
The Semantics of Extended SOFL�

Jin Song Dong�, Shaoying Liu�

�National University of Singapore
Email: dongjs@comp.nus.edu.sg

�Hosei University, Japan
Email: sliu@k.hosei.ac.jp

Abstract

Recently SOFL (Structured-Object-based-Formal Lan-
guage) has been extended to a formal object-oriented lan-
guage and method while keeping its structured features.
This extension allows powerful object-oriented reuse mech-
anisms, such as class inheritance and object composition,
to be utilized in the early design phases. This paper
presents the semantics for this extended SOFL and further
demonstrates the extendibility and reusability of the object-
oriented semantic models of SOFL.

Keywords: Structured Methods, Object-Oriented Methods,
Reusable Semantics

1 Introduction

The design of complex systems requires powerful mecha-
nisms for modeling state, events and interactive behaviour;
as well as for visualising and structuring systems in order
to control complexity. Usually, many methods are used in
the development of such complex systems. Methods can
be used in effective combination only if the semantic links
between individual methods are clearly established and the
semantics of those methods are well integrated. A recent
research trend in software specification and design is in
methods integration. The semantic complexity of these inte-
grated methods presents further challenges to the traditional
semantic approaches.

Like RAISE,SOFL (Structured-Object-based-Formal Lan-
guage) [1] is an integrated formal method based on VDM.

�This work is supported in part by the Ministry of Education of Japan
under Grant-in-Aid for Scientific Research (B) (No. 11694173) and (C)
(No. 11680368), and a research grant (Integrated Formal Methods) from
National University of Singapore (No. RP3991615)

Unlike RAISE, SOFL is a graphical and textual mixed no-
tation that integrates VDM (for modeling system operations
over states) with data-flow-diagrams (DFD) and Petri nets
(for modeling system interaction and behaviours). SOFL
can be a vehicle for introducing formal methods (i.e. VDM)
to industries with structured development background (e.g.
DFD users).

Recently SOFL has been extended to a formal object-
oriented method while keeping its structured features [2].
This extension allows object-oriented reuse mechanisms,
such as class inheritance and object composition, to be uti-
lized in the early design phases. The graphical notation
of SOFL has also been enriched by introducing the no-
tion of class. In this paper, we extend and restructure our
previous formal semantics of SOFL [3] to reflect the new
language extensions. Furthermore this paper demonstrates
the extendibility and reusability of using object-oriented ap-
proaches to the semantics of integrated formal methods.

The semantics work not only is useful as a high level specifi-
cation for the development of the SOFL case tools, but also
aids the language design itself. For example, the complex
semantic representation of the input ports for a conditional
process in the previous semantic model motivates us to sim-
plify the process construct definition in the new version.

We have used Object-Z [4, 5] notation as the meta-language
to define the SOFL semantics in [3]. Object-Z was selected
because the semantics of Object-Z itself is well studied [6,
7, 8] and it has been effectively applied to programming
language semantics [9, 10]. In this paper, the semantics of
the new SOFL is defined by extending the original SOFL
semantics [3]. A large part of the semantic model defined
in [3] is reused in this work. For example, the semantic
models for graphical data flow connectors can be directly
included without any modification,

This paper focuses on the newly extended part of the seman-
tics. Some semantic models defined previously [3] are in-
cluded in order to make this paper self-contained, but some



others are omitted when they are trivial. This paper assumes
that the reader is familar with SOFL and Object-Z.

2 The Semantics of Extended SOFL

The major extensions to SOFL are the introduction of class
constructs and composite process definition using CDFD in
a class. Those extensions lead to a restructured (improved)
semantic model for process, class and module constructs,
and the introduction of some new graphical CDFD compo-
nents. Figure 1 illustrates the two SOFL semantic models
(the previous one in [3] and the current one). The similari-
ties and differences between SOFL constructs can be more
clearly captured in the current semantic model. For exam-
ple, the notion that a class type is similar to a composite
type is captured by the inheritance relationship between the
semantic models. The semantic model also clearly captures
that both process and module have an interface and module
and class share a common structure. The semantic models
of processes are presented in an incremental and structured
way, in contrast to the previous flat lengthy semantic mod-
els.

2.1 Types, Interfaces and Processes

Many semantics definitions in [3] are reusable in this new
semantics. We have included the semantic definition of
‘variable’ (defined in [3]) in the following section which
will help to understand the essential semantics modifica-
tions and extensions on SOFL types, processes and classes.

