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Abstract. Slicing is a program analysis technique that was originally introduced to improve program de-
bugging and understanding. The purpose of a slicing algorithm is to remove the statements whose execution
is not necessary with respect to some point(s) of interest in the program (called slicing criterion). Nowa-
days, slicing is becoming more important on the specification level, in particular for model reduction. In this
article we propose a dependence-based solution to the problem of slicing communicating automata formal
specifications. Dependence relations in specifications are formally defined. Efficient algorithms are provided
to compute the dependence relations, and use this information to automatically extract slices. All the algo-
rithms have been implemented in a slicing prototype tool, that has shown to be operational in specification
debugging and understanding. The model reduction results obtained with our slicer are promising, notably
in the area of formal validation and verification methods, e.g. model checking, test case generation.
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1. Introduction

Almost thirty years ago, the concept of slicing arose from research on dataflow analysis and static program
analysis [Wei81]. The initial purpose was to facilitate the debugging and understanding of programs expressed
in sequential imperative languages. Informally, a slice of a program P with respect to a criterion C (usually
a program point) is a set of statements of P , which are relevant to1 the computations performed in C.
Since then, slicing has been extended in various ways to deal with more complex program constructs, e.g.

Correspondence and offprint requests to: Sébastien Labbé, CEA Saclay, DRT/LIST/DTSI/SOL/LLSP, F-91191 Gif-sur-Yvette,
France. e-mail: sebastien.labbe@cea.fr
1 If we consider backward slicing, then “are relevant to” means “may affect”, while if we consider forward slicing, then it means
“may be affected by”.
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procedures [HRB88], arbitrary control flow [BH93], arrays and pointers [Kri03], and concurrency [HCD+99,
Kri98, NR00, MT00]. Slicing was also extended to more modern formalisms, including Z specifications
[CR94, BW05], synchronous languages [GR02], and hierarchical state machines [HW97, WDQ03]. A notion
of dynamic slicing has been introduced, too [Tip95]. At present, the slicing literature has become extensive,
therefore some useful surveys have been published [Tip95, XQZ+05].

Embedded systems are mainly intended to take part in safety-critical systems, of which a failure could
cause heavy damages (e.g. in power plants or transportation systems). For that purpose, tools, formal
methods and specification languages are being developed to ensure the construction of safe systems. We
claim more effort should be done in transferring to specifications some static analyses (such as slicing), that
have been shown to be useful and efficient on programs. We therefore propose in this article to address the
problem of slicing formal specifications based on communicating extended automata (here, we are exclusively
concerned with static slicing).

Finding a solution is not straightforward, because some significant differences lie between the features of
communicating automata and those of imperative programs, preventing the usual program slicing definitions
to be directly applicable on automata (notably, the unique end node property satisfied by programs, and
the occurrence of communications via channels in automata).

In [LG06], we stated the new definitions that form the cornerstone of our approach to slicing communi-
cating automata specifications. This approach was presented in [LG07], however many points remained to
be thoroughly characterised and investigated. The present article continues the work in [LG06] and [LG07],
providing three main contributions: first, a thorough description of our algorithms for the computation of
dependence relations and specification slices, in section 4; second, state-of-the-art information, focused on
program slicing in section 2, and focused on control, data and communication dependencies in sections 4.1,
4.2 and 4.3; and third, an evaluation of the correction and precision of our definitions, in terms of direct,
indirect and transitive dependencies, in section 4.4. Prospects of our work appear in several fields of formal
methods, including simulation, test-case generation and model checking. The original goals of slicing can be
achieved too, through specification debugging and understanding.

The following section 2 is a brief overview of some of the main existing program slicing approaches. In
section 3, a theoretical framework for specifications based on communicating automata, called iostss, is
introduced. Then, a description of our approach to slicing iosts specifications is provided in section 4. In the
last sections we conclude with some words on related works, and an overview of ongoing and future work.

2. Program Slicing

Program slicing was first introduced by Weiser [Wei81] as a way to abstract a program with respect to chosen
points of interest in the program – these special program locations form a slicing criterion. Specifically, a
program is abstracted by a selection, in the program itself, of all the statements that may influence the
values computed by variables at the slicing criterion; the selected program statements form a backward
slice of the program. A slice is intended to be smaller and easier to understand than the whole program:
informally, a slicer is expected to remove a maximum of statements that are not relevant to the criterion.
In an experiment, Weiser claimed that programmers mentally build slices when debugging a program, and
therefore a tool automatically computing program slices – a slicer – could help in improving the safety and
efficiency of the debugging process. This experiment provided the first main motivation for the development
of a slicer. Since then, slicing has been shown to be beneficial in other challenging application areas, e.g.
model checking [DHH+06]. Up to now, there have been two main classes of approaches for calculating
program slices.

