
1

Importance of Formal Specification & Design

Ariane 5 explosion
Cost: $7 billion

Intel Pentium 1994 Bug
Cost: $800 million

Therac-25 Radiation Overdose (1985-87)
3 patients died

Proton Therapy Machine Overdose (2014)
Source: still unknown

4195835 – 4195835 / 3145727*3145727 = 256 ?

“
“How can we provide people with software systems we can all

depend on?"

Early Work on Formal Analysis

– 1949 Alan Turing: “Checking Large Routine”

– 1978 C. A. R. Hoare (1980 Turing Winner). Communicating

Sequential Processes: event based calculus for modelling
concurrency and communication. Promoter on Z formal
specification language.

– 2007 three researchers won ACM Turing Award for
inventing model checking, one of them E. Clarke has also
won Franklin Institute 2014 Bower Award.

• successfully applied in industries, e.g.,

3

Formal Specification and Design Techniques (CS5232)

Dr. DONG Jin Song

thank Dr. R. Duke and Prof. G. Rose for the joint work on Object-Z and for providing some parts of the notes

thank Dr. B. Mahony for the joint work on TCOZ

http://www.comp.nus.edu.sg/˜ dongjs/ic52z5.html

1

Course Overview

• Introduction to Set, Logic and Z Notation

• Object-Oriented Z — Object-Z

• Advanced Formal Object Modelling Techniques

• Event Based Formalism — CSP

• Process Analysis Toolkit (PAT)

• Timed Communicating Object Z (TCOZ)

2

Part 1 — Introduction and Background

The Classical Engineer

• models with calculus, geometry

• analyses using classical theorems (Newton, Fourier, Gauss, ...)

• constructs a hard product

The Software Engineer

• models with set theory, logic

• analyses using rules of inference

• constructs a soft product

3

real
world

abstract model
and its

properties

abstract
model

less abstract
model

executable
program

compare

analyse

specification

implementation

refinement

model

verification

validation

4

Why Formal Specification?

A formal specification should

• add clarity and understanding by giving a description of the system which is

– complete

– unambiguous

– easily analysed;

• lead to better code that is

– reliable

– accurate

– maintainable

– reusable

– verified.

5

Formal Specification and Software Engineering

(Towards an integrated methodology for software engineering.)

Formal specification

• is not a replacement, but rather an enhancement of existing methodologies;

• can only be effective if integrated within an overall methodology for software

engineering.

• Implications of Using Formal Specification

– training in the use of notation

– integration with informal methodologies

– translation for client consumption

– emphasis upon abstraction

Formal methods by themselves will not solve the software crisis.

6

A Formal Specification forms

the basis of the

• contract between designer and client

• plan for builder (programmer)

• reference document for

– disputes, verification (testing)

– user documentation, maintenance

A Formal Specification should be

• precise

• readily analysed

• easy to modify, refine

• understandable

7

A Specification Language should

• be a precise thinking tool for designers

• enhance communication between

– designers

– designer and programmer

– designer and client

• enable formal (rigorous) analysis

• lead to separation of concerns

• allow abstraction, non-determinism

• encourage a sound design style

• have a formal syntax and semantics

• be usable

8

Some Specification Languages

State Oriented

Systems modelled by an underlying state which can undergo change:

VDM, Z, Object-Z

Process Algebra

Systems modelled as processes partaking in communication:

CSP, CCS, LOTOS

Algebraic

Systems modelled by equations related by axioms (re-writing rules):

ACT 1, CLEAR, OBJ, Larch

9

The Z Specification Language

• developed originally at Programming Research Group, Oxford University

• based on set theory and predicate logic

• system described by introducing fixed sets and variables and specifying the

relationships between them using predicates

• declarative, not procedural

• system state determined by values taken by variables subject to restrictions

imposed by state invariant

• operations expressed by relationship between values of variables before, and

values after, the operation

• variable declarations and related predicates encapsulated into schemas

• schema calculus facilitates the composition of complex specifications

10

Predicate Calculus

A predicate (proposition) is a statement that is either true or false.

• today is Monday

• x + y = 9 P(x , y)

• Logic operators:

– Not (¬), e.g. ¬ (11 < 3) is true

– And (∧), e.g. (11 > 3) ∧ (2 + 2 = 4)

– Or (∨), e.g. P ∨ (¬ P) (a tautology)

– Implies (⇒), e.g. (11 < 3) ⇒ (2 + 2 = 5) is true

– Equivalence (⇔), e.g. P ⇔ P (is a tautology)

11

Universal Quantifier (∀)
Consider the predicate

“all natural numbers are bigger than zero”.

