Object-Z

is a specification language extending Z so as to facilitate the specification of

systems in an object-oriented style.
The view is taken that systems are composed of communicating objects.

When specifying a system in Object-Z,
e identify and specify the underlying objects;

e specify the system in terms of the communication between the underlying

objects.

An object may itself be a system of communicating objects.

The Class Construct: Encapsulation

_ Class Name
visibility list
inherited classes
local types
state
initial state
operations

the class construct encapsulates all relevant features; it is like a template from
which objects of the class can be stamped

the visibility list specifies the interface between object of the class and their

environment

a class incorporates all the features of its inherited classes

local types have the syntax of Z global types

the state, initial state and operations have a syntax based on that for Z schemas
variables declared in the state are called attributes

an instance of a class is an assignment of values to attributes consistent with
the state; at any time an object of a class will have an associated value which is
some instance of the class

Object-Z Case Study: A Buffer of Messages

items : seq MSG

#items < max

__ Buffer
[(maz, INIT, Join, Leave) [visibility list]
mazx : N [constant]

[state schema]

—INIT
items = () [initial state]
_ Join _ Leave
A(items) A(items)
msg? : MSG msg! : MSG [operation]
Hitems < max items # ()
items’ = items — (msg?) items = (msg!) " items’

e the state is an unnamed schema
e the state schema is implicitly merged into the initial schema,

__INIT
max : N; items : seq MSG

H#Hitems < max N items = ()

e the state schema in both primed and unprimed form is implicity merged into
each operation schema

__Join
max, mazx’' : N; items, items’ : seq MSG
msqg? : MSG

#items < max N #items’ < max N #items < max

items’ = items " (msg?)\ maz’ = mazx

e the A convention is modified: only attributes that may change are
listed—attributes not listed do not change

Inheritance

_ LossyBuffer _ LossyBuffer
Buffer .
mazx : N; items : seq MSG
_Lose
A(items) #Hitems < maz
items # () _INIT
items’ = tail items items = ()
_Join
_ Leave
_Lose
A(items)

items # () A items’ = tail items

Instantiation and Communication

_ Channel

b1, b : Buffer
b1 # b

INIT
by .INIT
bo INIT

Join = by.Join
Leave = by. Leave
Transfer = by.Leave || by.Join

an object is a variable of
class type — objects are in-
stantiations of classes

objects have integrity —
change state via class oper-

ations only

objects have persistence
— exist from creation to de-

allocation
objects communicate by
message passing — engage

in cooperative operations

The initial schema of Channel is equivalent to:

INIT
|761 items = () A by.items = ()

The operations of Channel are equivalent to:

_Join _ Leave
msqg? : MSG msg! : MSG
open(by) open(bs)
by .items < by.max by.items # ()
by.items’ = by.items — (msg?) by.items = (msg!)" by.items’
bi.maz’ = by.max bs.maz’ = by.max

or

__Transfer

dmsg : MSG
b1.Leave|msg/msg!]
ba.Join|msg/msg?]

___Transfer

open(bi, b2)

by.items # ()

#bo.items < by.max

dmsg : MSG
bi.items = (msg) " by.items’
bo.items’ = bo.items — (msg)

bi.max’ = by.mazx

by.max’ = by.mazx

In general

® a.0p
denotes the operation op performed upon object a; the operation op must be

one of the operations specified in the class of a

e a.opy || b.opo
denotes the operation op; performed upon object a, in parallel with the
operation ops performed upon object b; inputs and outputs having the same
base name (i.e. apart from the ‘?” and ‘!’) are identified (equated) and hidden

10

Aggregation and Identity

buffers’ = buffers U {b?}

—_ BufferSystem
_INIT
buffers : P Buffer buffers = @
_ AddBuffer _ RemoveBuffer
A(buffers) A(buffers)
b? . Buffer b? : Buffer
b? & buffers A b?7.INIT b? € buffers

buffers’ = buffers — {b?}

_ SelectBuffer _ Select2 Buffers
b? . Buffer b17, b27 : Buffer
b? € buffers {b17, 627} C buffers N\ bi?7 # b2?