2.1. Weiser-style Slicing

The first approach may be referred to as Weiser-style slicing, as Krinke suggested in [Kri03]. It consists of
solving equations defining sets of variables and statements that are relevant to a slicing criterion. A fixed
point for the set of relevant statements is incrementally computed, leading to the desired slice.
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2.2. Dependence-based Slicing

The second main approach, we will refer to as dependence-based slicing, involves the computation of de-
pendence relations between the program statements. An additional program representation – a dependence
graph – is usually constructed from the dependence relations. In a dependence graph, nodes represent pro-
gram statements, and edges represent the dependence relations: there is an edge from two nodes in the
dependence graph if and only if the corresponding statements are dependence-related. Using dependence
relations information, slicing can be reduced to a simple reachability problem in the dependence graph
[Kri03, FOW87]. Slices resulting of this method are more accurate than those resulting of previous methods
[FOW87]. There exists several definitions of dependence graphs, mostly deriving from Ottenstein’s Program
Dependence Graph [OO84, FOW87], among which we cite the System Dependence Graph [HRB88], the
Threaded Program Dependence Graph [Kri98], and the Parallel Program Graph [Sar97].

The adaptability of dependence-based slicing allows one to define appropriate dependence relations in
regard to the intended language, then build the corresponding dependence graph, and compute slices by
solving graph reachability problems. The precision of a dependence-based slicing approach highly depends
on two factors: the definitions of the dependence relations, and the features of the intended language. For
instance, in the context of slicing concurrent programs, Krinke [Kri98] introduced the notion of interference
dependence, to denote dependencies induced by concurrent reads and writes of shared variables, and the
notion of transitive dependence, to evaluate the precision of dependence relations.

Considering its adaptability, accuracy and relative easiness of understanding and implementation, depen-
dence-based slicing has become the most widespread slicing technique, especially when complex constructs
have to be handled by the slicing algorithm [Kri03, NR00, BH93, HRB88, RAB+05].

3. Theoretical Framework

In this section is defined the specification framework, on which is founded our approach to slicing commu-
nicating automata specifications (cf. section 4).

3.1. Communicating Automata (IOSTS)

Input/Output Symbolic Transition Systems (iostss) [GGRT06] are automata used to specify the behaviour
of reactive systems. When designing complex or infinite-state systems, iostss compare advantageously to
classical labelled transition systems. Our slicing method is intended to operate on specifications that are
based on iostss; this formalism is defined in the following subsections.

3.1.1. Data Types

Data types are defined within a typed equational specification framework.

Syntax A data type signature is a couple Ω = (Θ, Φ), where Θ is a set of type names, and each element of
Φ is formed of an operation name, together with a profile θ1 . . . θn−1 → θn, where n ≥ 1 and for all i ≤ n,
θi ∈ Θ.

Let V =
⋃

θ∈Θ Vθ be a set of typed variable names. The set of Ω-terms whose variables are elements
of V is denoted by TΩ(V ) and is inductively defined as follows: an Ω-term of type θn is either a variable
in Vθn

; or an expression formed from an operation φ : θ1 . . . θn−1 → θn in Φ, followed by a parenthesised list
[t1 . . . tn−1] of Ω-terms, such that for all i, ti is of type θi.

An Ω-substitution is a function σ : V → TΩ(V ) that preserves types, i.e. σ(v) is of type θ whenever
v ∈ Vθ. In the following, we note TΩ(V )V the set of all Ω-substitutions mapping variables in V to terms
in TΩ(V ).

The set of Ω-formulae whose variables are elements of V is denoted by FΩ(V ) and is inductively defined
as follows: an Ω-formula is either a truth value in {true, false}; an expression of the form t1 = t2 where
t1, t2 ∈ TΩ(V ) are of the same type; or an expression formed from Ω-formulae and Boolean operators in
{¬,∨,∧}, with the usual syntax.
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Semantics An Ω-model is a family M = {Mθ}θ∈Θ, with a function space defined as follows: {φM : Mθ1
×

· · · ×Mθn
→ Mθ | (φ : θ1 . . . θn−1 → θn) ∈ Φ}. We define Ω-interpretations as applications ν from V to M ,

extended to terms in TΩ(V ), and preserving types. MV is the set of all Ω-interpretations of V in M . Given
a model M and a formula f , f is said satisfiable in M , if there exists an interpretation ν such that M |=ν f .

3.1.2. Input/Output Symbolic Transition Systems

An iosts-signature Σ is a triple (Ω, V, C), where Ω is a data type signature, V =
⋃

θ∈Θ Vθ is a set of typed
variable names, called attribute variables, and C is a set of communication channels names.

