
How to Verify a CSP Model?

February 28, 2009

1

Previously

Given a process, a Labeled Transition System can be built by repeatedly applying
the operational semantics.

• Given,

Alice = Alice.get .fork1 → Alice.get .fork2 → Alice.eat
→ Alice.put .fork1 → Alice.put .fork2 → Alice

Bob = Bob.get .fork2 → Bob.get .fork1 → Bob.eat
→ Bob.put .fork2 → Bob.put .fork1 → Bob

Fork1 = Alice.get .fork1 → Alice.put .fork1 → Fork1 2

Bob.get .fork1 → Bob.put .fork1 → Fork1

Fork2 = Alice.get .fork2 → Alice.put .fork2 → Fork2 2

Bob.get .fork2 → Bob.put .fork2 → Fork2

College = Alice ‖ Bob ‖ Fork1 ‖ Fork2

2

Previously (cont’ed)

Given a process, a Labeled Transition System can be built by repeatedly applying
the operational semantics.

• We built,

1

2 3

4

5

6 7

8

910

Alice.get.fork1

Alice.get.fork2

Alice.eat

Alice.put.fork2Alice.put.fork1

Bob.get.fork2

Bob.get.fork1

Bob.eat

Bob.put.fork2
Bob.put.fork1

Bob.get.fork2 Alice.get.fork1

3

Outline

• What are the questions you can ask about a system?

– Safety: something bad never happens

– Liveness: something good eventually happens

– Liveness under fairness: what if the world is fair, can something good
happen eventually?

• Case study: multi-lift system

– modeling,

– verifying using PAT

4

What is safety?

Safety ≈ something bad never happens

• deadlock-freeness, i.e., the system never deadlocks.

– #assert College() deadlockfree;

• invariant, e.g., the value of an array index must never be negative, the amount
in a saving account must always be non-negative.

– #assert Bank() |= [] cond where [] reads ‘always’ and cond could be
Value >= Debit .

5

How to verify safety?

Verification of safety ≈ reachability analysis

• A counterexample to a safety property is a finite execution which leads to a
bad state.

• Searching through all reachable states for a bad one,

– e.g., one which has no outgoing transition.

– e.g., one that violates the invariant.

• Depth First Search (DFS) vs Breadth First Search (BFS)

6

Verifying Safety: Example

1

2 3

4

5

6 7

8

910

Alice.get.fork1

Alice.get.fork2

Alice.eat

Alice.put.fork2Alice.put.fork1

Bob.get.fork2

Bob.get.fork1

Bob.eat

Bob.put.fork2
Bob.put.fork1

Bob.get.fork2 Alice.get.fork1

Depth First Search: 1 → 2 → 5 → 6 → 7 → 1 → backtrack → 4 → FOUND !

7

Verifying Safety: Example (cont’ed)

1

2 3

4

5

6 7

8

910

Alice.get.fork1

Alice.get.fork2

Alice.eat

Alice.put.fork2Alice.put.fork1

Bob.get.fork2

Bob.get.fork1

Bob.eat

Bob.put.fork2
Bob.put.fork1

Bob.get.fork2 Alice.get.fork1

Breadth First Search: 1 → 2 → 3 → 5 → 4 → FOUND !

8

Safety Verification: Applications

Many properties can be formulated as a safety property and solved using
reachability analysis.

• mutual exclusion: []!(more than one processes are accessing the criticl section)

• security: [](only the authorized user can access the information)

• program analysis: arrays are always bounded, pointers are always non-null, etc.

9

Safety Verification: Applications (cont’ed)

#assert Hanoi() |= []!(the disks are stacked in order on right rod)

#assert Cube() |= []!(all stickers on each face are of the same color)

10

What is Liveness?

Liveness ≈ something good eventually happens

• a program is eventually terminating?

• a file writer is eventually closed?

• both Alice and Bob always eventually get to eat?

11

How to verify liveness?

Verification of liveness ≈ loop searching

• A counterexample to a liveness property is an infinite system execution during
which the ‘good’ thing never happens.

– e.g., an infinite loop fails the property that the program is eventually
terminating.

• Searching through the Labeled Transition System for a bad loop.

• Nested Depth First Search vs SCC-based Search

12

Liveness Verification: Example

1

2 3

4

5

6 7

8

910

Alice.get.fork1

Alice.get.fork2

Alice.eat

Alice.put.fork2Alice.put.fork1

Bob.get.fork2

Bob.get.fork1

Bob.eat

Bob.put.fork2
Bob.put.fork1

Bob.get.fork2 Alice.get.fork1

#assert College() |= [] <> Alice.eat

× 〈Alice.get .fork1,Bob.get .fork2〉

× 〈Bob.get .fork2 → Bob.get .fork1 → Bob.eat → Bob.put .fork2 →
Bob.put .fork1〉∞

13

What is Fairness?

Fairness ≈ something is often possible, then it must eventually be performed

• Fairness is important for verification of liveness.

• The default fairness assumption: the system must eventually do something if
possible.

1

2 3

4

5

6 7

8

910

Alice.get.fork1

Alice.get.fork2

Alice.eat

Alice.put.fork2Alice.put.fork1

Bob.get.fork2

Bob.get.fork1

Bob.eat

Bob.put.fork2
Bob.put.fork1

Bob.get.fork2 Alice.get.fork1

14

Generalized Dining Philosophers

Event get .i .j (put .i .j) is the event of i -phil gets (puts down) the j -fork.

