
Part 6 Timed CSP and Integrated Formal Modeling

Overview

• Timed CSP

• Timed Communicating Object Z – TCOZ

• Active Objects and Network Topology

• Case Study: Lift System

• Sensor, Actuator and Control Systems

• Unified Modeling Language (UML)

• Linking TCOZ with UML

• Z family on the Web with their UML pictures

1

Timed CSP

• Timed CSP extends CSP by introducing a capability to quantify temporal

aspects of sequencing and synchronisation. Timing operators i.e., wait,

timeout, timed-interrupt are added to CSP

– S. Schneider. Concurrent and Real-time Systems: The CSP Approach, Wiley,

1999.

– J. Davies, Specification and Proof in Real-Time CSP, Cambridge University Press,

1993.

2

Prefix

A process which may participate in event a then act according to process

description P is written

a@t → P(t).

The event a is initially enabled by the process and occurs as soon as it is requested

by its environment, all other events are refused initially. The event a is sometimes

referred to as the guard of the process. The (optional) timing parameter t records

the time, relative to the start of the process, at which the event a occurs and allows

the subsequent behaviour P to depend on its value.

3

Understanding Timed Prefix

Let P be a process which has two free time variables t1 and t2. A possible

execution of the prefix:

a@t1 → b@t2 → P

↓ 3 (time passed)

a@t1 → b@t2 → P [(t1 + 3)/t1]

↓ a (event occur)

b@t2 → P [3/t1]

↓ 4 (time passed)

b@t2 → P [3/t1][(t2 + 4)/t2]

↓ b (event occur)

P [3/t1][4/t2]

4

Timeout

The timeout construct passes control to an exception handler if no event has

occurred in the primary process by some deadline.

The process

(a → P) .{t} Q

will try to perform a → P , but will pass control to Q if the a event has not

occurred by time t , as measured from the invocation of the process. For example,

MayPrint1 = (receive → print → STOP) .{60} shutdown → STOP

MP1(t) = (receive → print → STOP) .{60 − t} shutdown → STOP

5

Exercise: Transmitter

A transmitter which repeatedly send a given message x until it receives and

acknowledgement. Assume that the transmitter is in an environment which is

always ready to accept a send message, then it will send the message every 5 time

units until an ack message is received. (hint using recursion together with timeout).

6

Solution

Transmit(x) = send !x → ((ack → STOP) .{5} Transmit(x))

7

Delay

A process which allows no communications for period t then terminates is written

Wait t . The process

Wait t ; P = STOP .{t} P

a
t
→ P = a → Wait t ; P = a → (STOP .{t} P)

is used to represent P delayed by time t .

8

Exercise: A generic timed-collection

The generic timed-collection denotes a collection of elements of type X with a time

stamp. Operations are allowed to add elements to and delete elements from the

collection. When deleting an element from the collection, the oldest element should

be removed and output to the element should be removed and output to the

environment. The collection has the following timing properties. Firstly, that it

updates the internal state during a add or delete operation. Secondly, each element

of the collection becomes stale if it is not passed on within to time units of being

added to the collection. Stale elements should never be passed on, but are instead

purged from the collection upon becoming stale.

The generic function ps (purge stale) can be defined as

[X]
ps : (T × F(T × X)) → F(T × X)

∀ t : T; s : F(T × X) • ps(t , s) = {(to , e) : s | to > t • (to − t , e)}

e.g. ps(2, {(1, a), (3, b), (7, c)}) = {(1, b), (5, c)}.

9

Solution

TimedCollection =̂ TC∅.

TC∅ =̂ left?e : X → TC{(to ,e)}

TC{(t,a)}∪s =̂
(left?e : X@ti → TCps(ti ,{(t,a)}∪s)∪{(to ,e)} 2

right !a@ti → TCps(ti ,s)) .{t} TCps(t,s)

where (t , a) = find oldest({(t , a)} ∪ s).

[X]
find oldest : P1(T × X) → (T × X)

∀ s : P1(T × X) •
∃(t , e) : s • t = min(dom s)
find oldest(s) = (t , e)

10

Summary

For such an example Timed CSP is superior (to Object-Z) as a means of describing

process control.