2.1.1 Variables

Let �Id� denote all the possible identifiers (including module
names, conditional process names, variable names, etc) and
the function:

before � Id �� Id

relates the variable names to their pre-state variable names,
e.g. before�x� � �x.

Variable references are specified by the class Variable con-
taining attributes id denoting the variable’s name (identi-
fier), type denoting the declared type, and � denoting the
current value of the variable.

Variable

id � Id� type � Type
� � Value

OutVal
val� � Value

val� � �

ToNil
����

� � � Nil

Change
����

Assign
����
val	 � Value

� � � val	

A variable can output its value (OutVal), reset to a nil value
(ToNil), change its value (Change) and be assigned a new
value (Assign).

In SOFL, a variable can have a pre-state form. The follow-
ing function associates variables with their pre-states.

Before After � Variable� Variable

��v�� v�� � Before After �
v��type � v��type � v��id � before�v��id�

The semantics for SOFL variable values and expressions
(including predicates) are defined by the class-union con-
struct in [3] as:

Value �� VoidVal � CompVal � IntVal � BoolVal � Nil
Exp �� Constant � Variable � UnaryExp�

BinaryExp � ComponentExp
Pred �� �e � Exp 	 e�� � BoolVal


where

VoidVal

� � Value

� � self

CompVal
VoidVal

attris � seq Variable

The details of other semantics components are directly
reusable and unsurprising, and not repeated here. Note that
the semantics of SOFL objects (instances of SOFL classes)
can be directly modeled as a composite value (instances of
CompVal).

2.1.2 Type

The first major extension is the notion of class in the SOFL
specification language. The type system is extended, as
classes can be used as types to instantiate instances.



CompType

CoreClass

DerivedClass

Current Semantics

Interface CoreStructure

CoreProc Module

BaseClassCompProcSimpProc

CompType

Process

Module

Previous Semantics

Figure 1. Comparison of the previous and current semantic models

In [3], SOFL value types is modeled as a class-union:

Type �� PreDefType � UserDefType

(PreDefType is defined in [3].)

User-defined types including classes, composite types, etc,
are modeled as:

UserDefType �� Class � CompType � ���

A composite type has a name and a signature which con-
tains a set of declarations. It is modeled in [3] as:

CompType

name � Id
sig � Id �� Type

Note that Class type is similar to CompType and will be
defined later.

2.1.3 Interface of a process

The SOFL Process is a fundamental construct in the spec-
ification language. A process is similar to a ‘procedure’
or ‘function’ in programming languages. Input and out-
put variables are partitioned into ports. A port consists of
a list of variables, and for each port variable, there is a data
flow link (in a CDFD). As a process can be further decom-
posed into a module, the process and the decomposed mod-
ule must have the same interface. The interface of a process
or a module is defined as:

Interface

in � seq Variable [input port]
out � Ports [output ports]
outflows � PortLinks

[output data flow links]
rd � � Var�L [read variables]
�wr wr � Var�L �� Var�L

[before, after write variables]
�
interfacevars � � Vars

interfacevars � ran in � ran�� ran out�
�rd � dom �wr wr � ran �wr wr

�wr wr � Before After
outflows 
� ��


out � 
outflows � out Connect outflows

The semantics of the subscript ‘�L (local objects [11]) ap-
pended to the types of the attributes rd and �wr wr captures
that all variables referenced by rd and �wr wr are local.

One difference to the previous semantics [3] is that the input
port is simplified to a single port (rather than multiple ports).

Each port variable connects a data flow link (in a CDFD).

Connect � Ports � PortLinks

� ports � Ports� dataflows � PortLinks �
ports Connect dataflows �


ports � 
dataflows
� i � dom ports �


ports�i� � 
dataflows�i� �
� j � dom ports�i� �

ports�i��j� � dataflows�i��j��left



where

Ports �� seq
�

seq
�

Variable
PortLinks �� seq

�
seq

�
DataFlow

DataFlow will be defined in Section 2.4.

2.1.4 Process

A process can be either a simple process or a composite
process: Proc �� SimpProc � CompProc

A simple process in a module can be further decomposed
into another module, while a process (simple or composite)
in a class cannot be further decomposed. Some common
core features of a process can be defined as:

CoreProc
Interface

name � Id
within � Class �Module
decomp � Module � Nil
�
active � �

active � � i � dom in � in�i��� 
� Nil

Flow �� �� i � dom outflows � �j � dom outflows�i� �
outflows�i��j����

� �out � ��

If a simple process is decomposed into a specification mod-
ule, the meaning of the process is the meaning of the de-
composed module. On the other hand, if a process is not
decomposed into a module, the meaning of the process is
defined by its pre and postconditions. The Object-Z class
SimpProc models simple processes in the same way as the
previous semantic model.

