
Object-Z

is a specification language extending Z so as to facilitate the specification of

systems in an object-oriented style.

The view is taken that systems are composed of communicating objects.

When specifying a system in Object-Z,

• identify and specify the underlying objects;

• specify the system in terms of the communication between the underlying

objects.

An object may itself be a system of communicating objects.

1

The Class Construct: Encapsulation

Class Name
visibility list
inherited classes
local types
state
initial state
operations

2

• the class construct encapsulates all relevant features; it is like a template from

which objects of the class can be stamped

• the visibility list specifies the interface between object of the class and their

environment

• a class incorporates all the features of its inherited classes

• local types have the syntax of Z global types

• the state, initial state and operations have a syntax based on that for Z schemas

• variables declared in the state are called attributes

• an instance of a class is an assignment of values to attributes consistent with

the state; at any time an object of a class will have an associated value which is

some instance of the class

3

Object-Z Case Study: A Buffer of Messages

Buffer

↾(max , Init, Join, Leave) [visibility list]

max : N [constant]

items : seqMSG [state schema]

#items 6 max

Init

items = 〈 〉 [initial state]

Join

∆(items)

msg? : MSG

#items < max

items ′ = items a 〈msg?〉

Leave

∆(items)

msg ! : MSG [operation]

items 6= 〈 〉

items = 〈msg !〉aitems ′

4

• the state is an unnamed schema

• the state schema is implicitly merged into the initial schema

Init

max : N; items : seqMSG

#items 6 max ∧ items = 〈 〉

• the state schema in both primed and unprimed form is implicity merged into

each operation schema

Join

max ,max ′ : N; items, items ′ : seqMSG

msg? : MSG

#items 6 max ∧ #items ′ 6 max ∧ #items < max

items ′ = items a 〈msg?〉∧ max ′ = max

• the ∆ convention is modified: only attributes that may change are

listed—attributes not listed do not change

5

Inheritance

LossyBuffer

Buffer

Lose

∆(items)

items 6= 〈 〉
items ′ = tail items

LossyBuffer

max : N; items : seqMSG

#items 6 max

Init

items = 〈 〉

Join

...

Leave

...

Lose

∆(items)

items 6= 〈 〉 ∧ items ′ = tail items

6

Instantiation and Communication

Channel

b1, b2 : Buffer

b1 6= b2

Init

b1.Init

b2.Init

Join =̂ b1.Join
Leave =̂ b2.Leave

Transfer =̂ b1.Leave ‖ b2.Join

• an object is a variable of

class type — objects are in-

stantiations of classes

• objects have integrity —

change state via class oper-

ations only

• objects have persistence

— exist from creation to de-

allocation

• objects communicate by

message passing — engage

in cooperative operations

7

The initial schema of Channel is equivalent to:

Init

b1.items = 〈 〉 ∧ b2.items = 〈 〉

The operations of Channel are equivalent to:

Join

msg? : MSG

open(b1)
#b1.items < b1.max

b1.items ′ = b1.items a 〈msg?〉
b1.max ′ = b1.max

Leave

msg ! : MSG

open(b2)
b2.items 6= 〈 〉

b2.items = 〈msg !〉ab2.items ′

b2.max ′ = b2.max

8

Transfer

∃msg : MSG

b1.Leave[msg/msg !]
b2.Join[msg/msg?]

or

Transfer

open(b1, b2)
b1.items 6= 〈 〉
#b2.items < b2.max

∃msg : MSG

b1.items = 〈msg〉ab1.items ′

b2.items ′ = b2.items a 〈msg〉
b1.max ′ = b1.max

b2.max ′ = b2.max

9

In general

• a.op

denotes the operation op performed upon object a; the operation op must be

one of the operations specified in the class of a

• a.op1 ‖ b.op2

denotes the operation op1 performed upon object a, in parallel with the

operation op2 performed upon object b; inputs and outputs having the same

base name (i.e. apart from the ‘?’ and ‘!’) are identified (equated) and hidden

10

Aggregation and Identity

BufferSystem

buffers : P Buffer

AddBuffer

∆(buffers)

b? : Buffer

b? 6∈ buffers ∧ b?.Init

buffers ′ = buffers ∪ {b?}

SelectBuffer

b? : Buffer

b? ∈ buffers

Init

buffers = ∅

RemoveBuffer

∆(buffers)

b? : Buffer

b? ∈ buffers

buffers ′ = buffers − {b?}

Select2Buffers

b1?, b2? : Buffer

{b1?, b2?} ⊆ buffers ∧ b1? 6= b2?