We can write this formally as

∀ n : N • n > 0

More generally,

∀ x : X • P(x) abbreviates P(a) ∧ P(b) ∧ P(c) ∧ · · ·

Are the following predicates true of false?

∀n : N • n2 > n

∀n : N • (n2 = n) ⇒ (n = 0 ∨ n = 1)

12

Existential Quantifier (∃)
Consider the predicate

“there is a natural number bigger than zero”.

We can write this formally as

∃ n : N • n > 0

More generally,

∃ x : X • P(x) abbreviates P(a) ∨ P(b) ∨ P(c) ∨ · · ·

Are the following predicates true or false?

∃ x : N • x = x + 1

∀ x : N • (∃ y : N • y > x)

13

Sets

A set is a collection of elements (or members). e.g.

{a, b, c}, {3, 1, 16}

• the elements are not ordered

{a, b, c} is the same set as {b, a, c}

• the elements are not repeated

{a, a, b} is the same set as {a, b}

Some Given Sets

N == {0, 1, 2, . . .} natural numbers
N1 == {1, 2, 3, . . .}
Z == {0, 1,−1, 2,−2, . . .} integers
R real numbers
∅ empty set: the set with no elements

14

Membership

x ∈ X

is a predicate which is

• true if x is in the set X , e.g a ∈ {a, b, c} (T)

• false if x is not in the set X , e.g d ∈ {a, b, c} (F)

Notice the difference between ‘:’ and ‘∈’:

∀ x : Z • x > 5 ⇒ x ∈ N

x : Z declares a new variable x of type Z

x ∈ N is a predicate which is true or false depending upon the value of the

previously declared x

15

Set Expressions

{a, b, c, d} (is a finite set)
N (is an infinite set)

We can express a set by listing its elements, but this is impractical if the set is

large, and impossible if the set is infinite.

Instead, a set can be defined by giving a predicate which specifies precisely those

elements in the set.

e.g. the set of all natural numbers less than 99 is:

{ n : N | n < 99 }

In general, the set

{x : X | P(x)}

is the set of elements of X for which the predicate P is true.

16

Examples

the set of even integers is

{z : Z | ∃ k : Z • z = 2k}

the set of natural numbers which when divided by 7 leave a remainder of 4 is

{n : N | ∃m : N • n = 7m + 4}

N is the set {z : Z | z > 0}

N1 is the set {n : N | n > 1}

if a, b are any natural numbers then a . . b is defined as the set of all natural

numbers between a and b inclusive, i.e.

a . . b is the set {n : N | a 6 n 6 b}

17

Subset (⊆) and Proper Subset (⊂)

If S and T are sets,

S ⊆ T (S is a subset of T)

is a predicate equivalent to

∀ s : S • s ∈ T

S ⊂ T (S is a proper subset of T)

is a predicate equivalent to S ⊆

T ∧ S 6= T

S T

e.g. the following predicates are true

{0, 1, 2} ⊆ N
2 . . 3 ⊆ 1 . . 5
{a, b} ⊆ {a, b, c}
∅ ⊆ X for any set X

{x} ⊆ X ⇔ x ∈ X

18

Power Set (P)

If X is a set,

P X (the power set of X)

is the set of all subsets of X .

A ∈ P B = A ⊆ B

e.g. the following predicates are true

P{a, b} = {∅, {a}, {b}, {a, b}}
P ∅ = {∅} (6= ∅)
1 . . 5 ∈ P N
2 . . 4 ∈ P(1 . . 5)

If X has k elements, P X has 2k elements.

19

Set Union (∪)

Suppose S ,T : P X (i.e. S ⊆ X and

T ⊆ X); then
S ∪ T (S union T)

is a set equal to
{x : X | x ∈ S ∨ x ∈ T}

S T

e.g. the following predicates are true

{a, b, c} ∪ {b, g , h} = {a, b, c, g , h}
(1 . . 5) ∪ (3 . . 7) = 1 . . 7
N1 ∪ {0} = N
A ∪ ∅ = A (for any set A)

20

Set Intersection (∩)

Suppose S ,T : P X ; then
S ∩ T (S intersection T)

is a set equal to
{x : X | x ∈ S ∧ x ∈ T}

S T

e.g. the following predicates are true

{a, b, c} ∩ {b, g , h} = {b}
(1 . . 5) ∩ (3 . . 7) = 3 . . 5
{a, b, c} ∩ {d , g} = ∅ (the sets are disjoint)
A ∩ ∅ = ∅ (for any set A)

21

Set Difference (−)

