defined by the hardware/software environment in the
device, the user, and the environmental constraints
introduced by various other stakeholders such as the
network operator. While fragmentation can affect any
type of application, this paper focuses on the
fragmentation of mobile applications. Note that by
"mobile applications" we mean installed applications
(an application installed on the mobile device itself),
and not server-side applications such as SMS
applications1 and Mobile web applications2.

Fragmentation is caused by the diversity of OCs
(see Figure 1 for an illustration). In Section 2 we
describe how one OC could differ from another,
resulting in fragmentation. While users, developers,
distributors, carriers and device manufacturers are all
affected by fragmentation, this paper looks at
fragmentation from the point of view of an

1 A server-side application accessed using a mobile device,

using SMS as the mode of communication
2 A web application accessed over the Internet, using a web

browser in a mobile device.

organization developing mobile applications. In section
3 we describe how fragmentation affects various
aspects of mobile application development. As
fragmentation is a big problem in the industry today, a
number of techniques have emerged to combat it. We
call them de-fragmentation techniques. Section 4
presents a taxonomy of de-fragmentation techniques,
based on the basic approach each one uses to tackle the
problem. This taxonomy was inspired by the work of
practitioners [3] and later refined based on further
feedback from practitioners (as acknowledged in
Section 7). Where appropriate, we refer to industry
tools to illustrate each approach. Comments about
related work, conclusions, and future directions are
given at the end of the paper.

A1A1 O
C1

Diversity in
hardware, software

Diversity
in users

Diversity introduced
by other stakeholders

Ta
rg
et

m
ar
ke
t

O
C2

O
Cn

Po
te
nt
ia
l m

ar
ke
t

A2A2

AnAn

Fragmented
application

Targeted operating
contexts

.........

Figure 1. Fragmentation overview

2. Causes of fragmentation
By definition, fragmentation is caused by the

diversity of operating contexts (OCs). One operating
context may differ from another in the following
reasons:
• Hardware diversity of the device, such as
differences in screen parameters (size, color depth,
orientation, aspect ratio), memory size, processing
power, input mode (keyboard, touch screen, etc.),
additional hardware (camera, voice recorder), and
connectivity options (bluetooth, IR, GPRS, etc.).

• Software diversity, which may be a result of
platform diversity or implementation diversity:
o Platform diversity is caused by factors such
as differences in platform/OS (Symbian, Nokia
OS, RIM OS, Android, BREW, etc.), API
standards (MIDP 1.0, MIDP 2.0, etc.),
optional/proprietary APIs, variations in access to
hardware (e.g., full screen support), maximum
binary size allowed, etc.
o Implementation diversity is caused by
factors such as quirks/bugs in implementing
standards.

• Feature variations, such as light version vs full
version
• User-preference diversity, in aspects such as the
language, style, etc., or accessibility requirements
• Environmental diversity, such as diversity in the
deployment infrastructure (e.g., branding by carrier,
compatibility requirements of the carrier’s back-end
APIs, etc.), locale, local standards.
As we can see from the above, one OC can differ

from another due to many factors. Let us call these
factors fragmentors. i.e., a fragmentor is a factor,
diversity of which causes fragmentation. The
fragmentation of mobile applications is often referred
to as device fragmentation, because most of the
fragmentors can be traced to a particular device model.
However, this is a misnomer, as factors outside the
device (e.g., branding by carrier) too can cause
fragmentation.

Since it is the diversity that drives fragmentation, a
closer look at diversity may provide us with clues as to
how to deal with fragmentation. It is our opinion that
diversity can be either essential or accidental.3
• Essential diversity is the diversity that
differentiates a product/service in some useful
manner. Such diversity is intentional and often
unavoidable. For example, users will continue to
differ in their preferred size for a device, and the
device manufacturers will continue to differentiate
the devices in terms of size.
• Accidental diversity is the diversity that - does not
serve any useful purpose, is often introduced
unintentionally, and is often avoidable. For example,
diversity due to API implementation bugs/quirks is
unintentional, avoidable, and does not serve any
useful purpose
Fragmentation is often associated with JavaME

(Java Mobile Edition) applications, but it is also
applicable to non-JavaME applications. Theoretically,
a JavaME application is able to run on any Java-
enabled mobile device. This means a JavaME

3 This classification borrows from Fred Brooks' seminal book
The Mythical Man-Month, which discusses “essential
difficulties” and “accidental difficulties” of software
development

application can target a much wider range of OCs as
compared to non-Java applications, exposing it to more
diversity. As non-JavaME applications (e.g., native
applications for Symbian platform) are created for a
smaller range of devices, they are exposed to less
diversity. While a JavaME application has to run on
platforms developed by many vendors, a typical non-
JavaME application will run on a platform
implemented by a single vendor or a small number of
vendors (e.g., Symbian). This means JavaME
applications have to face more implementation
diversity, as compared to non-JavaME applications.
However, developers may still have to develop a
JavaME equivalent as well, if a wider range of OCs is
to be targeted.