The behaviour of a composite process, a newly introduced
feature, is defined by a CDFD. A composite process in a
class can be defined as:

CompProc
CoreProc

beh � CDFD

within � Class � decomp � Nil

� �� beh��� Flow

Compared to the previous semantic models of processes [3],
these semantic models are simple and compact due to the

simplification of the input port to be a single port (rather
than multiple ports in the previous language). Furthermore
the new semantic models of processes are presented in an
incremental and structured way, in contrust to the previous
flat/lengthy semantic models.

2.2 SOFL Classes and Modules

The two grouping constructs, module and class, have com-
mon features, they both include a name, a group of user-
defined types and an invariant. Firstly, we model their com-
monalities as:

CoreStructure

name � Id
definedtypes � � UserDefType
inv � Pred�L

� v�� v� � ������ � Var� �
v��id � v��id � v� � v�

The essential features of a class can be defined as:

CoreClass
CoreStructure� CompType

localms � � Proc�C
localsig � Id �� Type
methods � � Proc


methods � 
�m � methods � m�id


The subscript ‘�C’ appended to the type of the attribute
localms ensures that every class contains its own set of local
methods.

Now, BaseClass and DerivedClass can be defined by inher-
iting CoreClass:

BaseClass
CoreClass

sig � localsig � methods � localms

DerivedClass
CoreClass

parclass � Class�L

sig � localsig � parclass�sig
methods � localms � parclass�methods



In DerivedClass, parclass denotes the parent class of a
derived class. The subscript ‘�L’ (shareable containment)
appended to the type of parclass precisely specifies that the
single inheritance structure is acyclic (i.e. a class cannot
directly or indirectly inherit itself). The attribute localms
(inherited from CoreClass) denotes the locally defined ad-
ditional methods.

SOFL classes can be defined as

Class �� BaseClass � DerivedClass

A SOFL module consists of a name, an interface, a group of
user-defined types, a group of state variables (which will be
the ‘read’ or ‘write’ variables of its process), a module in-
variant, a group of processes and a CDFD. It can be defined
by inheriting the CoreStructure and Interface.

Module
CoreStructure� Interface

[... similar to the previous semantics]

2.3 Semantics of CDFD

As SOFL’s CDFD allows non-determinism, the semantics
of a CDFD also have non-deterministic behaviour. CDFDs
are modeled as:

CDFD

nodes � ��Proc � InEnv � OutEnv�
[data-flow nodes]

dfs � � DataFlow [data-flow links]
�
active nodes � ��Proc � InEnv�

nodes � Proc 
� � � nodes � InEnv 
� �

���d � dfs � d������
�

�Proc � InEnv � OutEnv�� � nodes
active nodes � �c � nodes 	 c�active


Step ��� n � active nodes � n��
Activate ��

��active nodes � Proc� � �� � Step� Activate
� ��active nodes � Proc� 
� ��

Process ��
��active nodes � Proc� 
� �� � Step� Process
� ��active nodes � Proc� � ��

� �� Activate� Process

A single trace step is to select an active-node and execute
the node (captured by the operation Step). Initially, all
active-nodes in a CDFD are input environments. By ex-
ecuting a number of input environments, some condition

processes will be activated (Activate). Then, a chain of ac-
tivations continues until there is no active condition process
left (Process).

The input and output environments are modeled as objects
of the following classes:

InEnv

right � Variable
outflow � DataFlow
active � �

active � true
right � outflow�left

� �� right�Assign� outflow��

OutEnv

left � Variable
inflow � DataFlow

� �� left�OutVal

Note that input environment is always active. The meaning
of the input environment object is to receive a value and
then pass it through a data-flow link, while the meaning of
the output environment object is modeled as a simple output
value action.

