The Dining Philosophers

Specification and verification using CSP and PAT

Sun Jun

sunj@comp.nus.edu.sg

http://www.comp.nus.edu.sg/~sunj
N=5
N=5
Requirements

- A philosopher must hold two forks to eat.
- A philosopher must take the fork on his right and the one on his left.
- A philosopher only puts down the forks after eating.
Questions

- Is it possible that all philosophers may starve to death?
- Is it possible that a philosopher may starve to death?
- How to prevent a philosopher from starving?
Starvation-Free?

- Introduce a waiter at the table?
- More forks?
- Ask one philosopher to pick up the forks in a different order?
Formal Specification and Verification

- Specification helps to capture the essence of the problem.
- Formal specification (e.g., CSP) has well defined semantics.
- Automated verification support is available.
Modeling using CSP

Phil(i) = get.i.(i+1)%5 \rightarrow get.i.i \rightarrow eat.i \rightarrow put.i.(i+1)%5 \rightarrow put.i.i \rightarrow Phil(i)

*get.i.j is the event of i-th philosopher picking up the j-th fork.

e.g., Phil(0) = get.0.1 \rightarrow get.0.0 \rightarrow eat.0 \rightarrow put.0.1 \rightarrow put.0.0 \rightarrow Phil(0)

traces(Phil(0)) = ?
Modeling using CSP

\[
\text{Fork}(i) = \text{get.}(i-1)\%5.i \rightarrow \text{put.} (i-1)\%5.i \rightarrow \text{Fork}(i) \quad \Box \quad \text{get.i.i} \rightarrow \text{put.i.i} \rightarrow \text{Fork}(i)
\]

*get.i.j is the event of i-th philosopher picking up the j-th fork.
*\(\Box\) is external choice.

e.g., \(\text{Fork}(0) = \text{get.}4.0 \rightarrow \text{put.}4.0 \rightarrow \text{Fork}(0) \quad \Box \quad \text{get.}0.0 \rightarrow \text{put.}0.0 \rightarrow \text{Fork}(0)\)

\(\text{traces(}\text{Fork}(0)) = ?\)
Operational Semantics

- CSP has well-defined operational semantics to say how the system executes.
 - Assume that initially the process is
 - Phil(0) || Fork(0)
 - After engaging in event get.0.1, the process becomes
 - (get.0.0 → eat.0 → put.0.1 → put.0.0 → Phil(0)) || Fork(0)
 - After engaging in event get.0.0, the process becomes
 - eat.0 → put.0.1 → put.0.0 → Phil(0) || put.0.0 → Fork(0)

Reminder: Phil(0) = get.0.1 → get.0.0 → eat.0 → put.0.1 → put.0.0 → Phil(0)
Fork(0) = get.4.0 → put.4.0 → Fork(0) ⌐ get.0.0 → put.0.0 → Fork(0)
Modeling using CSP

College = Fork(0) || Phil(0) || Fork(1) || Phil(1) || Fork(2) || Phil(2) || Fork(3) || Phil(3) || Fork(4) || Phil(4)
Modeled, What Now?

- Model checking exhaustively searches through all possible behaviors of the system to verify whether the system satisfies certain properties.
- What are the questions we can ask about a given model?
Formal Verification

- Reachability Analysis
- Temporal Logic Properties
- Refinement Checking
Reachability Analysis

- whether certain state is reachable
 - Deadlock-freeness – whether the system may reach a state at which no further move is available.
 - Invariants – whether the system may reach a state at which a condition is satisfied (or violated).
- e.g., a pointer will never be null, the index of an array is never negative, etc.
Reachability Analysis Algorithm

```plaintext
working := an empty stack;
working.push(initial state);

while (working is not empty) {
    let s := working.pop();
    if (s satisfies certain condition) {
        produce a counterexample and return false;
    } else {
        foreach successor s' of s {
            if (s' is new) {
                working.push(s')
            } else {
            }
        }
    }
}

return true;
```
The bridge crossing puzzle
The bridge crossing puzzle

knight = 0; Lady = 0; King = 0; Queen = 0;
time = 0;

South () = [knight == 0 && Lady == 0] go_knight_lady {knight = 1; Lady= 1; time = time+2;} → North ()
 □ [knight == 0 && King == 0] go_knight_king {knight = 1; King= 1; time = time+5;} → North ()
 □ [knight == 0 && Queen == 0] go_knight_queen {knight = 1; Queen= 1; time = time+10;} → North ()
 □ [Lady == 0 && King == 0] go_lady_king {Lady = 1; King= 1; time = time+5;} → North ()
 □ [Lady == 0 && Queen == 0] go_lady_queen {Lady = 1; Queen= 1; time = time+10;} → North ()
 □ [King == 0 && Queen == 0] go_king_queen {King = 1; Queen= 1; time = time+10;} → North ()
 □ [knight == 0] go_knight {knight = 1; time = time+1;} → North ()
 □ [Lady == 0] go_lady {Lady = 1; time = time+2;} → North ()
 □ [King == 0] go_king {King = 1; time = time+5;} → North ()
 □ [Queen == 0] go_queen {Queen = 1; time = time+10;} → North ()
Formal Verification

- Reachability Analysis
 - Temporal Logic Properties
 - Refinement Checking
Temporal Logic Properties

• 0-th philosopher will never starve to death.
 - $\square \langle \rangle \mathit{eat.0}$ where \square reads as `always’ and $\langle \rangle$ as `eventually’.