3. Effects of fragmentation
Fragmentation, and the subsequent de-

fragmentation, complicates all disciplines4 of a mobile
application project. Some examples are given next.
• Business modeling: Business analysts have to
determine the optimum set of OCs for the application
to target. Questions to be answered include “Is
operating context OC1 suitable for application A1?”
and “Is it worth porting A1 to OC1?”.
• Requirements management: If the interaction
between the actor and the application is OC-dependent,
it complicates the use case specification by introducing
a vast number of exceptional/alternate flows.
• Analysis and design: The system architecture, and
the detailed design, should be able to accommodate not
only all the variations demanded by different OCs
targeted at the time, but also future OCs the application
will be exposed to during its lifetime.
• Implementation: Implementers need to optimize
the application to all the targeted OCs. Questions to
answer include “What do I have to do to fit application
A1 to fit operating context OC1?”, “How does OC1
differ from OC2?”, and “Which OCs can be served by
a single version of the application?”
• Testing: The application need to be tested for all
targeted OCs. It is usually not enough to test on device
emulators, as real devices on a real network sometimes
behave differently from the emulators.
• Project management: Having to accommodate
new (and unexpected) OCs in the middle of a project
complicates project scheduling.
• Configuration and change management: Having
multiple versions of an application (to suit multiple
OCs) clearly impacts this discipline. New devices
entering the market will increase the version count,
while evolution of the platform software may require
substantial changes to the existing versions.

4 disciplines as defined in the IBM Rational Unified Process

http://www.comp.nus.edu.sg/~damithch/df/device-fragmentation.htm#Fragmentor

• Environment: The software process has to be
augmented to cater for additional complications
introduced by fragmentation. For example, additional
tools will have to be brought into the process, to tackle
various fragmentation issues.

As a result of these complications, fragmentation
increases the required effort in almost all aspects of the
software life cycle, driving up the cost, and
lengthening the time-to-market. Other side-effects are:
• It could reduce the quality of the product - The
additional complexity of maintaining a large number of
versions could increase the probability of bugs. Cost
considerations may tempt developers to release
applications that behave in sub-optimal ways for
certain OCs (E.g., an application may work well for
certain screen sizes, but may appear distorted in certain
other screen sizes).
• It could narrow the target market - Cost
considerations may force the application vendors to
target a smaller market than the actual potential market
it could target otherwise (see Figure 1).
• It hinders the growth of the mobile application
market, by acting as a barrier-to-entry for new entrants
- This is because creating a mobile application to fit a
wide variety of OCs requires a much higher effort and
a better expertise, compared to a desktop/web
application.

4. A taxonomy of de-fragmentation techniques

D
e­
fr
ag
m
en
ta
ti
on

te
ch
n
iq
u
es

MANUAL­MULTI

DERIVE­MULTI

SINGLE­
ADAPT

SELECTIVE

META

GENERATE

ALL­IN­ONE

FITS­ALL
ABSTRACTION
­LAYER

AIM­LOW

DEVICE­ADAPT

SELF­ADAPT

EMBED

INJECT

Figure 2. The complete ontology

One obvious way to reduce fragmentation is by
eliminating accidental diversity. Measures such as
better standardization (e.g., less optional APIs, more
detailed specifications), stricter enforcing of the
standards (e.g., using API verification initiatives,
Technology Compatibility Kits) can help in this regard.
Major players in the mobile application industry such
as platform vendors, device manufacturers, and carriers
have a critical role to play in this front of the war
against fragmentation. One such effort in the JavaME
arena is the Mobile Service Architecture [7].

On the other hand, essential diversity will be much
harder, if not impossible, to avoid. The pragmatic
response here is to find ways to reverse the resulting
fragmentation. This is called de-fragmentation [3].
Note that de-fragmentation is NOT eliminating

diversity. Rather, it is the process of making the
application behave as intended, on all target OCs.

In this section, we present a taxonomy of de-
fragmentation techniques. Figure 2 illustrates this
taxonomy in its current state. Each technique will be
explained in detail in the subsequent subsections. A
combination of the above approaches can be used
within a single application too, using one of the
approaches to manage each OC-specific variation.