Suppose S ,T : P X ; then
S − T (S subtract T)

is a set equal to
{x : X | x ∈ S ∧ x 6∈ T}

S T

e.g. the following predicates are true

{a, b, c} − {b, g , h} = {a, c}
(1 . . 5) − (3 . . 7) = 1 . . 2
N1 = N − {0}
A − ∅ = A (for any set A)

22

Cartesian Product (×)

If A and B are sets,

A × B (A cross B)

is the set of all ordered pairs (a, b) with a ∈ A and b ∈ B .

e.g. the following predicates are true

{a, b} × {a, c} = {(a, a), (a, c), (b, a), (b, c)}
(5,−1) ∈ N × Z
(5,−1) 6∈ N × N
6 6∈ N × N
A × ∅ = ∅ (for any set A)

R × R is the Cartesian plane

23

Cardinality

If X is any finite set,

#X

is a natural number denoting the cardinality of (i.e. the number of elements in) X .

e.g.

#{a, b, c} = 3

#∅ = 0

P A = 2#A (for any finite set A)

24

Types

Z is strongly typed: every expression is given a type.

Any set can be used as a type.

The following are equivalent within set comprehension

(x , y) : A × B

x : A; y : B

x , y : A (when B = A)

Notice that

∀S : P A • . . . not ∀S ⊆ A • . . .

∀S : P A • (∀ y : S • . . .) not ∀S : P A; y : S • . . .

25

Relations

A relation R from A to B , denoted

by
R : A ↔ B ,

is a subset of A × B .

A
BR

c

d

x

y

z

R is the set {(c, x), (c, z), (d , x), (d , y), (d , z)}

Notation: the predicates

(c, z) ∈ R and c 7→ z ∈ R and c R z

are equivalent.

domR is the set {a : A | ∃ b : B • a R b}
ranR is the set {b : B | ∃ a : A • a R b}

26

Examples

6 : N ↔ N

∀ x , y : N •
x 6 y ⇔ ∃ k : N • x + k = y

i.e. the relation 6 is the infinite subset

{(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2), . . .}

of ordered pairs in N × N.

divides : N1 ↔ N

∀ x : N1; y : N •
x divides y ⇔ ∃ k : N • x k = y

3 divides 6 but ¬ (3 divides 7)

27

Domain and Range Restriction

Suppose R : A ↔ B and S ⊆ A and T ⊆ B ; then

S ⊳ R is the set {(a, b) : R | a ∈ S}
R ⊲ T is the set {(a, b) : R | b ∈ T}

Notice that both are true:

S ⊳ R ∈ A ↔ B and R ⊲ T ∈ A ↔ B

e.g. if

has sibling : People ↔ People then

female ⊳ has sibling is the relation is sister of

has sibling ⊲ female is the relation has sister

28

Domain and Range Subtraction

Suppose R : A ↔ B and S ⊆ A and T ⊆ B ; then

S −⊳ R is the set {(a, b) : R | a 6∈ S}
R −⊲ T is the set {(a, b) : R | b 6∈ T}

The following predicates are true

S −⊳ R = (A − S) ⊳ R

R −⊲ T = R ⊲ (B − T)
S −⊳ R ∈ A ↔ B

R −⊲ T ∈ A ↔ B

female −⊳ has sibling is the relation is brother of

has sibling −⊲ female is the relation has brother

29

Relational Image

Suppose R : A ↔ B and S ⊆ A

R(| S |) = {b : B | ∃ a : S • a R b}

R(| S |) ⊆ B

divides(| {8, 9} |)
= {x : N | ∃ k : N • x = 8k ∨ x = 9k}
= {numbers divided by 8 or 9}

6 (| {7, 3, 21} |) = {x : N | x > 3}

has sibling(| male |) = {people who have a brother}

30

Inverse

Suppose R : A ↔ B

R−1 = {(b, a) : B × A | a R b}

R−1 ∈ B ↔ A

has sibling−1 = has sibling

divides−1 = has divisor

succ : N ↔ N

∀ x , y : N •
x succ y ⇔ x + 1 = y

succ−1 = pred

31

Relational Composition

Suppose R : A ↔ B and S : B ↔ C

R o
9 S

= {(a, c) : A × C | ∃ b : B • a R b ∧ b S c}

a b
c

A B
C

R
S

R o
9 S ∈ A ↔ C

e.g.

is parent of o
9 is parent of = is grandparent of

R0 = id[A], R1 = R, R2 = R o
9 R, R3 = R o

9 R o
9 R, . . .

32

Functions

A (partial) function f from a set A to a set B , denoted by

f : A 7→ B ,

is a subset f of A × B with the property that for each a ∈ A there is at most one

b ∈ B with (a, b) ∈ f .