2.4 Data Flows

A data-flow in the original SOFL graphical notation can be
a simple data-flow (with only one destination) or a complex
data-flow connector. The SOFL graphical constructs are en-
riched mainly by introducing classes, the semantics of the
data-flow is extended as follows:

DataFlow �� SimpleDF � DFConnector�
FormObjDF � SpreadObjDF � RenameDF

DFConnector �� ConditionDF � CaseDF�
BroadCastDF � ChoiceDF

where the DFConnector with its components defined in [3]
are completely reusable in the current semantics and we
omit them in this paper. The new object formation data flow
and object spreading data flow are defined as:

FormObjDF

in � seq Variable [input port]
out � CompVal [output object]


in � 
out�attris
� i � dom in � in�i��type � out�attris�i��type

� �� �i � dom in �
in�i��OutVal � out�attri�i��Assign

SpreadObjDF
FormObjDF�Out�in� in�Out�



where SpreadObjDF is defined by inheriting FormObjDF
with appropriate renaming, and exactly captures the simi-
larity and difference between the two. The new renaming
data flow is also defined similarly as:

RenameDF

in � seq Variable [input port]
out � seq Variable [output port]


in � 
out�attris
� i � dom in � in�i��type � out�i��type

� �� �i � dom in �
in�i��OutVal � out�attri�i��Assign

This completes the semantics of the extended SOFL.

3 Conclusions

SOFL has been extended to an object-oriented formal lan-
guage. This paper has presented an extension of the formal
semantics for SOFL in Object-Z. The study of the formal
semantics also helped us in the language design. For exam-
ple the complex semantics representation of the input ports
for a conditional process in our previous semantics model
[3] motivates the simplification of the input ports in the cur-
rent SOFL process definition.

In the previous SOFL semantics work [3], we predicted that
if SOFL is extended, it’s formal semantics will be readily
reusable and extendible. This paper has confirmed this pre-
diction even with substantial language extensions. A large
part of the previous semantic model is reusable in the cur-
rent SOFL semantics. For example, the semantic mod-
els for graphical data flow connectors can be directly in-
cluded without any modification. Object-Z inheritance is
exploited to illustrate the commonalities and the differences
between various SOFL textual and graphical constructs and
to present incremental and structured semantic models. The
two semantic models (the previous one [3] and the current
one) help readers, and case tool developers, pinpoint pre-
cisely the differences between the two SOFL versions.

Acknowledgements

We would like to thank Hugh Anderson and anonymous ref-
erees for many helpful comments. This work is supported
by the research grants from JSPS Scientific Exchange Pro-
gramme, the Ministry of Education of Japan and National
University of Singapore.

References

[1] S. Liu, A. J. Offutt, C. Ho-Stuart, Y. Sun, and
M. Ohba. SOFL: A Formal Engineering Methodol-
ogy for Industrial Applications. IEEE Transactions
on Software Engineering, 24(1), January 1998.

[2] S. Liu and J. S. Dong. Class and Module in SOFL.
In Y. T. Yu and T.Y. Chen, editors, Asia-Pacific Con-
ference on Quality Software (APAQS’01). IEEE Press,
December 2001.

[3] J. S. Dong and S. Liu. An Object Semantic Model of
SOFL. In K. Araki, A. Galloway, and K. Taguchi, ed-
itors, IFM’99: Integrated Formal Methods, York, UK,
pages 189–208. Springer-Verlag, June 1999.

[4] R. Duke and G. Rose. Formal Object Oriented Speci-
fication Using Object-Z. Cornerstones of Computing.
Macmillan, March 2000.

[5] G. Smith. The Object-Z Specification Language. Ad-
vances in Formal Methods. Kluwer Academic Pub-
lishers, 2000.

[6] A. Griffiths and G. Rose. A Semantic Foundation
for Object Identity in Formal Specification. Object-
Oriented Systems, 2:195–215, Chapman & Hall 1995.

[7] G. Smith. A fully abstract semantics of classes for
Object-Z. Formal Aspects of Computing, 7(3):289–
313, 1995.

[8] S. Butler and R. Duke. Defining composition opera-
tors for object interaction. Object Oriented Systems,
5(1):1–16, 1998.

[9] J. S. Dong, R. Duke, and G. Rose. An Object-Oriented
Denotational Semantics of A Small Programming
Language. Object-Oriented Systems (OOS), 4(1):29–
52, Chapman & Hall 1997.

[10] W. K. Tan. A Semantic Model of A Small Typed
Functional Language using Object-Z. In J. S. Dong,
J. He, and M. Purvis, editors, The 7th Asia-Pacific
Software Engineering Conference (APSEC’00). IEEE
Press, December 2000.

[11] J. S. Dong and R. Duke. The Geometry of Object
Containment. Object-Oriented Systems, 2(1):41–63,
Chapman & Hall, March 1995.