4.1 Th NUAL-MULTI approach e MA

A1A1

O
C1

O
C2A2A2

O
CnAnAn

“Port” by copy‐paste‐
modifying existing versions

Developers

Figure 3. The MANUAL-MULTI approach

The most primitive way of de-fragmenting is to
manually develop distinct versions of the application to
suit different OCs. We call this approach MANUAL-
MULTI. Figure 3 illustrates this approach, where A1,
A2, … An are different versions of the application A,
customized to fit operating contexts OC1, OC2, …
OCn respectively.. These distinct versions will be
largely similar, but also different in subtle ways, as a
result of subtle variations in the OCs. Copy-paste-
modify techniques are commonly used to “port” the
application to various OCs. MANUAL-MULTI
approach results in duplication of work in many
aspects of software development (e.g., fixing the same
bug in hundreds of different versions). The following
two alternative approaches try to minimize such extra
effort:

1. Derive OC-specific versions from a single code
base (we call this approach DERIVE-MULTI)

2. Use a single version to serve multiple OCs (we
call this approach SINGLE-ADAPT)

4.2 The DERIVE-MULTI approach
In the DERIVE-MULTI approach, we derive OC-

specific versions of the application from a single code
base. While this still results in multiple versions of the
application, there is only one code base to work on,
and therefore the effort required may be less than in the
MANUAL-MULTI approach. In particular, we no
longer need to manually maintain duplicate copies of
the same source.

An example tool that supports the DERIVE-MULTI
approach is the NetBeans Mobility Pack [8] (a JavaME
mobile application development environment that
comes as an extension to the popular NetBeans Java
IDE). It uses a concept called project configurations,
where a single application can have multiple project

configurations, one for each different version we want
to derive.

The DERIVE-MULT approach can be further sub-
divided into the three approaches SELECTIVE, META,
and GENERATE.

A1A1

O
C1

O
C2

O
Cn

A script packages the correct
components into multiple‐versions

Developer

A2A2

AnAn

AA

aa bb cc

Developers work on a
single code base

aa

bb

cc

OC‐specific files

common files

OC‐specific versions

Single codebase

Build
script

Figure 4. The SELECTIVE approach

The SELECTIVE approach (Figure 4) localizes
variations into interchangeable components (e.g.,
classes, files, etc.) and uses a build script (or a linker)
to create one version for each OC, picking out only the
components required for that particular OC. This
approach is frequently used when including images of
different resolution to fit different screen sizes. An
example of this approach can be seen in the J2ME
Polish tool [6]. For instance, we can put an image file
in the resources/ScreenSize.240+x320+ folder, and
J2ME Polish will include this image for devices with a
screen size of at least 240x320 pixels.
The META approach uses meta-programming (and
similar code manipulation techniques) to specify how
to derive OC-specific versions of the application.
There are two ways of achieving this: the EMBED
approach and the INJECT approach.

A1A1

O
C1

O
C2

O
Cn

A preprocessor creates multiple
versions by executing meta‐code

Developer

A2A2

AnAn

AA

@A1{ xxx }
@A2{ yyy }

@An{ zzz }

Pr
ep

ro
ce
ss
or

xxx

zzz

yyy

Figure 5. The EMBED approach

The EMBED approach embeds OC-specific
variations in the source files using meta-programming
directives/tags. A preprocessor derives multiple
versions by processing these directives/tags. An
example of this approach can be seen in NetBeans
Mobility pack, which uses a concept called
preprocessor blocks to specify OC-specific code
segments. The example preprocessor block given in
Figure 6 (adapted from [8]) is used to derive two
different versions of the application, one for devices
having 128x128 screens, and one for devices having
176x182 screens.

Figure 6. A NetBeans Mobility Pack preprocessor block

//#if screen == "128x128"
 //# ballWidth = 10;
 //#elif screen == "176x182"
 //# ballWidth = 16;
//#endif

A1A1

O
C1

O
C2

O
Cn

A preprocessor creates multiple
versions by combining application
code with OC‐specific instructions

Developer

A2A2

AnAn

AA

A1{ xxx }
A2{ yyy }

An{ zzz }

Pr
ep

ro
ce
ss
or

xxx

zzz

yyy

Generic application code

OC‐specific instructions
Figure 7. The INJECT approach

The INJECT approach requires the developer to
write the OC-specific instructions separated from the
application code. For example, Tira Jump [9] (a tool
for developing mobile applications) uses aspect
oriented programming techniques to achieve such an
effect. It lets developers write the application code
against a reference OC and derives OC-specific
versions by “weaving” OC-specific variations into it.