A
B

a b

f : A 7→ B

dom f is the set {a : A | ∃ b : B • (a, b) ∈ f }
ran f is the set {b : B | ∃ a : A • (a, b) ∈ f }

33

Function Application

Suppose f : A 7→ B and a ∈ dom f ;

then f (a) denotes the unique image

in B that a is mapped to by f .

A
B

a

f

f(a)

The predicates

(a, b) ∈ f and f (a) = b

are equivalent.

Total Functions

A function f : A 7→ B is a total function, denoted

f : A → B ,

if and only if dom f is the set A.

34

Specifying Functions

(1) Using a Look-up Table

If a function f : A 7→ B is finite (and not too large) we can specify the function

explicitly by listing all the pairs (a, b) in the subset of A × B where f (a) = b.

e.g.

address : PassportNo → Address

PassportNo Address

A001017 77 Sunset Strip

· · · · · ·

· · · · · ·

G707165 19 Mail Street

· · · · · ·

35

(2) Declaring Axioms

A function can be specified by giving a predicate determining which pairs (a, b) are

in the function.

(a)

double : N → N

∀n : N • double(n) = 2n

(b)

halve : N 7→ N

dom halve = {n : N | ∃m : N • 2m = n}
∀n : dom halve • 2 ∗ halve(n) = n

36

(c)

root : N 7→ N

dom root = {n : N | ∃m : N • m2 = n}
∀n : dom root • (root(n))2 = n

(d)

+ : N × N → N

∀(n,m) : N × N • +(n,m) = n + m

(e) Let People be the set of all living people.

birth : People → N

∀ p : People • birth(p) is the year of p’s birth

37

(3) Using Recursion

This is a variant on the previous declarative specification; a function is defined

recursively in terms of itself.

e.g.

fact : N1 → N

fact(1) = 1
∀n : N1 − {1} • fact(n) = n ∗ fact(n − 1)

so

fact(1) = 1
fact(2) = 2 ∗ fact(1) = 2 ∗ 1 = 2
fact(3) = 3 ∗ fact(2) = 3 ∗ 2 = 6
fact(4) = 4 ∗ fact(3) = 4 ∗ 6 = 24

and so on....

38

(4) Giving an Algorithm

A function f : A 7→ B is specified by an algorithm (i.e. a program) such that given

any element a in the domain of f , the element f (a) can be computed using the

algorithm.

e.g.

input n : N
var x , y : integer;
begin
x := n; y := 0;
while x 6= 0 do

begin
x := x − 1; y := y + 2
end;

write(y)
end.

This algorithm

computes the function.

But how can

we prove this?

double : N → N

∀n : N • double(n) = 2n

39

Function Overriding

Suppose f , g : A 7→ B ; then

f ⊕ g is the function (dom g −⊳ f) ∪ g

i.e. the following predicates are true

dom f ⊕ g = dom f ∪ dom g

∀ a : dom g • (f ⊕ g)(a) = g(a)
∀ a : dom f − dom g • (f ⊕ g)(a) = f (a)
f ⊕ g ∈ A 7→ B

e.g.

{a 7→ x , b 7→ y , c 7→ x} ⊕ {a 7→ y} = {a 7→ y , b 7→ y , c 7→ x}

double ⊕ root = {(0, 0), (1, 1), (2, 4), (3, 6), (4, 2), · · ·}

40

Sequences

A sequence s of elements from a set A, denoted

s : seqA,

is a function s : N 7→ A where dom s = 1 . . n for some natural number n. For

example,

〈b, a, c, b〉 denotes the sequence (function){1 7→ b, 2 7→ a, 3 7→ c, 4 7→ b}

The empty sequence is denoted by 〈 〉.

The set of all sequences of elements from A is denoted seqA and is defined to be

seqA == {s : N 7→ A | ∃n : N • dom s = 1 . . n}

We define seq1 A to be the set of all non-empty sequences, i.e.

seq1 A == seqA − {〈 〉}

Notice that: 〈a, b, a〉6= 〈a, a, b〉6= 〈a, b〉

41

Special Functions for Sequences

Concatenation

〈a, b〉a〈b, a, c〉= 〈a, b, b, a, c〉

Head

head : seq1 A → A

∀ s : seq1 A • head(s) = s(1)

head〈c, b, b〉= c

Tail

tail : seq1 A → seqA

∀ s : seq1 A • 〈head(s)〉atail(s) = s

tail〈c, b, b〉= 〈b, b〉

42

Part 2 — Z Specifications

Z Case Study: A Message Buffer

Leave Buffer Join

• A number of messages are transmitted from one location to another.