Join =̂ SelectBuffer • b?.Join

Leave =̂ SelectBuffer • b?.Leave

Transfer =̂ Select2Buffers • b1?.Leave ‖ b2?.Join

11

The operations Join and Transfer are equivalent to:

Join

b? : Buffer

msg? : MSG

open(b?)
b? ∈ buffers

#b?.items < b?.max

b?.items ′ = b?.items a 〈msg?〉
b?.max ′ = b?.max

Transfer

b1?, b2? : Buffer

open(b1?, b2?)
{b1?, b2?} ⊆ buffers

b1? 6= b2?
b1?.items 6= 〈 〉
#b2?.items < b2?.max

∃msg : MSG •

b1?.items = 〈msg〉ab1?.items ′

b2?.items ′ = b2?.items a 〈msg〉
b1?.max ′ = b1?.max

b2?.max ′ = b2?.max

12

Object-Z Case Study: A Shapes Hierarchy

Rectangle

Square

Parallelgram

PolygonCircle

Rhombus

Shape

13

Vector == R × R

+ : Vector × Vector → Vector

| |: Vector → R

⊥ : Vector ↔ Vector

Shape

refpoint : Vector

perim : R

perim > 0

Translate

∆(refpoint)
v? : Vector

refpoint ′ = refpoint + v?

14

Circle

Shape[centre/refpoint , circum/perim]

radius : R

circum = 2π radius

i.e.

Circle

centre : Vector

circum : R

radius : R

circum > 0
circum = 2π radius

Translate

∆(centre)
v? : Vector

centre ′ = centre + v?

15

start

edges(1)

edges(2)

edges(3)

edges(4)

Polygon

Shape[start/refpoint]

edges : seqVector

#edges > 3
O 6∈ ran edges

(
∑

i : dom edges • edges(i)) = O

perim =
∑

i : dom edges •|edges(i) |

... [connectivity ...]

16

Parallelogram

Polygon

#edges = 4
edges(1) + edges(3) = O

Rhombus

Parallelogram

|edges(1) |=|edges(2) |

Rectangle

Parallelogram

edges(1) ⊥ edges(2)

Square

Rhombus

Rectangle

17

Expanding Square gives

Square

start : Vector

perim : R

edges : seqVector

#edges = 4 ∧ O 6∈ ran edges

(
∑

i : dom edges • edges(i)) = O

perim =
∑

i : dom edges •|edges(i) |

edges(1) + edges(3) = O
|edges(1) |=|edges(2) |∧ edges(1) ⊥ edges(2)

Translate

∆(start)
v? : Vector

start ′ = start + v?

18

Figure

shapes : P ↓Shape

totalperim : R

totalperim =
∑

s : shapes • s.perim

SelectShape

s? : ↓Shape

s? ∈ shapes

ShapeTranslate =̂ SelectShape • s?.Translate

FigureTranslate =̂ ‖ s : shapes • s.Translate

i.e.

FigureTranslate

v? : Vector

∀ s : shapes • s.Translate

FigureTranslate

v? : Vector

∀ s : shapes •
open(s)
s.refpoint ′ = s.refpoint + v?
s.perim ′ = s.perim

19

Object-Z Case Study: An Electronic Key System

Informal Description

• there is a fixed set of magnetic keys

• there is a fixed set of rooms

• each key has access to a subset of these rooms

• a room may be added to the set accessed by a key

• a room may be removed from the set accessed by a key

20

Key

↾(Insert)

Insert

key ! : Key

key ! = self

Keys

↾(keys, Init, Insert)

keys : P Key

Init

keys 6= ∅

SelectKey

k? : Key

k? ∈ keys

Insert =̂ SelectKey • k?.Insert

21

Room

↾(Init, InsertedAndUnlock ,Lock)
Status ::= locked | unlocked

status : Status

Init

status = locked

Inserted

room! : Room

room! = self

Unlock

∆(status)

status = locked ∧ status ′ = unlocked

InsertedAndUnlock =̂ Inserted ∧Unlock

Lock

∆(status)

status = unlocked ∧ status ′ = locked

22

Rooms

↾(rooms, Init,Unlock ,Lock)

rooms : P Room

Init

rooms 6= ∅

∀ r : rooms • r .Init

SelectRoom

r? : Room

r? ∈ rooms

Unlock =̂ SelectRoom • r?.InsertedAndUnlock

Lock =̂ SelectRoom • r?.Lock

23

DataBase

↾(access, Init,AuthorizeAccess,RescindAccess,CheckAccess)

access : Key ↔ Room

Init

access = ∅

AuthorizeAccess

∆(access)
key? : Key

room? : Room

¬ (key? access room?)
access ′ = access ∪ {(key?, room?)}

RescindAccess

∆(access)
key? : Key

room? : Room

key? access room?
access ′ = access − {(key?, room?)}

CheckAccess

key? : Key

room? : Room

key? access room?