A1A1

O
C1

O
C2

O
Cn

Developer

A2A2

AnAn

AA

{ }

Generator automatically adapts the
application for known OCs xxx

zzz

yyy
G
en

ra
to
r/

A
ut
o‐
ad

ap
te
r

Figure 8. The GENERATE approach

The GENERATE approach automatically generates
multiple versions using an intelligent generator that
knows how to adapt a generic application to suit a
specific OC. Instead of merely following instructions
supplied by the programmer (as in the META
approach), the generator uses its inbuilt knowledge in
the generation process, requiring less manual coding.
The feasibility of such fully automatic generation is
rather limited, and we expect such generators to be
limited to a narrow mobile application domain or a
narrow range of OCs. For example, alcheMo tool [1]
promises to automatically generate BREW format
applications from JavaME applications.

4.3 The SINGLE-ADAPT approach
The SINGLE-ADAPT approach builds a single

version of the application that can work on multiple
OCs. This approach can be further sub-divided into
two: FITS-ALL and ALL-IN-ONE.

The FITS-ALL approach develops a one-size-fits-all
application that sidesteps all variations between OCs.
There are two ways to accomplish this, called AIM-
LOW and ABSTRACTION-LAYER.

A1A1

O
C1

O
C2

O
Cn

aa

A2A2

AnAn

AA

Lacks some features,
but fits all OCs

Developer

bb

cc

Figure 9. The AIM-LOW approach

The AIM-LOW approach (Figure 9) uses only what
is common to all targeted OCs. For example, the UI
will be designed to fit the smallest screen size of the
targeted device range. This approach is sometimes
referred to as the “lowest common denominator”
approach.

O
C1

O
C2

O
Cn

Developer

AA

{ }

LibraryLibrary

xxxxxx yyyyyy zzzzzz

AA

{ }

Library API Library API

xxxxxx yyyyyy zzzzzz

OC2 APIOC2 API

Application is written using
an OC‐neutral API (provided

by a library)

xxxxxx yyyyyy zzzzzz

OC1 APIOC1 API

Figure 10. The ABSTRACTION-LAYER approach

The ABSTRACTION-LAYER approach (Figure
10), hides variations in the OCs behind an abstraction
layer. This abstraction layer is usually a library (third-
party or built in-house), and the application will be
developed using the API of the library. Both the library
and the application will be deployed on the mobile
device, and it is the responsibility of the library to
execute generic method calls from the application in an
OC-specific manner. TWUIK [10] (a UI library for
mobile applications) is one example tool that uses the
ABSTRACTION-LAYER approach to write a single
UIs that can adapt for multiple OCs.
The ALL-IN-ONE approach makes the software
adapt at run-time to a given OC, using either the SELF-
ADAPT approach or the DEVICE-ADAPT approach.
The SELF-ADAPT approach (Figure 11) makes the
application programmatically discover information
about the OC and adapt itself to the OC at run-time.

Developer

AA

if(A1){xxx}
if(A2){yyy}

if(An){zzz}

O
C1

O
C2

O
Cn

The application knows how to
adapt to the OC

Figure 11. The SELF-ADAPT approach

Figure 12. Example of SELF-ADPT

Canvas c = new Canvas();
w = c.getWidth (); h = c.getHeight();
if(w==128 && h==128)
 ballWidth=10;
 else if(w==176 && h==182)
 ballWidth=16;

In Figure 12 we see an example code snippet written in
SELF-ADAPT fashion. This single piece of code will
work for both screen sizes 128x128 and 176x182. The
difference between this and the EMBED example in
Figure 6 is that EMBED will include either
ballWidth=10; or ballWidth=16; (but not both) in
each OC-specific version, while SELF-ADAPT will
include all code in Figure 12, resulting in a bigger
application.

Developer

AA

{ }

A1A1

O
C1

O
C2

A2A2

AnAn
O
Cn

Device knows how to adapt
the application to suit itself

xxx

zzz

yyy

Figure 13. The DEVICE-ADAPT approach

The DEVICE-ADAPT approach (Figure 13) requires
the application to be written in an abstract way, and the
device decides how to adapt it to the prevailing OC, at
run-time. This approach is commonly used when
dealing with fragmentation in the UI part of an
application, often with unsatisfactory results. In Figure
14 we see how the same calculator application appears
differently on two different phone emulators, after it
has been adapted by the device.

