How does an CSP Specification Execute?

February 28, 2009

Outline

- Operational semantics
- Given a process specifying some system, how does it execute?
- Mechanical system analysis
- Given a process specifying some system, how do we know whether it is correct or not?

How a Process Executes?

- Denotational Semantics
$-\operatorname{traces}(P \| Q)=\{t: \operatorname{seq} A \mid(t \upharpoonright \alpha P \in \operatorname{traces}(P) \wedge(t \upharpoonright \alpha Q \in \operatorname{traces}(Q))\}$ where $A=\alpha P \cup \alpha Q$.
- Operational Semantics
- Given a system state, what are the possible actions the system can perform and what are the outcomes?
$-P \xrightarrow{a} Q$

Operational Semantics

- Operational Semantics can be presented using a set of inference rules of the following form,

Premises
Conclusion

- e.g.,

$$
\frac{P \xrightarrow{a} P^{\prime}}{P \square Q \xrightarrow{a} P^{\prime}}
$$

Operational Semantics: Primitives

- STOP,
- SKIP,

- Prefixing,

$$
\overline{(a \rightarrow P) \xrightarrow{a} P}[\text { prefixing }]
$$

Operational Semantics: Choices

- External choice ${ }^{\text {a }}$,

$$
\frac{P \xrightarrow{a} P^{\prime}}{(P \square Q) \xrightarrow{a} P^{\prime}}[\text { extchoice } 1] \quad \frac{Q \xrightarrow{a} Q^{\prime}}{(P \square Q) \xrightarrow{a} Q^{\prime}}[\text { extchoice } 2]
$$

- Internal choice, let τ be the silent invisible event,

$$
\overline{(P \sqcap Q) \xrightarrow{\tau} P}[\text { intchoice } 1]
$$

[^0]
Operational Semantics: Sequential Composition

In process $P ; Q, P$ takes control first and Q starts only when P has finished. Let \checkmark be a distinguished event denoting termination.

$$
\frac{P \xrightarrow{a} P^{\prime}}{(P ; Q) \xrightarrow{a}\left(P^{\prime} ; Q\right)}[\text { seq } 1]
$$

$$
\frac{P \xrightarrow{\checkmark} P^{\prime}}{(P ; Q) \xrightarrow{\tau} Q}[\operatorname{seq} 2]
$$

Operational Semantics: Interrupt

In process $P \nabla Q$, whenever an event is engaged by Q, P is interrupted and the control transfer to Q.

$$
\frac{P \xrightarrow{a} P^{\prime}}{(P \nabla Q) \xrightarrow{a}\left(P^{\prime} \nabla Q\right)}[\text { interrupt } 1] \quad \frac{Q \xrightarrow{a} Q^{\prime}}{(P \nabla Q) \xrightarrow{a} Q^{\prime}}[\text { interrupt } 1]
$$

Example 1

$$
\begin{array}{lll}
\text { Let } & V M S=c o i n \rightarrow(c h o c \rightarrow V M S \square b i s c \rightarrow V M S) . & \\
\text { step } 1 . & V M S & \xrightarrow{\text { coin }}(\text { choc } \rightarrow V M S \square b i s c \rightarrow V M S) \\
\text { step } 2 . & (\text { choc } \rightarrow V M S \square b i s c \rightarrow V M S) & \text { - by rule prefixing } \\
\text { step } 2 . & (\text { choc } \rightarrow V M S \square b i s c \rightarrow V M S) & \xrightarrow{\text { bisc }} V M S \\
\text { choc } & \text { - by rule extchoice } 1 \\
\text { - by rule extchoice } 1
\end{array}
$$

Labeled Transition System

A Labeled Transition System contains a set of states, an initial state (where the system starts from) and a (labeled) transition relation.

where $V M S=$ coin $\rightarrow($ choc $\rightarrow V M S \square$ bisc $\rightarrow V M S)$, state 1 represents the process $V M S$ and state 2 represents the process (choc $\rightarrow V M S \square$ bisc $\rightarrow V M S$).

Operational Semantics: Interleaving

In process $P\left\|\|, P\right.$ and Q behaves independently ${ }^{\text {a }}$.

$$
\begin{aligned}
& \left.\frac{P \xrightarrow{a} P^{\prime}}{(P \| Q) \xrightarrow{a}\left(P^{\prime}\| \| Q\right)} \text { [interleave } 1\right] \\
& \frac{Q \xrightarrow{a} Q^{\prime}}{(P \| Q) \xrightarrow{a}\left(P \| Q^{\prime}\right)}[\text { interleave } 2]
\end{aligned}
$$

[^1]
Operational Semantics: Synchronization

In process $P|[X]| Q$, no event from X may occur unless jointly by both P and Q. When events from X do occur, they occur in both P and Q simultaneously.

$$
\begin{aligned}
& \frac{P \xrightarrow{a} P^{\prime} \text { and } a \notin X}{(P|[X]| Q) \xrightarrow{a}\left(P^{\prime}|[X]| Q\right)}[\text { syn } 1] \\
& \frac{Q \xrightarrow{a} Q^{\prime} \text { and } a \notin X}{(P|[X]| Q) \xrightarrow{a}\left(P|[X]| Q^{\prime}\right)}[\text { syn } 2] \\
& \frac{P \xrightarrow{a} P^{\prime} \text { and } Q \xrightarrow{a} Q^{\prime} \text { and } a \in X}{(P|[X]| Q) \xrightarrow{a}\left(P^{\prime}|[X]| Q^{\prime}\right)}[\text { syn3 }]
\end{aligned}
$$

Operational Semantics: Example (cont'ed)