Phil(i) = get .i .(i + 1)%N → get .i .i → eat .i
→ put .i .(i + 1)%N → put .i .i → Phil(i)

Fork(x) = get .x .x → put .x .x → Fork(x) 2

get .(x − 1)%N .x → put .(x − 1)%N .x → Fork(x)
College() = || x : {0..N − 1} • (Phil(x) || Fork(x));

15

Generalized Dining Philosophers (cont’ed)

#assert College() |= [] <> eat .0

〈get .0.1, get .1.2, get .2.3, get .3.4, get .4.0〉 – deadlock!
〈get .2.3, get .2.2, eat .2, put .2.3, put .2.2〉∞ – lack of weak fairness
〈get .1.2, get .1.1, eat .1, put .1.2, put .1.1〉∞ – lack of strong fairness

16

How to Verify Liveness under Fairness?

Verification of liveness under fairness ≈ fair loop searching

• A counterexample to a liveness property under fairness is an infinite fair
system execution during which the ‘good’ thing never happens.

– e.g., under weak fairness, a loop is fair if and only if there does NOT exist a
transition which is always possible but never performed.

• Searching through the Labeled Transition System for a fair loop which is bad.

• Nested Depth First Search vs SCC-based Search

17

Liveness Verification under Fairness: Example

Assume weak fairness, #assert College() |= [] <> eat .0

〈get .0.1, get .1.2, get .2.3, get .3.4, get .4.0〉 – deadlock!
〈get .1.2, get .1.1, eat .1, put .1.2, put .1.1〉∞ – lack of strong fairness
〈get .2.3, get .2.2, eat .2, put .2.3, put .2.2〉∞ – is NOT a counter example!

18

Case Study: Multi-lift System

19

Extending CSP

• The original CSP has no shared variables, arrays, etc!

• CSP can be extended with programming language features for data aspects
and data operations.

• The operational semantics must be tuned, e.g.,

(V ,P) x→ (V ′,P ′)
[ch1]

(V ,P 2 Q) x→ (V ′,P ′)

(V ,Q) x→ (V ′,Q ′)
[ch2]

(V ,P 2 Q) x→ (V ′,Q ′)

20

Multi-lift System: the Data Variables

Variables/arrays are necessary to capture the status of the lift.

#define NoOfFloor 3; – number of floors
#define NoOfLift 2; – number of lifts
var extUpReq [NoOfFloor]; – external requests for going up
var extDownReq [NoOfFloor]; – external requests for going down
var intRequests[NoOfFloor ∗ NoOfLift]; – internal requests
var doorOpen[NoOfLift]; – door status

21

Data Operations

A system may have data operations which updates the variables. When the door of
the ith-lift is open at level -floor, the following is invoked to clear the requests.

intRequests[level + i ∗ NoOfFloor] = 0; – clear internal requests
if (dir > 0){

extUpReq [level] = 0; – clear external requests
}
else {

extDownReq [level] = 0;
}

22

Data Operations (cont’d)

When the ith-lift is residing at level -floor is deciding whether to continue traveling
on the same direction or to change direction,

index = level + dir ; result [i] = 0;
while (index >= 0 && index < NoOfFloor) {

if (extUpReq [index]! = 0 &&extDownReq [index]! = 0 &&
intRequests[index + i ∗ NoOfFloor]! = 0){
result [i] = 1;

}
else {

index = index + dir ;
}

}

23

Modeling the Lift

Lift(i , level , dir) =

if ((dir > 0 && extUpReq [level] == 1) || (dir < 0 && extDownReq [level] == 1) ||
intRequests[level + i ∗ NoOfFloor] == dir) {
opendoor .i{doorOpen[i] = level ; *data operation shown before*} →
closedoor .i{doorOpen[i] = −1} → Lift(i , level , dir)

} else {
checkIfToMove.i .level{*data operation shown before*} →
if (result [i] == 1){moving .i .dir →

if (level + dir == 0 || level + dir == NoOfFloors − 1){
Lift(i , level + dir ,−1 ∗ dir)

}
else {Lift(i , level + dir , dir)}

} else {
if ((level == 0 && dir == 1) || (level == NoOfFloors − 1 && dir == −1)){

Lift(i , level , dir)

}
else {changedir .i .level → Lift(i , level ,−1 ∗ dir)}}};

24

Modeling the Users

aUser() = [] pos : {0..NoOfFloor − 1}@(ExternalPush(pos); Waiting(pos));
ExternalPush(pos) = case {

pos == 0 : pushup.pos{extUpReq [pos] = 1} → Skip
pos == NoOfFloor − 1 : pushdown.pos{extDownReq [pos] = 1} → Skip
default : pushup.pos{extUpReq [pos] = 1} → Skip []

pushdown.pos{extDownReq [pos] = 1} → Skip
};

Waiting(pos) = [] i : {0..NoOfLift − 1}@([doorOpen[i] == pos]enter .i →
[]x : {0..NoOfFloor − 1}@(push.x{intRequests[x + i ∗ NoOfFloor] = 1} →
[doorOpen[i] == x]exit .i .x → User()));

Users() =||| x : {0..2}@aUser();

25

Modeling and Questioning the System

LiftSystem() = Users() ||| (||| x : {0..NoOfLift − 1}@Lift(x , 0, 1));
#assert LiftSystem() deadlockfree;
#define pr1 extUpReq [0] > 0;
#define pr2 extUpReq [0] == 0;
#assert LiftSystem() |= 2(pr1 ⇒ 3pr2) && 23moving .0
...

Tool Demonstration

26