7. Acknowledgements

Input from the following persons helped towards
refining the material in this paper: Bhojan Anand and
Nguyen Thi Tuyet Nhung (National Uni. of
Singapore), Chris Abbott (DetectRight), Himath
Dissanayake (OrangeHRM Inc), Kutila Gunasekera
(Monash University), Jason Delport (Paxmodept),
Luca Passani (WURLF) Mihai Fonoage (Florida
Atlantic Uni.), Reto Senn (Bitforge), Ruchith
Gunaratne (hSenid Software Intl), Tom Hume
(FuturePlatforms).

Figure 14. An example result from DEVICE-ADAPT

5. Related work
8. References Fragmentation is one of the most talked about topics

among practitioners (e.g., [3][4]). In academic
research, fragmentation in the Mobile-Web has
received frequent attention (e.g., [5]). Another related
area is adaptable user interfaces. For example Gojas et
al [2] describes a GENERATE type technique used to
automatically generate UIs to fit different screens. The
use of meta-programming to generate product lines is a
well known technique, which could be adapted to de-
fragment mobile applications. For example, Zhang and
Jarzabek [11] shows how to use the XVCL meta-
programming language (XVCL uses a combination of
EMBED and INJECT approaches) to de-fragment a
mobile game product line.

[1] alChemo home http://www.innaworks.com/alchemo
[2] Gajos, K, Christianson, D., Hoffmann, R., Shaked, T.,
Henning, K., Long, J. J., and Weld, D.S., “Fast And Robust
Interface Generation for Ubiquitous Applications,”.
Proceedings of the Seventh International Conference on
Ubiquitous Computing (UBICOMP'05), 2005
[3] JavaME: De-fragmentation Technical Overview and
Design Guidelines Index, available at
http://developers.sun.com/mobility/reference/techart/design_
guidelines/overview.html
[4] Lau, A., " Fragmentation effect,"
http://www.javaworld.com/javaworld/jw-05-2004/jw-0524-
fragment.html
[5] Liang, A., Guo, S., and Li, C., "Dynamic Mobile
Content Adaptation Abstracting in Device Independent Web
Engineering," Global Telecommunications Conference,
2006. (GLOBECOM '06), pp. 1 - 4

6. Conclusions and future work
In this paper we analyzed the fragmentation

problem faced by mobile developers today. We defined
the terms “operating context”, a concept central to the
way we define fragmentation. We also explained our
opinion of what it means to “de-fragment” an
application, and contrasted it with eliminating
diversity. As the major contribution of the paper, we
presented a taxonomy of de-fragmentation techniques
currently used in the industry, and used existing
industry tools to illustrate each technique. Our future
plans include a comprehensive evaluation of the
techniques included in the taxonomy, to discover their
strengths/weaknesses, to find synergies among them,
and look for more effective alternatives. We shall
continue to refine this taxonomy, based on interactions
with the practitioners and our own experimentation.

[6] J2ME Polish homepage http://www.j2mepolish.org
[7] JavaME mobile Service Architecture,
http://java.sun.com/javame/technology/msa/
[8] Resolving JavaME Device Fragmentation Issues Using
NetBeans 6.0 Mobility
http://www.netbeans.org/kb/60/mobility/javame-
devicefragmentation.html
[9] Tira Jump home page http://www.tirawireless.com
[10] TWUIK homepage http://www.tricastmedia.com/twuik/
[11] Zhang, W. and Jarzabek, S. “Reuse without
Compromising Performance: Experience from RPG Software
Product Line for Mobile Devices,” 9th Int. Software Product
Line Conference, SPLC’05, September 2005, Rennes,
France, pp. 57-69

http://www.innaworks.com/alchemo
http://developers.sun.com/mobility/reference/techart/design_guidelines/overview.html
http://developers.sun.com/mobility/reference/techart/design_guidelines/overview.html
http://www.javaworld.com/javaworld/jw-05-2004/jw-0524-fragment.html
http://www.javaworld.com/javaworld/jw-05-2004/jw-0524-fragment.html
http://www.j2mepolish.org/
http://java.sun.com/javame/technology/msa/
http://www.netbeans.org/kb/60/mobility/javame-devicefragmentation.html
http://www.netbeans.org/kb/60/mobility/javame-devicefragmentation.html
http://www.tirawireless.com/
http://www.tricastmedia.com/twuik/
http://www.comp.nus.edu.sg/%7Estan/PAPERS/RPG.pdf
http://www.comp.nus.edu.sg/%7Estan/PAPERS/RPG.pdf
http://www.comp.nus.edu.sg/%7Estan/PAPERS/RPG.pdf