Timed CSP also handles the timing issues of delays and timeouts simply and

elegantly. The allowed sequences of events are clearly and concisely determined by

the CSP code, there is no need to calculate preconditions nor is any other form of

deep reasoning required to understand the ways in which the timed-collection may

evolve.

On the other hand, the syntactic treatment of internal state in the above is

complex and unwielding, distracting strongly from the basically elegant treatment

of the delay and timeout issues.

CSP still has no standard support for state modeling in the form of mathematical

toolkits and libraries nor are there modular techniques for constructing and

reasoning about complex internal state.

11

Revisiting Object-Z

Buffer [X]

max : N

items : seqX
∆
size : N

#items = size ∧ size ≤ max

Init

items = 〈 〉

Join
∆(items)
i? : X

items ′ = 〈i?〉aitems

Leave
∆(items)
i ! : X

size 6= 0 ∧ items = items ′ a 〈i !〉

12

Two Linked Buffers (single thread)

TwoBuffers[X]

b1, b2 : Buffer [X]

b1 6= b2

Init

b1.Init ∧ b2.Init

Join =̂ b1.Join
Leave =̂ b2.Leave
Transfer =̂ b1.Leave ‖ b2.Join

13

l.J
oi

n

Join

r.
L

ea
ve

l.J
oi

n

time time

... ...

Transfer

r.
Jo

inl.L
ea

ve

right bufferleft buffer

JoinAndLeave

Figure 1: passive events

Transfer

r.
Jo

inl.L
ea

ve

r.
L

ea
ve

l.J
oi

n
l.J

oi
n

l.J
oi

n

Join

Join

Join

Leave

right bufferleft buffer

time time

... ...

Figure 2: active events

14

Object-Z and Timed CSP

• Object-Z

X an excellent tool for modeling data states

× but difficult for modelling real-time concurrent systems

• Timed CSP

X Good for specifying the timed process and communication

× Like CSP, cumbersome to capture the data state of a complex system

• Timed Communicating Object Z: a blending of Object-Z and Timed CSP

Related Work

* Z/OZ with CSP: Fischer, Smith, Derick, Suhl, Bolton, Davies, Woodcock ...

* Z with CCS: Galloway, Stoddart, Taguchi, Araki ...

15

Timed Communicating Object Z (TCOZ)

TimedBuffer [X]

items : seqX

left , right : chan

Init

items = 〈 〉

Add

∆(items)

i? : X

items ′ = 〈i?〉aitems

Remove

∆(items)

items ′ = items −B {last(items)}

Join =̂ [i : X] • left?i → Add ; Deadline tj

Leave =̂ [items 6= 〈 〉] • right !last(items)→ Remove; Deadline tl

Main =̂ µQ • (Join 2 Leave); Q

16

TCOZ Semantics

The support of timing primitives in TCOZ is made possible through the adoption

of Reed’s timed-failures semantics for Timed CSP. The timed-failures semantics

models CSP processes in terms of timed event-traces and timed event-failures. This

semantic model allows CSP to be extended with time related primitives such as

delays, timeouts, and clock-interrupts. In order to support objects with

encapsulated state this model is extended to include an initial state and state

update events. Object-Z operations are modelled as terminating sequences of timed

state-update events.

• B. Mahony and J.S. Dong. Overview of the Semantics of TCOZ. Integrated

Formal Methods (IFM’99), pages 66-85, Springer-Verlag, York, UK, June 1999.

17

The Notion of Active Object

• Active objects have their own thread of control.

• Passive objects are controlled by other objects in a system.

• A class for defining active objects is called an active class

• A class for defining passive objects is called a passive class.

• In TCOZ, Main, a non-terminating process definition, distinguishes the active

and the passive classes.

18

Inheritance between active/passive classes

• When a new active class is derived from an existing active class, the Main

process must always be redefined explicitly.

• A new active class can be derived from an existing passive class, in this case, a

Main process definition needs to be added.

• A new passive class can also be derived from an existing active class, in this

case, the Main process of the existing class is implicitly removed.

• A new passive class can be derived from an existing passive class following the

same rules as the standard Object-Z.

19

Composition and interaction of active objects

A

v : T ; ...

c : chan; ...