Given the process $a \rightarrow P|[a]|(c \rightarrow a \rightarrow Q)$.

$$
\begin{array}{lll}
\text { step } 1: & (a \rightarrow P|[a]|(c \rightarrow a \rightarrow Q)) \xrightarrow{c}(a \rightarrow P|[a]|(a \rightarrow Q)) & \text { - rule syn } 2 \\
\text { step } 2: & (a \rightarrow P|[a]|(a \rightarrow Q)) \xrightarrow{a}(P|[a]| Q) & \text { - rule syn } 3
\end{array}
$$

Example 2

- VMC $=$ coin $\rightarrow($ choc $\rightarrow V M C \square$ bisc $\rightarrow V M C)$
- $\mathrm{CHOCLOV}=$ choc \rightarrow CHOCLOV \square coin \rightarrow choc \rightarrow CHOCLOV
- How process $V M C|[A]| C H O C L O V$ where $A=\{$ coin, choc, bisc $\}$ behaves?

```
step1: VMC |[A]| CHOCLOV }\xrightarrow{}{\mathrm{ coin ?}
step2: (choc }->\mathrm{ VMC ם bisc }->\mathrm{ VMC)|[A]|(choc }->\mathrm{ CHOCLOV ) }\xrightarrow{}{\mathrm{ choc ?}
```


Example 2 (cont'ed)

- VMC $=$ coin $\rightarrow($ choc $\rightarrow V M C \square$ bisc $\rightarrow V M C)$
- $\mathrm{CHOCLOV}=\mathrm{choc} \rightarrow$ CHOCLOV \square coin \rightarrow choc \rightarrow CHOCLOV
- VMC |[coin, choc $] \mid C H O C L O V$ or equivalently $V M C \| C H O C L O V$ behaves as follows,

```
step1: VMC | CHOCLOV \xrightarrow{Moin}{c}???
step 2: (choc }->\mathrm{ VMC ם bisc }->\mathrm{ VMC )| (choc }->\mathrm{ CHOCLOV) }\xrightarrow{}{\mathrm{ choc ???}
step 2: (choc }->\mathrm{ VMC ם bisc }->\mathrm{ VMC)|(choc }->\mathrm{ CHOCLOV) bisc ????
```


Case Study I: Dining Philosophers

Step 1: specify the dining philosophers,

$$
\begin{aligned}
\text { Alice }= & \text { Alice.get.fork } 1 \rightarrow \text { Alice.get.fork } 2 \rightarrow \text { Alice.eat } \\
& \rightarrow \text { Alice.put.fork } 1 \rightarrow \text { Alice.put.fork } 2 \rightarrow \text { Alice } \\
\text { Bob }= & \text { Bob.get.fork } 2 \rightarrow \text { Bob.get.fork } 1 \rightarrow \text { Bob.eat } \\
& \rightarrow \text { Bob.put.fork } 2 \rightarrow \text { Bob.put.fork } 1 \rightarrow \text { Bob } \\
\text { Fork } 1= & \text { Alice.get.fork } 1 \rightarrow \text { Alice.put.fork } 1 \rightarrow \text { Fork } 1 \square \\
& \text { Bob.get.fork } \rightarrow \text { Bob.put.fork } 1 \rightarrow \text { Fork } 1 \\
\text { Fork } 2= & \text { Alice.get.fork } 2 \rightarrow \text { Alice.put.fork } 2 \rightarrow \text { Fork } 2 \square \\
& \text { Bob.get.fork } 2 \rightarrow \text { Bob.put.fork } 2 \rightarrow \text { Fork } 2
\end{aligned}
$$

Case Study I: Dining Philosophers (cont'ed)

Step 2: get the alphabets of each process,
α Alice $=\{$ Alice.get.fork1, Alice.get.fork2, Alice.eat, Alice.put.fork1, Alice.put.fork 2$\}$
α Bob $=\{$ Bob.get.fork1, Bob.get.fork2, Bob.eat, Bob.put.fork1, Bob.put.fork2\}
α Fork $1=\{$ Alice.get.fork1, Alice.put.fork1, Bob.get.fork 1, Bob.put.fork 1$\}$
α Fork $2=\{$ Alice.get.fork2, Alice.put.fork2, Bob.get.fork2, Bob.put.fork 2$\}$

Case Study I: Dining Philosophers (cont'ed)

Step 3: apply the operational semantics rules (one at a time) to build the Labeled Transition System, e.g, initially,

- Alice can perform Alice.get.fork1;
- Bob can perform Bob.get.fork2;
- Fork 1 can perform Alice.get.fork1 or Bob.get.fork1;
- Fork 2 can perform Alice.get.fork 2 or Bob.get.fork2;
- By rule syn3, College can perform either Alice.get.fork1 or Bob.get.fork2, and then a state of the form.

$$
\cdots\|\cdots\| \cdots \| \cdots
$$

Case Study I: Dining Philosophers (cont'ed)

Case Study I: Dining Philosophers (cont'ed)

Step 4: analyze the Labeled Transition System,

- is the system deadlock-free?
- will Alice or Bob starve to death?
-...

Tool Needed!

Process Analysis Toolkit

- Pat is a toolset designed for system modeling, simulation and verification.
- You specify the system, Pat simulates system behaviors.
- You specify the system, you ask the question, Pat answers (yes, or no with a counterexample).
- Pat is available at http://pat.comp.nus.edu.sg/

Next lecture: how to use Pat to mechanically analyze CSP models?

[^0]: ${ }^{\text {a }}$ where a is a visible event, some other rules are omitted.

[^1]: ${ }^{\text {a }}$ except termination. Assume that a is not \checkmark.