Join = SelectBuffer b?.Join
Leave = SelectBuffer e b?.Leave
Transfer = Select2 Buffers e bi?. Leave || b2?.Join

11

The operations Join and Transfer are equivalent to:

_Join _ Transfer
b? : Buffer b17, bo? : Buffer
msg? : M5G open(b1?, ba?)
open(b?) {017, 027} C buffers
b? € buffers b7 # by?
#b7.items < b?.mazx bi?7.items # ()
b?.items’ = b?.items — (msg?) #ba7.items < ba?.maz
b?.max’ = b?.max Imsg : MSG e
bi?.items = (msg) by 7.items’
bo?.items’ = by?.items T (msg)
bi?.maz’ = b;7.max
by?.maz’ = by?.max

12

Object-Z Case Study: A Shapes Hierarchy

Shape

Parallelgram
Rhombus Rectangle

/7
N/

Square

13

Vector == R X R

_+ _: Vector x Vector — Vector
|_|: Vector — R

_ L _: Vector < Vector

__Shape

refpoint : Vector
perim : R

perim > 0

_ Translate

A(refpoint)
v? . Vector

refpoint’ = refpoint + v?

14

— Chrcle

Shape[centre /refpoint, circum /perim]

radius : R

circum = 2w radius

— Clircle
_ Translate
centre : Vector A(centre)
circum : R v? : Vector
dius : R —
raauas centre’ = centre + v?

circum > 0
circum = 2w radius

15

edges(2) _ Polygon
Shapestart / refpoint]
edges(3)

)

edges : seq Vector

!

H#edges > 3
1
oD O ¢ ran edges
edges(4) (Zz : dom edges o edges(i)) = O
start perim = Zz : dom edges o| edges(i) |

[connectivity ...]

16

___Parallelogram

Polygon

#edges = 4
edges(1) 4+ edges(3) = O

_ Rhombus _ Rectangle
Parallelogram Parallelogram
| edges(1) |=| edges(2) | edges(1) L edges(2)
__ Square
Rhombus
Rectangle

17

Expanding Square gives

___Square

start : Vector

perim : R

edges : seq Vector

#edges = 4 N\ O ¢ ran edges

(Zz : dom edges o edges(i)) = O

perim = Zz : dom edges o| edges(i) |
edges(1) + edges(3) = O

| edges(1) |=| edges(2) |A edges(1) L edges(2)

__Translate

A(start)

v? : Vector

start’ = start + v?

18

__ Figure

shapes : P | Shape
totalperim : R

totalperim = Z s : shapes ® s.perim

_ SelectShape
s?: | Shape

s? € shapes

Shape Translate = SelectShape o s?.Translate
FigureTranslate = || s : shapes o s.Translate

1.e.

_ FigureTranslate

v? : Vector

V s : shapes o s.Translate

19

_ FigureTranslate
v? : Vector

Vs : shapes @
open(s)
s.refpoint’ = s.refpoint + v?
s.perim’ = s.perim

Object-Z Case Study: An Electronic Key System

Informal Description

e there is a fixed set of magnetic keys

e there is a fixed set of rooms

e cach key has access to a subset of these rooms

e a room may be added to the set accessed by a key

e a room may be removed from the set accessed by a key

20

_ Key _ Keys

[(Insert) [(keys, INIT, Insert)
_Insert keys : P Key
key! : Key
_INIT
key! = sel
i / keys + &
_SelectKey
k?: Key
k? € keys
Insert = SelectKey o k?.Insert

21

__Room

[(INIT, Inserted AndUnlock, Lock)
Status = locked | unlocked

status : Status

__INIT
status = locked

_Inserted _ Unlock
room! : Room A(status)
room! = self status = locked N status’ = unlocked

InsertedAndUnlock = Inserted /\ Unlock

_ Lock
A(status)

status = unlocked N status’ = locked

22

__Rooms

[(rooms, INIT, Unlock, Lock)

rooms : P Room

__INIT

rooms # &
Y r:rooms e r.INIT

__SelectRoom

r? . Room

r? € rooms

Unlock = SelectRoom e r?.InsertedAndUnlock
Lock = SelectRoom e r?.Lock

23

__DataBase
[(access, INIT, AuthorizeAccess, RescindAccess, CheckAccess)

_INIT

access : Key < Room access = &
_ AuthorizeAccess _ RescindAccess

A(access) A(access)

key? : Key key? : Key

room? : Room room? : Room

— (key? access room?) key? access room?

access’ = access U {(key?, room?)} access’ = access — {(key?, room?)}

_ CheckAccess
key? : Key
room? : Room

key? access room?

