Object-Z

is a specification language extending Z so as to facilitate the specification of systems in an object-oriented style.

The view is taken that systems are composed of communicating objects.

When specifying a system in Object-Z,

- identify and specify the underlying objects;
- specify the system in terms of the communication between the underlying objects.

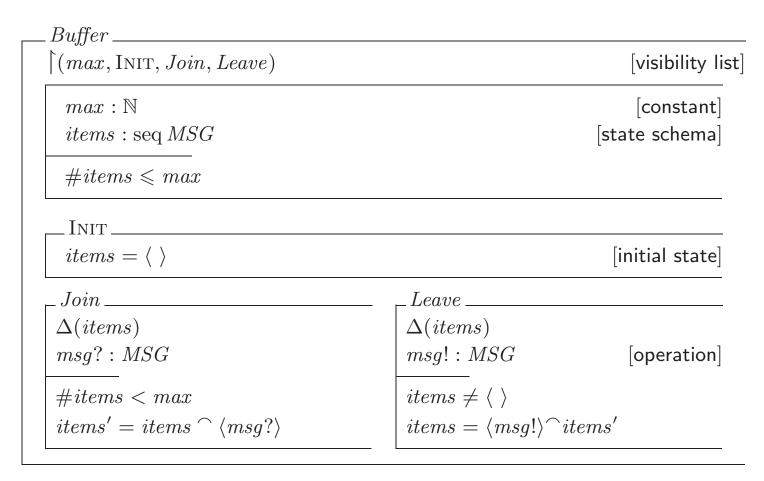
An object may itself be a system of communicating objects.

The Class Construct: Encapsulation

Class Name _______ visibility list inherited classes local types state initial state operations

- the class construct encapsulates all relevant features; it is like a template from which objects of the class can be stamped
- the visibility list specifies the interface between object of the class and their environment
- a class incorporates all the features of its inherited classes
- local types have the syntax of Z global types
- the state, initial state and operations have a syntax based on that for Z schemas
- variables declared in the state are called **attributes**
- an instance of a class is an assignment of values to attributes consistent with the state; at any time an object of a class will have an associated value which is some instance of the class

Object-Z Case Study: A Buffer of Messages



- the state is an unnamed schema
- the state schema is implicitly merged into the initial schema

INIT $max : \mathbb{N}; items : seq MSG$ $#items \leq max \land items = \langle \rangle$

• the state schema in both primed and unprimed form is implicity merged into each operation schema

• the Δ convention is modified: only attributes that may change are listed—attributes not listed do not change

Inheritance

 $\begin{tabular}{c} LossyBuffer & & \\ Buffer & & \\ Lose & & \\ \hline \Delta(items) & \\ items \neq \langle \ \rangle & \\ items' = tail items & \\ \end{tabular}$

_LossyBuffer
$max: \mathbb{N}; items: \operatorname{seq} MSG$
$\# item s \leqslant max$
_INIT
$items = \langle \rangle$
_ Join
•••
Leave
$items \neq \langle \rangle \land items' = tail items$

Instantiation and Communication

- an object is a variable of class type — objects are instantiations of classes
- objects have **integrity** change state via class operations only
- objects have persistence

 exist from creation to deallocation
- objects communicate by message passing — engage in cooperative operations

The initial schema of *Channel* is equivalent to:

 $\begin{bmatrix} \text{INIT} \\ b_1.items = \langle \rangle \land b_2.items = \langle \rangle \end{bmatrix}$

The operations of *Channel* are equivalent to:

$$\begin{array}{c} Join \\ msg?: MSG \\ \hline open(b_1) \\ \#b_1.items < b_1.max \\ b_1.items' = b_1.items \land \langle msg? \rangle \\ b_1.max' = b_1.max \\ \end{array} \begin{array}{c} Leave \\ msg!: MSG \\ \hline open(b_2) \\ b_2.items \neq \langle \rangle \\ b_2.items = \langle msg! \rangle ^b_2.items' \\ b_2.max' = b_2.max \\ \end{array}$$