• Because of other traffic on the line each message for transmission is placed in a

buffer which outputs the message when the line is free.

• This buffer may contain several messages at any time, but there is a fixed

upper limit on the number of messages the buffer may contain.

• The buffer operates on a first in/first out (FIFO) principle.

43

Formal Specification

The State Schema

[MSG] (The exact nature of these messages is not important)

is the set of all possible messages that could ever be transmitted.

max : N (The actual value of max is not important)

is the constant maximum number of messages that can be held in the buffer at any

one time.

Buffer

items : seqMSG

#items 6 max

declaration

predicate

e.g. suppose MSG = {m1,m2,m3} and max = 4

Then items = 〈m1,m2〉 is an instance, but items = 〈m3,m1,m1,m2,m2〉 is not

44

• a schema specifies a relationship between variable values; Buffer is a state

schema

• a state schema specifies a ‘snapshot’ of a system

• variables are declared and typed in the top part of the schema

• a predicate (axiom) restraining the possible values of the declared variables is

given in the bottom part of the schema

• an instance of a schema is an assignment of values to variables consistent with

their type declaration and satisfying the predicate

45

Operation Schema

The state schema Buffer gives a static view of the system. To specify how the

system can change we need to specify operation schema.

An operation can be thought of as taking an instance of the state schema and

producing a new instance.

To specify such an operation we express as a predicate the relationship between the

instance of the state before the operation and the instance after the operation.

We adopt the convention that the value of state variables before the operation are

denoted by unprimed identifiers, while values after the operation are denoted by

primed identifiers.

For the message buffer there are two operations:

Join (a new message is added to the buffer)

Leave (a message leaves the buffer)

46

The Join Operation

Join

items, items ′ : seqMSG

msg? : MSG

#items 6 max

#items ′ 6 max

#items < max

items ′ = items a 〈msg?〉

• items denotes the sequence of messages in the buffer before the operation

• items ′ denotes the sequence of messages in the buffer after the operation

• the decoration ? denotes an input

• there is an implicit ∧ between each line

47

• the first two lines of the predicate indicate that we have a valid instance of the

state schema Buffer both before and after the operation

• the third line of the predicate is a pre-condition for the operation: it indicates

that for the Join operation to be possible the buffer must not already be

completely full

• the last line of the predicate specifies the relationship between the buffer

contents before and after the operation: the input message is appended to the

sequence of messages already in the buffer. e.g. suppose

MSG = {m1,m2,m3} and max = 4 and
items = 〈m1,m2,m1〉 and msg? = m3;

then after the operation

items = 〈m1,m2,m1,m3〉

48

Schema Inclusion

Because we always have a ‘before’ and ‘after’ instance of the state schema for any

operation we make the following syntactic simplification: define

∆Buffer

items, items ′ : seqMSG

#items 6 max

#items ′ 6 max

and we can now write Join by including this schema:

Join

∆Buffer

msg? : MSG

#items < max

items ′ = items a 〈msg?〉

49

In general, including a schema in the declaration part of another schema means

that the included schema has its declaration added to the new schema, and its

predicate conjoined to the predicate of the new schema.

e.g. if

A

x : T1

y : T2

P(x , y)

S

A

z : T3

Q(x , y , z)

then S expands to the schema

S

x : T1

y : T2

z : T3

P(x , y) ∧ Q(x , y , z)

50

The Leave Operation

Leave

∆Buffer

msg ! : MSG

items 6= ∅

items = 〈msg !〉aitems ′

• the decoration ! denotes an output

• the first line of the predicate is a pre-condition for the operation: it indicates

that for the Leave operation to be possible the buffer must not be empty

• the last line of the predicate specifies the relationship between the buffer

contents before and after the operation: the output message is taken from the

head of the sequence of messages in the buffer, leaving just the tail of the

sequence in the buffer.

51

The Initial State

To complete the specification of the message buffer we need to specify the initial

state of the buffer:

BufferInit

Buffer

items = 〈 〉

i.e.

BufferInit

items : seqMSG

#items 6 max

items = 〈 〉

Conclusions
We have specified the message buffer in terms of what an observer of the buffer can

expect to see. Initially the buffer would be empty, and then the operations of Join

and Leave can occur whenever they are enabled (i.e. when their pre-conditions are

satisfied). Operations are assumed to be atomic (i.e. occur instantaneously). At all

times an observer would notice that the state schema for the buffer is satisfied.