• No philosophers starve.
 - $\square \langle \rangle \mathit{eat.0}$ and $\square \langle \rangle \mathit{eat.1}$ and ...
Temporal Logic Verification

- Given \[<>\text{eat.0}\], search for a loop which contains no transition labeled with eat.0.

- Two sets of algorithms can be used to find such a loop.
 - Nested depth-first-search.
 - Tarjan’s algorithm for finding maximum strongly connected components.
Nested Depth-First-Search

- Assume we are searching for a loop containing a state which satisfies some condition.
- Use a depth-first-search to find such a state.
- Use a second depth-first-search to check if the state is reachable from itself.
Tarjan’s SCC Algorithm

- The system can be viewed as a graph.
- A loop must be part of a Strongly Connected Component.
- Find the maximum SCC which contains such a state.
Temporal Logic Verification

• Given a (LTL) temporal logic formula, it’s negation is translated to a Büchi automaton.
• The product of the Büchi automaton and the process is computed.
• A counterexample is a loop which contains at least one accepting state.
Lacking of Fairness

• []<> eat.0 – one philosopher eats greedily and leaves no chance to the neighbors.
• []<> a car will reach its destiny – A pedestrian may go back and forth on a zebra crossing forever.
• []<> my car will change to the right lane and right-turn – there might be infinite stream of cars on the right lane.
•
Weak Fairness

- If an event is always enabled, it must be eventually engaged.
 - e.g., during the loop \(<\text{get.0.1, get.0.0, eat.0, put.0.1, put.0.0}>\), the event get.3.4 is always enabled.
Strong Fairness

- If an event is repeatedly enabled, it must be eventually engaged.
 - e.g., during the loop <get.0.1, get.0.0, eat.0, put.0.1, put.0.0>, the event get.4.0 is repeatedly enabled.
Modeling Fairness

• Each philosopher must eventually pick up a fork.
 – Phil(i) = \text{wl}(get.i.(i+1)\%5) \rightarrow get.i.i \rightarrow eat.i \rightarrow
 put.i.(i+1)\%5 \rightarrow put.i.i \rightarrow Phil(i)

• A fork must be eventually picked up by both philosophers.
 – Fork(i) = \text{sl}(get.(i-1)\%5.i) \rightarrow put. (i-1)\%5.i \rightarrow Fork(i)
 □ \text{sl}(get.i.i) \rightarrow put.i.i \rightarrow Fork(i)
Verification under Fairness

- Assume that each philosopher will eventually get his turn to pick up a fork, is \([_]<>\text{eat.0}\)?
 - Search for a loop such that during the loop each philosopher does pick up a fork and yet the loop contains no transition labeled with \text{eat.0}.
Formal Verification

- Reachability Analysis
- Temporal Logic Properties
 - Refinement Checking
Refinement Checking

- Verifying properties by showing a refinement relationship between a process modeling the system and a process modeling the property.
 - Given process P and Q, whether Q can do whatever P can do.
 - Or whether Q can not do whatever P can not do.
Hiding

- Given a process P and a set of events X, the process $P \setminus X$ hides occurrences of events from X.
 - e.g., College $\{\text{get.*.*, put.*.*}\}$
Trace Refinement Checking

• Question: is it possible that the philosophers eat in the pre-defined order?
 – i.e., whether $P = \text{eat.0} \rightarrow \text{eat.1} \rightarrow \text{eat.2} \rightarrow \text{eat.3} \rightarrow \text{eat.4} \rightarrow P$ trace-refines College $\{\text{get.*.*},\text{put.*.*}\}$?

• Question: is it that the philosophers only eat in the pre-defined order?
 – i.e., whether College $\{\text{get.*.*},\text{put.*.*}\}$ trace-refines P?
Refinement Checking

- Failures Refinement Checking,
 - P failures-refines Q means that Q not only can do whatever P can do, but also cannot do whatever P cannot do.
 - e.g., $P = \text{eat.0} \rightarrow P$, Stop trace-refines P but not failures-refines P.

- Failures/Divergence Refinement Checking,
 - Assume there might be infinite loop (of invisible events).
Summary

• Formal modeling is the starting point for formal system analysis.
 – Formal modeling allows us to focus on essence of the problems.

• Model checking is an active research area for formal verification.
 – this year’s Turing award!