 $_ Transfer _ \\ \exists msg : MSG \\ b_1.Leave[msg/msg!] \\ b_2.Join[msg/msg?]$

or

$$\begin{array}{l} Transfer \\ open(b_1, b_2) \\ b_1.items \neq \langle \rangle \\ \# b_2.items < b_2.max \\ \exists msg: MSG \\ b_1.items = \langle msg \rangle^{\frown} b_1.items' \\ b_2.items' = b_2.items^{\frown} \langle msg \rangle \\ b_1.max' = b_1.max \\ b_2.max' = b_2.max \end{array}$$

In general

• *a.op*

denotes the operation op performed upon object a; the operation op must be one of the operations specified in the class of a

• $a.op_1 \parallel b.op_2$

denotes the operation op_1 performed upon object a, in parallel with the operation op_2 performed upon object b; inputs and outputs having the same base name (i.e. apart from the '?' and '!') are identified (equated) and hidden

Aggregation and Identity

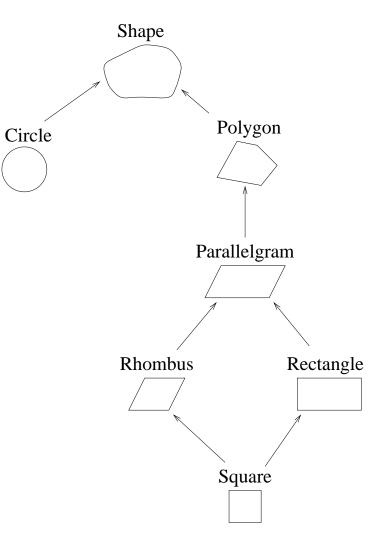
	INIT
$buffers: \mathbb{P} Buffer$	$buffers = \emptyset$
AddBuffer	RemoveBuffer
$\Delta(buffers)$	$\Delta(buffers)$
b?: Buffer	b?: Buffer
$b? \notin buffers \land b?$.Init	$b? \in buffers$
$buffers' = buffers \cup \{b?\}$	$buffers' = buffers - \{b?\}$
SelectBuffer	Select2Buffers
b?: Buffer	$b_1?, b_2?: Buffer$
$b? \in buffers$	$\{b_1?, b_2?\} \subseteq buffers \land b_1? \neq b_2?$
$Join \cong SelectBuffer \bullet b?.Join$	
Leave $\widehat{=}$ SelectBuffer • b?.Leave	

Transfer $\widehat{=}$ Select2Buffers • b_1 ?.Leave $\parallel b_2$?.Join

The operations Join and Transfer are equivalent to:

_ Join	_ Transfer
b?: Buffer	$b_1?, b_2?: Buffer$
msg?: MSG	$open(b_1?, b_2?)$
open(b?)	$\{b_1?, b_2?\} \subseteq buffers$
$b? \in buffers$	$b_1? \neq b_2?$
#b?.items < b?.max	$b_1?.items \neq \langle \rangle$
$b?.items' = b?.items \cap \langle msg? \rangle$	$\#b_2?.items < b_2?.max$
b?.max' = b?.max	$\exists msg: MSG \bullet$
	$b_1?.items = \langle msg \rangle^{\frown} b_1?.items'$
	$b_2?.items' = b_2?.items \frown \langle msg \rangle$
	$b_1?.max' = b_1?.max$
	$b_2?.max' = b_2?.max$