24

__ KeySystem

keys : Keys
rooms : Rooms
database : DataBase

database.access C keys.keys X rooms.rooms

INIT

|>keys.INIT A rooms. INIT A database . INIT

AuthorizeAccess = database. AuthorizeAccess
RescindAccess = database.RescindAccess
Unlock = (keys.Insert /\ rooms. Unlock)

database. CheckAccess
Lock = rooms.Lock

25

Case Study: The Game of Tic Tac Toe

An Informal View:
e there are two players and a board
e the board consists of 9 positions in a 3x3 array
e initially all positions are unoccupied
e the players take it in turns to occupy unoccupied positions

e the first player to occupy three positions in a horizontal, vertical or diagonal

row is the winner

26

A Formal Description — Initial Abstractions

A Data Structure for the Board

Posn==1..3x1..3

the abstraction:

(1,3) | (2,3) | (3,3)

(1,2) (2,2) | (3,2

(1,1)| (2,1 (3,1)

27

Three in a Row (1st Abstraction)

3InRow : P Posn — B
Vps: P Posn e]
p3]nR0w(p3) & (1’3) (2’3) (3’3)
{(1,1),(1,2),(1,3)} C ps
V{122,230 s — (1,2) (22)] (3.2)
e
V(1,1),(2,1),(3,1)} C ps
vi{(1,2),22,62rcps —(11)(21)](31)
vV {(1,3),(2,3),(3,3)} C ps
v{(1,1),(2,2),(3,3)} C ps | | |
v {(1,3),(2,2),(3,1)} C ps

28

Three in a Row (2nd Abstraction)
3InRow : P Posn — BB

V ps : P Posn e
3InRow(ps) < Ta,b,c:Z e
{a,b,c} # {0}
4l(z,y):ps|az+by+c=0=3

Colour ::= black ’ white

29

a=1,b=0,c=-1
|

a=1,b=0,c=-3

!

(1.3)

(2:3)

(3.3)

- a=0,b=1,¢c=-3

(1.2)

(2.2)

(3.2)

- a=0,b=1,c=-2

(1.1)

(2.1)

(3.1)

- a=0,b=1,c=-1

a=1,b=-1,c=0

a=1b=0,c=-2

a=

1,b=1,c=-4

__Board

_INIT
bposn, wposn : P Posn bposn = &
turn : Colour wposn = &
— turn = black
bposn N wposn = &

_ BlackMowve _ WhiteMowve
A(bposn, turn); p?: Posn A(wposn, turn); p?: Posn
— 3InRow(wposn) — 3InRow(bposn)
p? & bposn U wposn p? & bposn U wposn
bposn’ = bposn U {p?} wposn’ = wposn U {p?}
turn = black N turn’ = white turn = white N turn’ = black
__ TheWinner

winner! : Colour

3InRow(bposn) V 3InRow(wposn)
3InRow(bposn) = winner! = black N\ 3InRow(wposn) = winner! = white

30

Board Example: A Static View

bposn = {(1,1),(3,3)}
wposn = {(2,3)}
turn = whate

3InRow(bposn) = false
3InRow(wposn) = false
bposn N wposn = &

bposn U wposn # Posn

31

Board Example: A Dynamic View

BlackMove
?=(1,1
p?=(1,1) PY
WhiteMove
p?=(2,3)
© @ BlackMove O
p?=(3,3)
o o
WhiteMove
p?=(1,3)
00| ® BlackMove & C.> g
p?=(2,2)
o o
TheWinner

winner!=black

32

The Player Class

_ Player

Mowve

(p! : Posn

33

The Game

—_TicTacToe

board : Board

bplayer, wplayer : Player

INIT

(boafrd.INIT

WhaiteMowe

BlackMove = bplayer.Move || board.BlackMove

= wplayer.Move || board. WhiteMove
The Winner = board. The Winner

The Game Communication

bplayer board wplayer
BlackMove | p!: Posn ?: Posn
WhiteMowve p?: Posn p!: Posn
The Winner

winner! : Colour

34

Operation Expressions

promotion

object.operation

indicates that the named object undergoes the named operation. This operation

must be specified in the class of the object.

parallel operator

objecty .operation; || objects.operations

indicates that the objects synchronise, with output from the first component being
identified with the same named input (apart from the 7 and ! decorations) to the

second component; this communication is hidden (internal).