OpA1 =̂ ...

...

Main =̂ ...

B

a : A

...

...

OpB1 =̂ a.OpA1

...

A

�×(v , ...,OpA1, ...,OpAn)

...

OpA1 =̂ ...

...

Main =̂ ...

Identifying the object name with its

Main process, e.g. if ob1 and ob2 are ac-

tive object components, then ob1 ||| ob2

means ob1.Main ||| ob2.Main.

20

Two Communicating Timed Buffers

Timed-Buffer

l r rightmiddle

Timed-Buffer

left

TwoBuffers[X]

l : TimedBuffer [X][middle/right]

r : TimedBuffer [X][middle/left]

Main =̂ (l |[middle]| r \middle)

21

Complex network topologies

A

B

C

ab
bc

ac

(A[bc′/bc] |[ab, ac]| (B [ac′/ac] |[bc]|C [ab′/ab]) \ ab, ac, bc)[ab, ac, bc/ab′, ac′, bc′]

(‖ v1, v2, v3... • v1

ch12←→ v2, v2

ch23←→ v3, v3

ch13←→ v1, ...) (A,B ,C)

‖(A
ab
←→ B ,B

bc
←→ C ,C

ca
←→ A) or ‖(A ab

�- B bc
�- C ca

�- A)

22

The Lift Case Study

• Multi-floors with multi-elevators

• Non-trivial

• Commonly used example

• Both CSP and Object-Z have been

applied (but no real-time issues)

23

Floors

Controller

Lifts

service

enter select

request

visit

int_request

Detailed model can be found at:
B. Mahony and J.S. Dong. Timed Communicating Object Z. IEEE Transactions on Software

Engineering, 26(2):150-177, Feb 2000.

http://www.comp.nus.edu.sg/~dongjs/papers/tse00.ps

24

Button

state : On | Off

Init

state = Off

TurnOn

∆(state)

state ′ = On

TurnOff

∆(state)

state ′ = Off

TopFloor

downbutton : Button©C

request , enter , service : chan

Init

downbutton.Init

PressDown =̂ [downbutton.state = Off] •

(request?Down → downbutton.TurnOn); (enter !Down → Skip)

DownOff =̂ service?Down → downbutton.TurnOff

Main =̂ µT • (PressDown 2 DownOff); T

25

BottomFloor

upbutton : Button©C

Init

upbutton.Init

...

MiddleFloor

TopFloor , BottomFloor

Main =̂ µM • (PressDown 2 DownOff 2 PressUp 2 UpOff); M

Floor =̂ TopFloor ∪ BottomFloor ∪MiddleFloor

Floors

floors : seqFloor©C

...

Main =̂ ||| f : ranfloor

26

Lift door control

Door

open, conf , close, servo, sensor : chan

OpenDoor , CloseDoor =̂ ...

CycleDoor =̂ OpenDoor ; conf →

(µCD •Wait to ; CloseDoor O{sensor?(self , Interrupt)} OpenDoor ; conf → CD)

Main =̂ µD • open → CycleDoor ; close → D

Moving the lift

Shaft

move, arrive : chan

Main =̂ µ S • move?n →Wait |n| ∗ t̄ + delay ; arrive → S

27

Internal Q

panel : seqButton©C

int request , int sched , int serv : chan

NextUp, NextDown, Main =̂ ...

LiftControl

fl : N

md : MoveDirection

move, arrive : chan [shaft]

...

...

Main =̂ µLC •

...→ Internal ; LC 2

...→ External ; LC

28

Lift

iq : Internal Q©C

lc : LiftControl©C

s : Shaft©C

d : Door©C

Main =̂ ‖(

lc
move,arrive

� - s;

lc
open,close,conf

� - d ;

lc
int sched,int serv

� - iq)

move arrive

open

internal_Q

int_sched

door

shaft

lift_Control
int_serv

close

conf

lift

int_request

select

service

visit

Lifts

lifts : P Lift©C

Main =̂ ||| l : lifts

29

Controller

requests : seq(N×MoveDirection)

enter , select , visit , service : chan

Join

...

Remove

...

Dispatch =̂ [...] • select !item → Remove

CheckServ =̂

[item : N×MoveDirection] • visit?item → ...