Object-Z Case Study: A Shapes Hierarchy

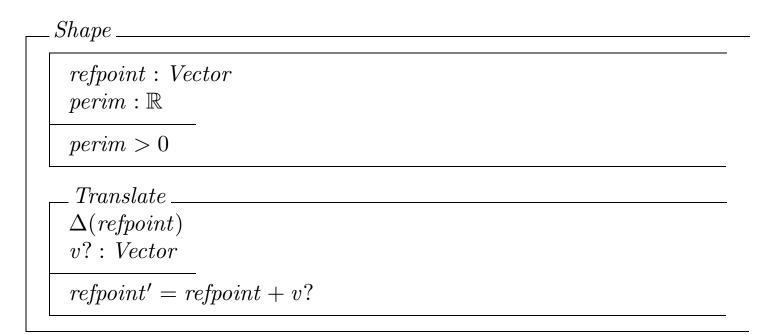


$Vector == \mathbb{R} \times \mathbb{R}$

 $_+_: \mathit{Vector} \times \mathit{Vector} \to \mathit{Vector}$

 $|_|: Vector \to \mathbb{R}$

 $_ \bot _: Vector \leftrightarrow Vector$



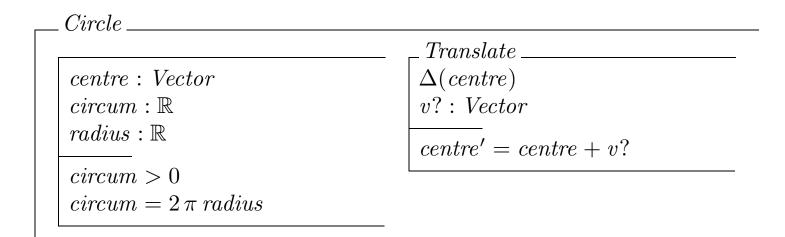
$_Circle_$

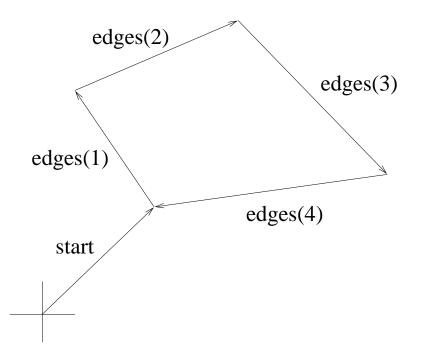
Shape[centre/refpoint, circum/perim]

 $radius:\mathbb{R}$

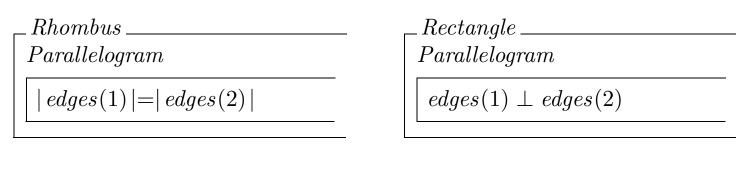
 $circum = 2 \pi radius$

i.e.





#edges = 4 $edges(1) + edges(3) = \mathbf{O}$



___Square _____ Rhombus Rectangle Expanding Square gives

$$Square _$$

$$start : Vector$$

$$perim : \mathbb{R}$$

$$edges : seq Vector$$

$$\#edges = 4 \land \mathbf{O} \notin ran edges$$

$$(\sum i : dom edges \bullet edges(i)) = \mathbf{O}$$

$$perim = \sum i : dom edges \bullet | edges(i) |$$

$$edges(1) + edges(3) = \mathbf{O}$$

$$|edges(1)| = | edges(2) | \land edges(1) \perp edges(2)$$

$$Translate _$$

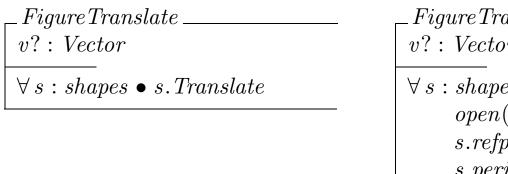
$$\Delta(start)$$

$$v? : Vector$$

$$start' = start + v?$$

_ <i>Figure</i>	SelectShape
$shapes: \mathbb{P} \downarrow Shape$	$ ___SelectShape ___\\ s?: \downarrow Shape $
$total perim: \mathbb{R}$	$s? \in shapes$
$total perim = \sum s : shapes \bullet$	1
$ShapeTranslate \cong SelectShap$	$e \bullet s?. Translate$
$Figure Translate \ \widehat{=} \ \parallel s : sha$	$pes \bullet s. Translate$

i.e.