All other input/output is with the environment.

35

Game Example: A Dynamic View

. bplayer
board
Q wplayer
BlackMove
Move
P'=(1,1) BjackMove
p?=(1,1)
O °
WhiteMove
® | O
WhiteMove
Mf)ve p?=(2,3) PY
p!=(2,3)

36

Extending Player by Inheritance

__ Playery

Player

board : Board

__Mowe

p! & board.bposn U board.wposn

which expands to

_ Playery

board : Board

__ Movwe

pl . Posn

p! & board.bposn U board.wposn

37

The Game Revisited

__TicTacToe

INIT

bplayer, wplayer : Playery {board.INIT

board : Board

bplayer.board = board = wplayer.board

BlackMove = bplayer.Move || board. BlackMove
WhiteMove = wplayer.Move || board. WhiteMove
The Winner = board. The Winner

The Object Structure

board)
board)

bplayer board wplayer

38

Specializing Player by Inheritance

_ Bplayer _ Wplayer
Player, Player,
Mowve Mowve
= 3InRow (board.wposn) — 3InRow(board.bposn)
board.turn = black board.turn = white

e.g. Wplayer expands to
_ Whplayer

board : Board

__Mowe

p!: Posn

= 3InRow(board.bposn)
p! & board.bposn U board.wposn
board.turn = white

39

The Game Again

__TicTacToe
INTIT
bplayer : Bplayer (boafrd.INIT
wplayer : Wplayer

board : Board

bplayer.board = board
wplayer.board = board

WhiteMove =

= wplayer.Move || board. WhiteMove
The Winner = board. The Winner

BlackMove = bplayer.Move || board. BlackMowve

40

A Tic Tac Toe Tournament

A tic tac toe master is prepared to play any number of opponents concurrently.

opponents

O O O O

master

41

An Opponent

_ Opponent _ Opponent
Whplayer
board : Board
_ Mowve
b' . BoaTd _MO’UB
b! = board pl: Posn
b! : Board

— 3InRow(board.bposn)
p! & board.bposn U board.wposn
board.turn = white

b! = board

42

The Master

__ Master

boards : P Board

~ Mowe
pl . Posn
b! : Board

= 3InRow(b!.wposn)

p! & bl.bposn U bl.wposn
bl.turn = black

b! € boards

43

The Tournament

___Tournament

INIT

master : Master |>V b : boards e b.INIT

opponents : P Opponent
boards : P Board

master.boards = boards
{op : opponents e op.board} = boards

MasterMove = master.move || ([b7 : boards] e b?.BlackMove)
OpponentMove = [op : opponents] ® op.move

I
(b7 : boards]| e b?. WhiteMove

Awinner = [b! : boards] e bl. The Winner

44

master boards opponents

MasterMove | p!: Posn p?: Posn
b! : Board b? : Board

OpponentMove p? : Posn p!: Posn
b? : Board b! : Board

Awinner b! : Board

winner! : Colour

45

Notation

Set Abstraction
{a:Aef(a);

is the set of all elements f(a) where a € A. e.g.
{n:Ne2n}

is the set of even natural numbers.

{op : opponents e op.board}

is the set of boards associated with the set of opponents.

Object Selection

[0b : set of objects| ® 0b.operation

indicates that object 0b is selected from the given set of objects and performs

operation.

Object selection may be via input/output communication.

46

The Object Structure

boards

47

(O board

(O board

() board

(O board

o

opponents

An Alternative Informal View

e there are two players and nine marbles

e cach marble is uniquely labelled with a number between 1 and 9

e initially the players have no marbles

e the players take it in turns to select a marble from those not already selected

e the first player to have three marbles whose labels add to 15 is the winner

48

Initial Abstractions

Posn==1..9

The Abstraction Three in a Row

3InRow : P Posn — B

6| 1|38 Jps < B Posn o

3InRow(ps) <

dp,q,7:ps e
7 5 3 #{p,q,r} =3
p+qg+r=15

49