Main =̂ µC • (Join 2 Dispatch 2 CheckServ); C

30

The Lift System

Floors

Controller

Lifts

service

enter select

request

visit

int_request

LiftSystem

fs : Floors©C

ls : Lifts©C

contr : Controller©C

Main =̂ ‖(fs enter
� - contr

select,check
� - ls

service
� - fs)

31

Sensors and Actuators — Control Systems

Logic

Control

Feedfoward

Elements

Actuating

Signal Variables

Controlled

SetpointCommand

Elements

Signal

Sensor

Feedback

Elements

Command Variables

Manipulated

Variables

Uncontrolled

Controlled

Process

× CSP channel mechanism is discrete

× CSP channel mechanism is synchronous

32

Example: Digital Temperature Display

33

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

screen

temp

nil

s

init on off on

19.0

20.0

21.0

22.0

23.0

C
o

Figure 3: The office communication scenario.

34

temp : R
◦C sensor, == temp : R s → R

◦C .

Internally, temp takes the syntactic role of a CSP channel. Whenever a

value v is communicated on the internal channel at a time t , temp(t) = v .

screen : Display actuator,

where

Display ::= Temp〈〈N ∗ 0.5◦C〉〉 | nil .

The internal role is that of the local state variable.

35

DTD

temp : R sensor

screen : Display actuator

on, off : chan

Init

screen = nil

SetScreen

∆(screen)

t? : R
◦
C

∃ dt : N ∗ 0.5◦
C •

dt = t ± 0.5◦
C ∧

screen ′ = Temp(dt)

Show =̂ ([t : R
◦
C] • temp?t → SetScreen; Deadline 5 s; WaitUntil 5 s; Show)

O off → NoShow

NoShow =̂ screen := nil ; on → Show

Main =̂ on → Show

36

Asynchronous active object

Synchronous active objects

• have discrete interfaces, synchronous channels;

• are highly dependent.

Asynchronous active objects

• have analog interfaces, asynchronous sensor/actuators;

• are highly independent;

• can be further classified into periodic and non-periodic objects.

37

Exercise: a calendar clock

A typical periodic object: a calendar clock ticks every second ...

CalendarTime == N yr×N mn×N dy×N hr×N min×N s .

Convert : N s → CalendarTime

... [detail of function omitted]

38

Solution

Clock

per == 1 s

gain == 50ms

total : N s

∆

display : CalendarTime actuator

display = Convert(total)

Inc

∆(total)

total ′ = total + 1

Main =̂ µC • Inc; Deadline gain; WaitUntil per ; C

39

UML

• UML stands for Unified (?) Modeling Language

• The UML combines/collects Data/Class Modeling concepts (extended ER

diagrams), Object Modeling, Behaviour Modeling (statechart diagrams) and

Component Modeling

• The UML is the OMG standard language for visualising, specifying,

constructing, and documenting the artifacts of a software-intensive system

• UML consists of use case, class, statechart, collaboration diagrams ...

40

Use Case Diagram

• Each use case is a sequence of related transactions performed by an actor and

the system in a dialogue. Actors are examined to determine their needs. Use

case diagrams are created to visualise the relationships between actors and use

cases

Se lect MoveD irect ion

Se lect D es tina ton

user

41

Class Diagram

• A class diagram shows the existence of classes and their relationships in the

logical view of a system. It consists of classes and their structure, association,

aggregation, inheritance relationships, multiplicity ...

Inte rnal_Q LiftControl Shaft Door

Lift

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Lifts

11..* 11..*

42

Collaboration Diagram – dynamic behavior, message-oriented

• A collaboration diagram displays object interactions organised around objects

and their links to one another

 : LiftControl

 : Shaft

 : Door

 : Internal_Q

1: m ove

2: arrive 3: o pen
4: c lose

5: conf
6 : in t_s ched

8 : in t_s erv()

7: i nt_s ched

43

Statechart Diagram – dynamic behavior, event-oriented

• A statechart diagram shows the life history of a given class, the events that

cause a transition from one state to another, and the actions that result from a

state change

PressDown

TurnOn

entry/ downbutton.TurnOn

TurnOn

entry/ downbutton.TurnOn

enter! (num , Down)

downbutton. s tate = Off

downbutton.state = On

Main

DownOff

entry/ downbutton.TurnOff

req ues t? (num , D ow n)

service?(num,Down)

44

Shortcomings of UML

• There is no unified formal semantics for all those diagrams. There are a few

approaches to formalize a subset of UML, e.g. Evans and Clark, 1998, Kim and

Carrington, 1999, ... Action Semantics 2001. Therefore, the consistency

between diagrams is problematic;

• There are limited capabilities for precisely modeling timed concurrency.