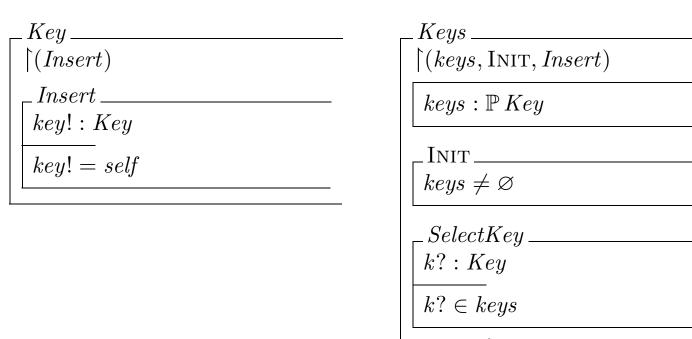


$$\begin{array}{l} _Figure Translate _ \\ v?: Vector \\ \hline \forall s: shapes \bullet \\ open(s) \\ s.refpoint' = s.refpoint + v? \\ s.perim' = s.perim \end{array}$$

Object-Z Case Study: An Electronic Key System

Informal Description

- there is a fixed set of magnetic keys
- there is a fixed set of rooms
- each key has access to a subset of these rooms
- a room may be added to the set accessed by a key
- a room may be removed from the set accessed by a key



 $Insert \cong SelectKey \bullet k?.Insert$

.*Room*_____

 $[(INIT, InsertedAndUnlock, Lock) \\ Status ::= locked | unlocked$

status : Status

Init

status = locked

Inserted	_ Unlock
	$\Delta(status)$

room! = self

 $\overline{status} = locked \land status' = unlocked$

 $InsertedAndUnlock \cong Inserted \land Unlock$

_ Lock _____

 $\Delta(status)$

 $\mathit{status} = \mathit{unlocked} \land \mathit{status'} = \mathit{locked}$

Rooms_____

(rooms, INIT, Unlock, Lock)

 $rooms: \mathbb{P} Room$

INIT

 $rooms \neq \varnothing$

 $\forall r: rooms \bullet r. \text{Init}$

__*SelectRoom*_____

r?:Room

 $r? \in rooms$

 $Unlock \cong SelectRoom \bullet r?.InsertedAndUnlock$ $Lock \cong SelectRoom \bullet r?.Lock$

	INIT
$access: Key \leftrightarrow Room$	$access = \emptyset$
_AuthorizeAccess	RescindAccess
$\Delta(access)$	$\Delta(access)$
key?: Key	key?:Key
room?:Room	room?:Room
\neg (key? <u>access</u> room?)	key? <u>access</u> room?
$access' = access \cup \{(key?, rotation) \in (key?, rotation) \}$	$om?)$ access' = access - {(key?, room?)
_ CheckAccess	
key?:Key	
room?: Room	

KeySystem_____

keys : Keys rooms : Rooms database : DataBase

 $database.access \subseteq keys.keys \times rooms.rooms$

INIT_

keys.INIT \land rooms.INIT \land database.INIT

Case Study: The Game of Tic Tac Toe

An Informal View:

- there are two players and a board
- the board consists of 9 positions in a 3×3 array
- initially all positions are unoccupied
- the players take it in turns to occupy unoccupied positions
- the first player to occupy three positions in a horizontal, vertical or diagonal row is the winner

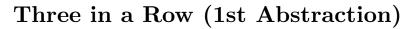
A Formal Description – Initial Abstractions

A Data Structure for the Board

 $Posn == 1 \dots 3 \times 1 \dots 3$

the abstraction:

(1,3)	(2,3)	(3,3)
(1,2)	(2,2)	(3,2)
(1,1)	(2,1)	(3,1)



(3,3)