52

Extending Specifications

Example: A Slow Buffer

delay : N

SlowBuffer

Buffer

idle : N

i.e.

SlowBuffer

items : seqMSG ; idle : N

#items 6 max

SlowBufferInit

SlowBuffer

BufferInit

idle = 0

i.e.

SlowBufferInit

items : seqMSG

idle : N

#items 6 max ∧ items = 〈 〉 ∧ idle = 0

53

Merging Schemas

A

x : T1

y : T2

P(x , y)

B

y : T2

z : T3

Q(y , z)

C

A

B

where

C

x : T1

y : T2

z : T3

P(x , y) ∧ Q(y , z)

• type compatibility is needed to merge schemas

54

Slow Operations

SlowJoin

∆SlowBuffer

Join

idle > delay

idle ′ = 0

i.e.

SlowJoin

items, items ′ : seqMSG

idle, idle ′ : N
msg? : MSG

#items 6 max ∧ #items ′ 6 max

#items < max

items ′ = items a 〈msg?〉
idle > delay ∧ idle ′ = 0

55

SlowLeave

∆SlowBuffer

Leave

idle > delay ∧ idle ′ = 0

Tick

∆SlowBuffer

idle ′ = idle + 1 ∧ items ′ = items

Exercise:

give the expanded form of the oper-

ation schemas SlowLeave and Tick .

56

Reasoning About the Specification

Can we verify that the message buffer as specified has the FIFO property, i.e.

messages leave the buffer in the same order as they arrive?

To do this we introduce auxiliary variables which do not alter the functionality of

the specification but aid in the analysis.

In this case we introduce auxiliary sequences inhist and outhist to record the

history of the flow of messages into and out of the buffer.

The new system obtained from the buffer by adding these auxiliary variables can

be specified by including the original schemas into new schemas which contain the

extra information about auxiliary variables.

57

RecordedBuffer

Buffer

inhist : seqMSG

outhist : seqMSG

RecordedBufferInit

RecordedBuffer

BufferInit

inhist = 〈 〉
outhist = 〈 〉

RecordedJoin

∆RecordedBuffer

Join

inhist ′ = inhist a 〈msg?〉
outhist ′ = outhist

RecordedLeave

∆RecordedBuffer

Leave

inhist ′ = inhist

outhist ′ = outhist a 〈msg !〉

58

e.g. the schema RecordedJoin with the included schemas expanded becomes:

RecordedJoin

items, items ′ : seqMSG

inhist , inhist ′ : seqMSG

outhist , outhist ′ : seqMSG

msg? : MSG

#items 6 max

#items ′ 6 max

#items < max

items ′ = items a 〈msg?〉

inhist ′ = inhist a 〈msg?〉
outhist ′ = outhist

How can we use the auxiliary variables to prove that the buffer satisfies the

FIFO property ?

59

Theorem

∀RecordedBuffer • inhist = outhist a items

Proof:

Use structural induction.

Initially inhist = outhist = items = 〈 〉,

so the predicate is true.

Suppose the predicate is true, and RecordedJoin occurs.

After the operation

inhist ′ = inhist a 〈msg?〉∧ outhist ′ = outhist ∧ items ′ = items a 〈msg?〉

Hence: inhist ′

= inhist a 〈msg?〉= (outhist a items) a 〈msg?〉

= outhist a (items a 〈msg?〉) = outhist ′ a items ′

and the predicate remains true. A similar argument shows that the operation

RecordedLeave also preserves the predicate. 2

60

Conjunction

SlowRecordedBuffer =̂ SlowBuffer ∧ RecordedBuffer

is equivalent to merging the schemas:

SlowRecordedBuffer

SlowBuffer

RecordedBuffer

Also

SlowRecordedBufferInit =̂ SlowBufferInit ∧ RecordedBufferInit

SlowRecordedJoin =̂ SlowJoin ∧ RecordedJoin

If A and B are schemas:

• the declaration of A∧ B is the union of the declarations of A and B ;

• the predicate of A∧ B is the conjunction of the predicates of A and B .

61

Disjunction

Flag ::= ok | error

JoinOK

Join

flag ! : Flag

flag ! = ok

JoinError

ΞBuffer

flag ! : Flag

#items = max ∧ flag ! = error

CompleteJoin =̂ JoinOK ∨ JoinError

CompleteJoin

∆Buffer

msg? : MSG ; flag ! : Flag

#items < max ∧ items ′ = items a 〈msg?〉∧ flag ! = ok

∨
#items = max ∧ items ′ = items ∧ flag ! = error

62

If A and B are schemas:

• the declaration of A∨ B is the union of the declarations of A and B ;

• the predicate of A∨ B is the disjunction of the predicates of A and B .