45

Linking TCOZ and UML

• Syntactically, UML/OCL (Object Constraint Language) is extended with

TCOZ communication interface types — chan, sensor and actuator. Upon

that, TCOZ sub-expressions can be used (in the same role as OCL) in the

statechart diagrams and collaboration diagrams.

• Semantically, UML class diagrams are identified with the signatures of the

TCOZ classes. The states of the UML statechart are identified with the TCOZ

processes (operations) and the state transition links are identified with TCOZ

events/guards.

• Effectively, UML diagrams can be seen as the viewpoint visual projections from

a formal complete and coherent model.

46

Combination Process of TCOZ and UML

1. Firstly, the UML use-case models (user-case and collaboration diagrams) are

used to analyse system requirements so that main classes and operations will

be identified (e.g. classification of the boundary and control classes).

Communication links of the collaboration diagrams guide the design of

communication interfaces of the TCOZ model (synchronisation — channel,

synchronisation — sensor/actuator).

2. Then, the UML class diagrams are used to capture the static structure of the

system, in which class/object relationships can be captured.

3. Based on UML class diagrams, detailed TCOZ formal models are constructed

in a bottom-up style. The states, timing and concurrent interactions of the

system objects are captured precisely in the TCOZ models.

4. Finally, UML state diagrams are used to visualize the behaviors (process states

and events) of essential components of the system, which are closely associated

with the behavior parts of the TCOZ model.

47

Class

B
A

......

......

A

B

B

a1, a2 : A
......

......

B

A
1..*

11

1 ..*

48

Synchronisation

A

c : chan
......

Main =̂ ...c!...

B

c : chan
......

Main =̂ ...c?...

AB

a : A
b : B
......

Main =̂ ...a c
¾- b...

a : A

b : B

1: c

49

Asynchronisation

A

c : Nactuator
......

......

B

c : N sensor
......

......

AB

a : A
b : B
......

Main =̂ ...a c
¾- b...

a : A

b : B

1: c

50

Dynamic Behavior

P1; e → P2 P1 P2e

P1; ([guard1] • P2 2

[guard2] • P3)

P1

P2

[guard1]

P3
[guard2]

P1 =̂ P2 ||| P3

P1

P2

P3

51

Light Control System (LCS)

In most existing light control systems, all lights are controlled manually. Electrical

energy is wasted by lighting rooms that are not occupied and by not adjusting light

levels relative to need and daylight. LCS is an intelligent control system. It can

detect the occupation of the building, then turn on or turn off the lights

automatically. It is able to tune illumination in the building according to the

outside light level. It gains input from sensors and actuators.

MotionDetector ControlledLight

LCS

1

1

1

1

1

1

1

1

RoomController

1

1

1

1

Light

52

Illumination == 1..10000 lux

Percent == {0} ∪ 10..100

MotionDetector

motion : chan
md : (Move | NoMove) sensor [motion sensor]

NoUser =̂ md?Move → motion!1 → User 2

md?NoMove → Wait 1 s; NoUser
User =̂ md?NoMove → motion!0 → NoUser 2

md?Move → Wait 1 s; User
Main =̂ NoUser

53

Light

dim : Percent actuator [dim value]
on : B

TurningOn =̂ dim := 100; on := true
TurningOff =̂ dim := 0; on := false

ControlledLight
Light

button, dimmer : chan [control channels]

ButtonPushing =̂ button?1 →
([dim > 0] • TurningOff 2 [dim = 0] • TurningOn)

DimChange =̂ [n : Percent] • dimmer?n →
([on] • dim := n 2 [¬ on] • Skip)