Three in a Row (2nd Abstraction)

$$\begin{array}{c} 3InRow : \mathbb{P} \ Posn \to \mathbb{B} \\ \hline \forall \ ps : \mathbb{P} \ Posn \bullet \\ 3InRow(ps) \ \Leftrightarrow \ \exists \ a, \ b, \ c : \mathbb{Z} \bullet \\ \{a, b, c\} \neq \{0\} \\ \#\{(x, y) : \ ps \ \mid \ ax + \ by + \ c = 0\} = 3 \end{array} \qquad a = 1, \ b = 0, \ c = -1 \\ a = 1, \ b = 0, \ c = -1 \\ \hline (1,3) \ (2,3) \ (3,3) \\ \leftarrow \ a = 0, \ b = 1, \ c = -3 \\ \hline (1,2) \ (2,2) \ (3,2) \\ \leftarrow \ a = 0, \ b = 1, \ c = -2 \\ \hline (1,1) \ (2,1) \ (3,1) \\ \leftarrow \ a = 0, \ b = 1, \ c = -1 \\ a = 1, \ b = -1, \ c = 0 \\ a = 1, \ b = 0, \ c = -2 \end{array}$$

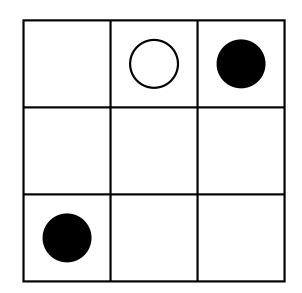
 $Colour ::= black \mid white$

	_INIT
$bposn, wposn: \mathbb{P} \operatorname{Posn}$	$bposn = \emptyset$
turn : Colour	$wposn = \emptyset$
$bposn \cap wposn = \emptyset$	turn = black
BlackMove	_ WhiteMove
$\Delta(bposn, turn); p?: Posn$	$\Delta(wposn, turn); p?: Posn$
$\neg 3InRow(wposn)$	$\neg 3InRow(bposn)$
$p? ot\in bposn \cup wposn$	$p? ot\in bposn \cup wposn$
$bposn' = bposn \cup \{p?\}$	$wposn' = wposn \cup \{p?\}$
$turn = black \wedge turn' = white$	$turn = white \land turn' = black$

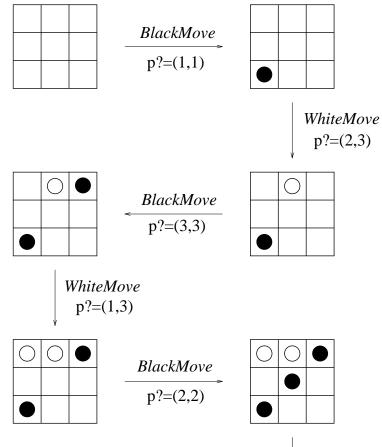
Board Example: A Static View

 $bposn = \{(1, 1), (3, 3)\}$ wposn = $\{(2, 3)\}$ turn = white

3InRow(bposn) = false 3InRow(wposn) = false $bposn \cap wposn = \emptyset$ $bposn \cup wposn \neq Posn$

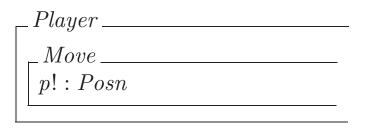


Board Example: A Dynamic View



TheWinner winner!=black

The Player Class



The Game

_	<i>TicTacToe</i>	
		_INIT
	bplayer, wplayer : Player	board.Init
	board : Board	
	$BlackMove \stackrel{\frown}{=} bplayer.Move \parallel boolematrix$	ard.BlackMove
	$WhiteMove \cong wplayer.Move \parallel be$	pard. White Move
	The Winner $\hat{=}$ board. The Winner	

The Game Communication

	bplayer	board	w player
BlackMove	p!:Posn	p?:Posn	
WhiteMove		p?:Posn	p!:Posn
TheWinner		winner! : Colour	

Operation Expressions

promotion

object. operation

indicates that the named object undergoes the named operation. This operation must be specified in the class of the object.