24

KeySystem

keys : Keys

rooms : Rooms

database : DataBase

database.access ⊆ keys.keys × rooms.rooms

Init

keys.Init ∧ rooms.Init ∧ database.Init

AuthorizeAccess =̂ database.AuthorizeAccess

RescindAccess =̂ database.RescindAccess

Unlock =̂ (keys.Insert ∧ rooms.Unlock)
‖
database.CheckAccess

Lock =̂ rooms.Lock

25

Case Study: The Game of Tic Tac Toe

An Informal View:

• there are two players and a board

• the board consists of 9 positions in a 3×3 array

• initially all positions are unoccupied

• the players take it in turns to occupy unoccupied positions

• the first player to occupy three positions in a horizontal, vertical or diagonal

row is the winner

26

A Formal Description – Initial Abstractions

A Data Structure for the Board

Posn == 1 . . 3 × 1 . . 3

the abstraction:

(1,1) (2,1) (3,1)

(2,3)

(3,2)(1,2) (2,2)

(1,3) (3,3)

27

Three in a Row (1st Abstraction)

3InRow : P Posn → B

∀ ps : P Posn •
3InRow(ps) ⇔

{(1, 1), (1, 2), (1, 3)} ⊆ ps

∨ {(2, 1), (2, 2), (2, 3)} ⊆ ps

∨ {(3, 1), (3, 2), (3, 3)} ⊆ ps

∨ {(1, 1), (2, 1), (3, 1)} ⊆ ps

∨ {(1, 2), (2, 2), (3, 2)} ⊆ ps

∨ {(1, 3), (2, 3), (3, 3)} ⊆ ps

∨ {(1, 1), (2, 2), (3, 3)} ⊆ ps

∨ {(1, 3), (2, 2), (3, 1)} ⊆ ps

(1,1) (2,1) (3,1)

(2,3)

(3,2)(1,2) (2,2)

(1,3) (3,3)

28

Three in a Row (2nd Abstraction)

3InRow : P Posn → B

∀ ps : P Posn •
3InRow(ps) ⇔ ∃ a, b, c : Z •
{a, b, c} 6= {0}

#{(x , y) : ps | ax + by + c = 0} = 3

(1,1) (2,1) (3,1)

(2,3)

(3,2)(1,2) (2,2)

(1,3) (3,3) a = 0, b = 1, c = -3

a = 0, b = 1, c = -1

a = 0, b = 1, c = -2

a = 1, b = 0, c = -2

a = 1, b = -1, c = 0 a = 1, b = 1, c = -4

a = 1, b = 0, c = -1 a = 1, b = 0, c = -3

Colour ::= black | white

29

Board

bposn, wposn : P Posn

turn : Colour

bposn ∩ wposn = ∅

Init

bposn = ∅

wposn = ∅

turn = black

BlackMove

∆(bposn, turn); p? : Posn

¬ 3InRow(wposn)

p? 6∈ bposn ∪ wposn

bposn ′ = bposn ∪ {p?}

turn = black ∧ turn ′ = white

WhiteMove

∆(wposn, turn); p? : Posn

¬ 3InRow(bposn)

p? 6∈ bposn ∪ wposn

wposn ′ = wposn ∪ {p?}

turn = white ∧ turn ′ = black

TheWinner

winner ! : Colour

3InRow(bposn) ∨ 3InRow(wposn)

3InRow(bposn) ⇒ winner ! = black ∧ 3InRow(wposn) ⇒ winner ! = white

30

Board Example: A Static View

bposn = {(1, 1), (3, 3)}
wposn = {(2, 3)}
turn = white

3InRow(bposn) = false

3InRow(wposn) = false

bposn ∩ wposn = ∅

bposn ∪ wposn 6= Posn

31

Board Example: A Dynamic View

BlackMove

p?=(1,1)

WhiteMove
p?=(2,3)

BlackMove

p?=(3,3)

p?=(1,3)
WhiteMove

BlackMove

p?=(2,2)

TheWinner
winner!=black

32

The Player Class

Player

Move

p! : Posn

33

The Game

TicTacToe

bplayer ,wplayer : Player

board : Board

Init

board .Init

BlackMove =̂ bplayer .Move ‖ board .BlackMove

WhiteMove =̂ wplayer .Move ‖ board .WhiteMove

TheWinner =̂ board .TheWinner

The Game Communication

bplayer board wplayer

BlackMove p! : Posn p? : Posn

WhiteMove p? : Posn p! : Posn

TheWinner winner ! : Colour

34

Operation Expressions

promotion

object .operation

indicates that the named object undergoes the named operation. This operation

must be specified in the class of the object.

parallel operator

object1.operation1 ‖ object2.operation2

indicates that the objects synchronise, with output from the first component being

identified with the same named input (apart from the ? and ! decorations) to the

second component; this communication is hidden (internal).