Main =̂ µN • (ButtonPushing 2 DimChange); N

54

MAIN

ButtonPushing

TurningOn

do/ dim : = 100
exit/ on := true

TurningOff

do/ dim := 0
exit/ on := false

Dim change

do/ dim := n

TurningOn

do/ dim : = 100
exit/ on := true

[dim = 0]

TurningOff

do/ dim := 0
exit/ on := false

[dim > 0]

but ton?1

dim mer?n[on]

55

satisfy : Percent ↔ Illumination

RoomController

dimmer ,motion : chan
odsensor : Illumination sensor
absenT : T

olight : Illumination

Adjust
dim! : Percent on dimmer

dim! satisfy olight

Ready =̂ motion?1 → On

Regular =̂ µR • [n : Illumination] •
odsensor?n → olight := n; Adjust ; dimmer !dim → R

On =̂ Regular O motion?0 → OnAgain
OnAgain =̂ (motion?1 → On) .{absenT} Off
Off =̂ dimmer !0 → Ready
Main =̂ Off

56

LCS

m : MotionDetector
l : ControlledLight
r : RoomCtrller

Main =̂ ‖(m motion
� - r dimmer

� - l)

 : M otionDetec tor : ControlledLight

 : Room Contro ller

1: m otion 2: dim m er

57

Z Family on the Web with their UML Photos

• Use eXtensible Markup Language (XML) to develop web environment for Z

family languages

– share design models

– hyperlinks among models

– advance browsing facilities

http://nt-appn.comp.nus.edu.sg/fm/zml/

• Develop techniques for projecting (object-oriented) Z models to UML

diagrams, based on XML Metadata Interchange (XMI).

• Education tool for helping students through the web to understand:

– Z schema calculus

– Object-Z inheritance

– Relations between Object-Z/TCOZ with UML

58

XMI Document

XSL Stylesheet

HTML Document

Original
 XML Document

XML entity
Definition (DTD) XML Schema

Internet Explorer 5

 Parsed XML

 XML Parser XSL Processor

Parsed XSL
 Commands

XT

 Parsed XML

 DOM/SAX Parser XSLT Processor

 Parsed XSL
 Commands

XSL Stylesheet

UML Diagram

 Rational
Rose2000

59

Formal Object Design of ZML

60

61

Basic Implementation Ideas

• ZML: Define a customized XML for Z family languages for

web-browsing/interchange purposes

• UML tool: Rational Rose 2000 supports XMI import/export according to

UML.DTD

• Translation rules are applied using XSLT techniques to automatically translate

Object-Z/TCOZ model(XML) to UML diagrams(XMI) and vice versa

62

Syntax definition

<ElementType name="op" content="eltOnly" order="seq">

<element type="name" minOccurs="1" maxOccurs="1"/>

<element type="delta" minOccurs="0" maxOccurs="1"/>

<element type="decl" minOccurs="0" maxOccurs="*"/>

<element type="predicate" minOccurs="0" maxOccurs="*"/>

...

</ElementType>

<ElementType name="classdef" content="eltOnly">

<element type=state" minOccurs=1" maxOccurs=1"/>

<element type=init" minOccurs="0" maxOccurs=1"/>

<element type="op" minOccurs="0" maxOccurs="*"/>

...

</ElementType>

63

XSL Transformation

<xsl:template match="classdef[@layout=’simpl’] classdef[@layout=’gen’]">

<html>

...

<a><xsl:attribute name="name"><xsl:value-of select="name"/></xsl:attribute>

...

<xsl:apply-templates select="state"/>

<xsl:apply-templates select="init"/>

<xsl:apply-templates select="op"/>

...

</html>

</xsl:template>

64

Light example

<classdef layout="simpl" align="left">

<name>Light</name>

<state>

<decl>

<name>dim</name>

<dtype><type>Percent</type><type>&actuator;</type></dtype></decl>

<decl>

<name>on</name>

<dtype><type>&bool;</type></dtype></decl>

</state>

<op layout="calc">

<name>TurningOn</name>

<predicate>dim := 100; on := true</predicate> </op>

...