In general

A

x : T1

y : T2

P(x , y)

B

y : T2

z : T3

Q(y , z)

conjunction

A∧ B

x : T1; y : T2; z : T3

P(x , y) ∧ Q(y , z)

disjunction

A∨ B

x : T1; y : T2; z : T3

P(x , y) ∨ Q(y , z)

63

Composition

Join o

9
Leave

is an (atomic) operation with the effect of a Join followed by a Leave. Defining

JoinLeave =̂ Join o

9
Leave gives

JoinLeave

∆Buffer

msg?,msg ! : MSG

#items < max

∃ items ′′ : seqMSG • items ′′ = items a 〈msg?〉∧ items ′′ = 〈msg !〉aitems ′

• the pre-state of Join is the pre-state of Join o

9
Leave

• the post-state of Join is identified with the pre-state of Leave and hidden

within Join o

9 Leave

• the consequent post-state of Leave is the post-state of Join o

9
Leave

64

Composition in general

A

x : T1

y : T2

P(x , y)

AOP1

∆A

t3? : T3

t4! : T4

Q1(x , x ′, y , y ′, t3?, t4!)

AOP2

∆A

t5? : T5

t6! : T6

Q2(x , x ′, y , y ′, t5?, t6!)

AOP1
o

9 AOP2

∆A

t3? : T3; t4! : T4; t5? : T5; t6! : T6

∃ x ′′ : T1; y ′′ : T2 •
Q1(x , x ′′, y , y ′′, t3?, t4!) ∧ Q2(x

′′, x ′, y ′′, y ′, t5?, t6!)

65

Piping

Duplicate

msg? : MSG ; duplicate! : seqMSG

duplicate! = 〈msg?,msg?〉

LeaveDuplicated =̂ Leave >> Duplicate

LeaveDuplicated

∆Buffer

duplicate! : seqMSG

items 6= 〈 〉

∃m : MSG • items = 〈m〉aitems ′ ∧ duplicate! = 〈m,m〉

• the output variables of Leave and the input variables of Duplicate with

identical bases (i.e. ignoring the decorations ‘?’ and ‘!’ respectively) have their

values identified and hidden in Leave >> Duplicate.

66

Piping in general

A

x : T1; y : T2

P(x , y)

D

v : T3; w : T4

Q(v ,w)

AOP

∆A

t5? : T5

t6! : T6

RA(x , x ′, y , y ′, t5?, t6!)

DOP

∆D

t6? : T6

t7! : T7

RD(v , v ′,w ,w ′, t6?, t7!)

AOP >> DOP

∆A

∆D

t5? : T5

t7! : T7

∃ t : T6 • RA(x , x ′, y , y ′, t5?, t) ∧ RD(v , v ′,w ,w ′, t , t7!)

67

Non-determinism

G

a, b, c : N

a 6 b ∧ a = c

GOP1
∆G

a ′ = 3

• b′ can take any value > 3 regard-

less of the value of b

• c′ = 3 because the state invariant

gives a ′ = c′

• if the value of b is to remain un-

changed, b = b′ must be added

GOP2
∆G

out ! : N

out ! = a + b + c

• the values of a ′, b′, c′ are undeter-

mined except that

a ′ 6 b′ and a ′ = c′

• compare with using ΞG

68

Renaming

A

x : T1

y : T2

P(x , y)

R =̂ A[z/y] expands to

R

x : T1

z : T2

P(x , z)

e.g TwoJoins =̂ Join[msg1?/msg?] o

9
Join[msg2?/msg?]

TwoJoins

∆Buffer

msg1?,msg2? : MSG

#items < max − 1 ∧ items ′ = items a 〈msg1?〉a〈msg2?〉

(compare this with Join o

9 Join)

69

Schemas as Types

Instantiation

• a schema determines a type

• a variable of type schema (an instance) can be declared

• variables within an instance are referenced using the ‘dot’ notation

e.g.