All other input/output is with the environment.

35

Game Example: A Dynamic View

WhiteMove

BlackMove

WhiteMove

bplayer

board

wplayer

Move
p!=(1,1) BlackMove

p?=(1,1)

Move
p!=(2,3)

p?=(2,3)

36

Extending Player by Inheritance

Player+
Player

board : Board

Move

p! 6∈ board .bposn ∪ board .wposn

which expands to

Player+

board : Board

Move

p! : Posn

p! 6∈ board .bposn ∪ board .wposn

37

The Game Revisited

TicTacToe

bplayer ,wplayer : Player+
board : Board

bplayer .board = board = wplayer .board

Init

board .Init

BlackMove =̂ bplayer .Move ‖ board .BlackMove

WhiteMove =̂ wplayer .Move ‖ board .WhiteMove

TheWinner =̂ board .TheWinner

The Object Structure

board

board

boardbplayer wplayer

38

Specializing Player by Inheritance

Bplayer

Player+

Move

¬ 3InRow(board .wposn)
board .turn = black

Wplayer

Player+

Move

¬ 3InRow(board .bposn)
board .turn = white

e.g. Wplayer expands to

Wplayer

board : Board

Move

p! : Posn

¬ 3InRow(board .bposn)
p! 6∈ board .bposn ∪ board .wposn

board .turn = white

39

The Game Again

TicTacToe

bplayer : Bplayer

wplayer : Wplayer

board : Board

bplayer .board = board

wplayer .board = board

Init

board .Init

BlackMove =̂ bplayer .Move ‖ board .BlackMove

WhiteMove =̂ wplayer .Move ‖ board .WhiteMove

TheWinner =̂ board .TheWinner

40

A Tic Tac Toe Tournament

A tic tac toe master is prepared to play any number of opponents concurrently.

master

opponents

.

41

An Opponent

Opponent

Wplayer

Move

b! : Board

b! = board

Opponent

board : Board

Move

p! : Posn

b! : Board

¬ 3InRow(board .bposn)
p! 6∈ board .bposn ∪ board .wposn

board .turn = white

b! = board

42

The Master

Master

boards : P Board

Move

p! : Posn

b! : Board

¬ 3InRow(b!.wposn)
p! 6∈ b!.bposn ∪ b!.wposn

b!.turn = black

b! ∈ boards

43

The Tournament

Tournament

master : Master

opponents : P Opponent

boards : P Board

master .boards = boards

{op : opponents • op.board} = boards

Init

∀ b : boards • b.Init

MasterMove =̂ master .move ‖ ([b? : boards] • b?.BlackMove)
OpponentMove =̂ [op : opponents] • op.move

‖
[b? : boards] • b?.WhiteMove

Awinner =̂ [b! : boards] • b!.TheWinner

44

master boards opponents

MasterMove p! : Posn p? : Posn

b! : Board b? : Board

OpponentMove p? : Posn p! : Posn

b? : Board b! : Board

Awinner b! : Board

winner ! : Colour

45

Notation

Set Abstraction

{a : A • f (a)}

is the set of all elements f (a) where a ∈ A. e.g.

{n : N • 2n}

is the set of even natural numbers.

{op : opponents • op.board}

is the set of boards associated with the set of opponents.

Object Selection

[ob : set of objects] • ob.operation

indicates that object ob is selected from the given set of objects and performs

operation.

Object selection may be via input/output communication.

46

The Object Structure

board

board

board

board

boards

master

boards opponents

47

An Alternative Informal View

• there are two players and nine marbles

• each marble is uniquely labelled with a number between 1 and 9

• initially the players have no marbles

• the players take it in turns to select a marble from those not already selected

• the first player to have three marbles whose labels add to 15 is the winner

48

Initial Abstractions

Posn == 1 . . 9

The Abstraction Three in a Row

1 8

7 5 3

2

6

9 4

3InRow : P Posn → B

∀ ps : P Posn •
3InRow(ps) ⇔

∃ p, q , r : ps •
#{p, q , r} = 3
p + q + r = 15

49