</classdef>

65

66

67

Conclusion and Further Research/Studies

• State-based (Object-Z), Event-based (Timed CSP), Graph-based (UML)

• TCOZ

– combines the modelling powers from Object-Z and Timed CSP

– distinguishes the notion of active and passive objects

• Further research/studies

– applications to the specification of

∗ software architectures

∗ parallel distributed systems

– tools support

– TCOZ refinement rules

68

TCOZ papers

* J. Sun, J.S. Dong, J. Liu and H. Wang. Object-Z Web Environment and Projections to UML. WWW-10: 10th

International World Wide Web Conference, ACM Press, May 2001.

* J. Liu, J.S. Dong, B. Mahony and K. Shi. Linking UML with Integrated Formal Techniques, UML: Systems Analysis,

Design, and Development Issues, 2000.

* B. Mahony and J.S. Dong. Timed Communicating Object Z.IEEE Transactions on Software Engineering, 26(2):150-177,

Feb 2000.

• J.S. Dong, B. Mahony and N. Fulton, Capturing Concurrent Interactions of Mission Computer Tasks, The 6th

Asia-Pacific S/E Conference (APSEC’99), IEEE Press, Dec, 1999.

* B. Mahony and J.S. Dong. Sensors and Actuators in TCOZ. World Congress on Formal Methods (FM’99), Lecture Notes

in Computer Science, Springer-Verlag, Toulouse, France, Sep 1999.

• B. Mahony and J.S. Dong. Overview of the Semantics of TCOZ. Integrated Formal Methods (IFM’99), Springer-Verlag,

York, UK, June 1999.

* J.S. Dong and B. Mahony. Active Object in TCOZ. the IEEE International Conference on Formal Engineering Methods

(ICFEM’98), pages 16-25, IEEE Press, Brisbane, Dec 1998.

* B. Mahony and J.S. Dong. Network Topology and a Case Study in TCOZ. the 11th International Conference of Z Users

(ZUM’98), LNCS, pp 308-327, Springer-Verlag, Berlin, Sep 1998.

* B. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: An introduction to TCOZ. the 20th International

Conference on S/E (ICSE’98), pages 95-104, IEEE Press, Kyoto, April 1998.

• S. C. Qin, J. S. Dong and W. N. Chin. A Semantic Foundation of TCOZ in Unifying Theory of Programming.

FM’03. LNCS, Springer-Verlag, Pisa, Italy, Sep 2003.

• B. Mahony and J.S. Dong. Deep Semantic Links of TCSP and Object-Z: TCOZ Approach. Formal Aspects of

Computing journal, 13:142-160, Springer, 2002.

Most online versions can be found at: http://www.comp.nus.edu.sg/~dongjs

69

Other integrated approaches (partial collection)

• J. Woodcock, A. Cavalcanti: The Semantics of Circus. ZB 2002: 184-203

• G. Smith and J. Derrick. Specification, refinement and verification of concurrent systems - an integration of

Object-Z and CSP, Formal Methods in System Design, 2001.

• H. Treharne and S. Schneider. How to Drive a B Machine, ZB 2000 , Lecture Notes in Computer Science.

Springer-Verlag, 2000.

• C. Fischer. Combination and implementation of processes and data: from CSP-OZ to Java. PhD thesis. University

of Oldenburg, 2000.

• H. Wehrheim. Data Abstraction for CSP-OZ. In FM’99: World Congress on Formal Methods, Lecture Notes in

Computer Science. Springer-Verlag, 1999.

• M. Butler. csp2B: A Practical Approach to Combining CSP and B. In FM’99: World Congress on Formal Methods,

Lecture Notes in Computer Science. Springer-Verlag, 1999.

• C. Bolton, J. Davies and J. Woodcock. On the Refinement and Simulation of Data Types and Processes. In

Integrated Formal Methods (IFM’99). Springer-Verlag, 1999.

• C. Suhl. RT-Z: An Integration o Z and timed CSP. In Integrated Formal Methods (IFM’99). Springer-Verlag, 1999.

• K. Taguchi and K. Araki. The State-Based CCS Semantics for Concurrent Z Specification ICFEM’97. IEEE Press,

1997

• A. Galloway and W. Stoddart. An operational semantics for ZCCS. ICFEM’97. IEEE Press, 1997

70