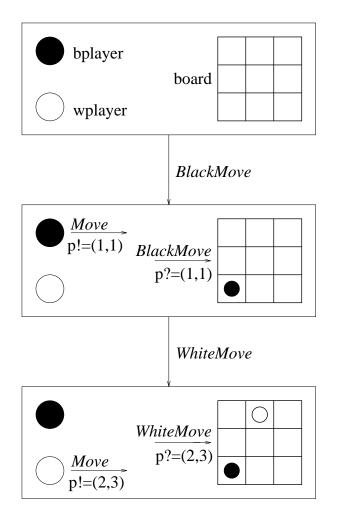
parallel operator

 $\textit{object}_1.\textit{operation}_1 \parallel \textit{object}_2.\textit{operation}_2$

indicates that the objects synchronise, with output from the first component being identified with the same named input (apart from the ? and ! decorations) to the second component; this communication is hidden (internal).

All other input/output is with the environment.

Game Example: A Dynamic View



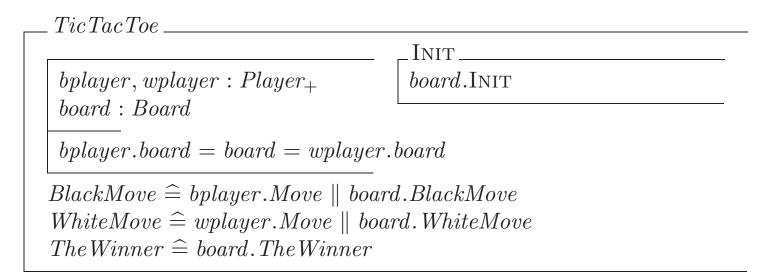
Extending Player by Inheritance

<i>Player</i> +	
Player	
board : Board	_
$Move\p! \not\in board.bposn \cup board.wposn$	_

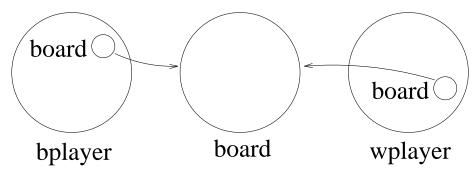
which expands to

_ <i>Player</i>
board : Board
<i>Move</i>
p!: Posn
$p! \not\in board.bposn \cup board.wposn$

The Game Revisited



The Object Structure



Specializing Player by Inheritance

	Bplayer
	$Player_+$
-	_ <i>Move</i>
	\neg 3InRow(board.wposn)
	board.turn = black

	Wplayer
	$Player_+$
1	_ Move
	\neg 3InRow(board.bposn)
	board.turn = white

e.g. Wplayer expands to

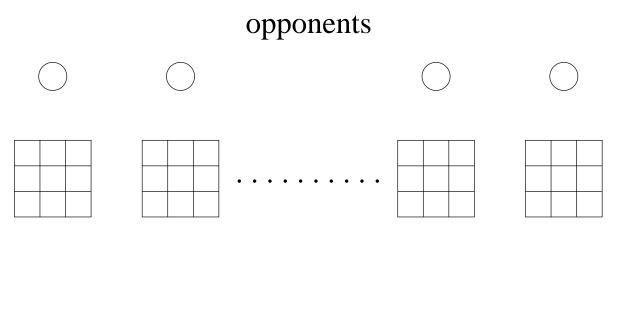
Wplayer	
board : Board	
<i>Move</i>	
p!:Posn	
$\neg 3InRow(board.bposn)$	
$p! \not\in board.bposn \cup board.u$ $board.turn = white$	rposn

The Game Again

	INIT	
bplayer: Bplayer	board.Init	
wplayer : Wplayer		
board: Board		
$\overline{bplayer}$.board = board		
wplayer.board = board		
$BlackMove \cong bplayer.Move$	$e \parallel board.BlackMove$	
$WhiteMove \cong wplayer.Mon$	e board.WhiteMove	

A Tic Tac Toe Tournament

A tic tac toe master is prepared to play any number of opponents concurrently.