TwoBuffers

a, b : Buffer

a.items = b.items

expands to give

TwoBuffers

a, b : Buffer

#a.items 6 max

#b.items 6 max

a.items = b.items

70

In general, if

A

x : T1

y : T2

P(x , y)

then

I

a : A
expands to give

I

a : A

P(a.x , a.y)

H 1
A

x : T3

has a type clash

unless T1 = T3

H 2
a : A

x : T3

has no type clash

71

Global Definitions (constants)

square : N → N

∀n : N • square(n) = n2

temp : N

temp < 451

max : N

Schemas can be used as types in global definition:

length : Buffer → N

∀ b : Buffer •
length(b) = #b.items

72

Generic Typing

In schemas:

Buffer [T]
items : seqT

#items 6 max

Join [T]
∆Buffer [T]
t? : T

#items < max ∧ items ′ = items a 〈t?〉

In global definitions:

[T]
head : seq1 T → T

∀ s : seq1 T • head s = s(1)

73

Alternative Syntax

A

x : T1

y : T2

P(x , y)

can be written as

A =̂ [x : T1; y : T2 | P(x , y)]

e.g.

Buffer =̂ [items : seqMSG | #items 6 max]

SlowBufferInit =̂ [SlowBuffer ; BufferInit | idle = 0]

∆Buffer =̂ [Buffer ; Buffer ′] (= Buffer ∧ Buffer ′)

74

Z Case Study: Alternating-Bit Protocol

TransMsg

Trans

MsgChan

AckChan

Rec

RecMsg

RejMsg
RecMsg

Retrans
TransMsg

RecAck TransAck

LoseMsg

LoseAck

75

Tag == {0, 1}

[MSG]

TagMsg == Tag × MSG

Trans

buf : seqTagMsg

tag : Tag

#buf 6 1
∀ t : Tag ; m : MSG •

buf = 〈(t ,m)〉 ⇒ tag = t

Rec

exptag : Tag

MsgChan

msgchan : seqTagMsg

AckChan

ackchan : seqTag

State =̂ Trans ∧ Rec ∧MsgChan ∧AckChan

76

• buf contains any tagged message that has been transmitted but not yet

acknowledged

• tag is the tag of the last tagged message to be transmitted

• exptag is the tag of the next message expected by the receiver

• msgchan is the sequence of tagged messages on route to the receiver

• ackchan is the sequence of tags of messages acknowledged by the receiver on

route to the transmitter

StateInit

State

buf = 〈 〉
tag = 0
msgchan = 〈 〉
exptag = 1
ackchan = 〈 〉

77

Operations

If buf is empty, a message can

be accepted from the environ-

ment, tagged and this tagged

message transmitted.

TransMsg

∆Trans

∆MsgChan

m? : MSG

buf = 〈 〉
tag ′ = 1 − tag

buf ′ = 〈(tag ′,m?)〉

msgchan ′ = msgchan a buf ′

If buf is not empty, its con-

tents can be re-transmitted.

Retrans

ΞTrans

∆MsgChan

buf 6= 〈 〉

msgchan ′ = msgchan a buf

78

If msgchan is not empty, the tagged message at its head can be accepted by the

receiver.

If its tag is the expected tag,

the message is output to the

environment.

RecMsg

∆MsgChan

∆Rec

m! : MSG

msgchan 6= 〈 〉
(exptag ,m!) = headmsgchan

msgchan ′ = tailmsgchan

exptag ′ = 1 − exptag

If the tag of the tagged mes-

sage at the head of msgchan is

not the expected tag, the mes-

sage is rejected.

RejMsg

∆MsgChan

ΞRec

msgchan 6= 〈 〉
∄m : MSG •

(exptag ,m) = headmsgchan

msgchan ′ = tailmsgchan

79

The tag of the last message output to the environment can be transmitted back as

an acknowledgement.

TransAck

ΞRec

∆Ackchan

ackchan ′ = ackchan a 〈1 − exptag〉

When an acknowledgement is received by the transmitter, buf is emptied if the

acknowledgement equals tag ; otherwise it is rejected.

RecAck

∆AckChan

∆Trans

ackchan 6= 〈 〉
ackchan ′ = tail ackchan
tag = head ackchan ⇒ buf ′ = 〈 〉
tag 6= head ackchan ⇒ buf ′ = buf

tag ′ = tag

80

At any time the tagged message at the head of msgchan can be lost.

LoseMsg

∆MsgChan

msgchan 6= 〈 〉
msgchan ′ = tailmsgchan

At any time the acknowledgement at the head of ackchan can be lost.

LoseAck

∆AckChan

ackchan 6= 〈 〉
ackchan ′ = tail ackchan

81

Behavioural Modelling in Z

• move from an initial state to successor states by a sequence of enabled

operations

• no inbuilt constraints on the selection of enabled operations

• history (trace) constraints must be explicitly introduced with history variables

• non-determinism in both operation specification and in the selection of enabled

operations

82

	5232opening.pdf
	
	Slide Number 2
	Early Work on Formal Analysis