master

An Opponent

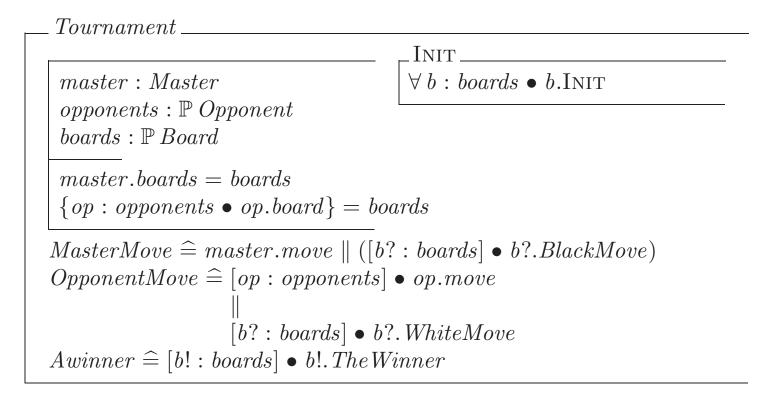
_ Opponent	_ Opponent
Wplayer	
_ <i>Move</i>	board : Board
b! : Board	_ <i>Move</i>
b! = board	p!: Posn
	b!: Board
·	$\frac{1}{2} I_{m} D_{aau} (h_{aau})$

Move	
p!:Post	\imath
b!:Boar	cd
$\neg 3InRo$	w(board.bposn)
$p! \notin boa$	$rd.bposn \cup board.wposn$
board.tu	rn = white
b! = boa	rd

The Master

Master
$boards: \mathbb{P} Board$
<i>Move</i>
p!:Posn
b!: Board
$\neg 3InRow(b!.wposn)$
$p! \not\in b!.bposn \cup b!.wposn$
b!.turn = black
$b! \in boards$

The Tournament



	master	boards	opponents
MasterMove	p!:Posn	p?:Posn	
	b!: Board	b?:Board	
<i>OpponentMove</i>		p?:Posn	p!:Posn
		b?:Board	b!: Board
Awinner		b!: Board	
		winner!: Colour	

Notation

Set Abstraction

 $\{a: A \bullet f(a)\}$

is the set of all elements f(a) where $a \in A$. e.g.

 $\{n:\mathbb{N}\bullet 2n\}$

is the set of even natural numbers.

 $\{op: opponents \bullet op.board\}$

is the set of boards associated with the set of opponents.

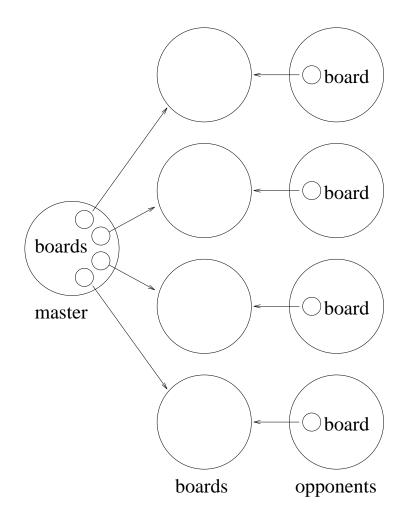
Object Selection

 $[ob: set of objects] \bullet ob. operation$

indicates that object ob is selected from the given set of objects and performs *operation*.

Object selection may be via input/output communication.

The Object Structure



An Alternative Informal View

- there are two players and nine marbles
- each marble is uniquely labelled with a number between 1 and 9
- initially the players have no marbles
- the players take it in turns to select a marble from those not already selected
- the first player to have three marbles whose labels add to 15 is the winner

Initial Abstractions

 $Posn == 1 \dots 9$

The Abstraction

Three in a Row

6	1	8
7	5	3
2	9	4

$$3InRow : \mathbb{P} Posn \to \mathbb{B}$$

$$\forall ps : \mathbb{P} Posn \bullet$$

$$3InRow(ps) \Leftrightarrow$$

$$\exists p, q, r : ps \bullet$$

$$\#\{p, q, r\} = 3$$

$$p + q + r = 15$$