An iosts denotes the state variations of the specified system, by describing modifications of the values
associated to attribute variables. These values may be modified via interactions with the environment,
called communication actions, or via internal operations (denoted by variable substitutions, cf. definition 2).
Communication actions denote emissions and receptions of messages through communication channels.

Definition 1 (Communication actions). The set of communication actions over an iosts-signature Σ =
(Ω, V, C) is denoted by Act(Σ), such that:

Act(Σ) = {τ} ∪ Input(Σ) ∪Output(Σ)

Input(Σ) = {c? | c ∈ C} ∪ {c?x | c ∈ C ∧ x ∈ V }

Output(Σ) = {c! | c ∈ C} ∪ {c!t | c ∈ C ∧ t ∈ TΩ(V )}

The specified system is stimulated by its environment via actions in Input(Σ). In particular, when the
action c? is performed, the system waits for a signal to occur on channel c, and when the action c?x
is performed, the system waits on channel c for the reception of a value to be assigned to the attribute
variable x. Actions in Output(Σ) denote responses of the system to its environment. The action c!t (resp. c!)
is performed for the system to emit a message, having t as argument (resp. having no arguments), on the
channel c.

Definition 2 (Input/Output Symbolic Transition System (IOSTS)). An iosts over Σ = (Ω, V, C)
is a triple (S, s0, T )Σ where S is a set of state names, s0 ∈ S is the initial state, and T ⊆ S × Act(Σ) ×
FΩ(V ) ×TΩ(V )V × S is a transition relation. A transition in T is a tuple (s, a, f, σ, s′) where states s and
s′ are respectively called source state and target state, f is a formula called guard of the transition, a is an
action and σ a variable substitution.

3.2. Semantics

Definition 3 formally states the semantics of an iosts A in a model M , under the form of an extended
labelled transition system.

Notations In the sequel, (x 7→ m) denotes a variable substitution, that associates m to x, and is the
identity for all other variables, IdV \{x}. For the ease of reading, interpretations are extended to terms,
without renaming: ν : V →M is extended by ν : TΩ(V )→M . Finally we note Λ the set of labels such that:
Λ = {τ} ∪ {c! | c ∈ C} ∪ {c? | c ∈ C} ∪ {c!m | c ∈ C ∧m ∈M} ∪ {c?m | c ∈ C ∧m ∈M}.

Definition 3 (IOSTS Semantics). Given an iosts A = (S, s0, T )Σ, where Σ = (Ω, V, C), and a model M ,
the semantics of A in M is a labelled transition system JA K = (JSK, (s0, ν0), JT K), such that: JSK ⊆ S×MV ,
ν0 ∈MV and JT K ⊆ JSK×Λ× JSK. The set of extended states JSK contains elements of the form (s, ν), where
s is a state of A , and ν is an Ω-interpretation. The set of transitions JT K is inductively built as follows:

• Initially, JT K is the empty set ∅;

• Apply base rules whenever possible;

• Apply induction rules whenever possible.
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Base Rules:

For all (s, a, f, σ, s1) ∈ T, and ν ∈MV , such that s = s0 ∧M |=ν f :

If a ∈ (Λ ∩Act(Σ)), then insert ((s0, ν), a, (s1, ν ◦ σ)) in JT K (1)

If a = c!t, then insert ((s0, ν), c!ν(t), (s1, ν ◦ σ)) in JT K (2)

If a = c?x, then for all m ∈M , insert ((s0, ν), c?m, (s1, ν ◦ (x 7→ m) ◦ σ)) in JT K (3)

Induction Rules:

For all (s1, a, f, σ, s2) ∈ T, and ν ∈MV , such that

M |=ν f ∧ (∃(e, l, e′) ∈ JT K, e′ = (s1, ν)) :

If a ∈ (Λ ∩Act(Σ)), then insert ((s1, ν), a, (s2, ν ◦ σ)) in JT K (4)

If a = c!t, then insert ((s1, ν), c!ν(t), (s2, ν ◦ σ)) in JT K (5)

If a = c?x, then for all m ∈M , insert ((s1, ν), c?m, (s2, ν ◦ (x 7→ m) ◦ σ)) in JT K (6)

In the following, the transitions that are inserted in JT K following the rule (N) will be denoted by (N)-
transitions. In definition 6, (1), (2) and (3)-transitions denote the semantics of the transitions of A whose
source state is the initial state of A . Specifically, (1)-transitions denote the semantics of the transitions that
contain a silent communication action (τ), or a signal communication2 (of the form c! or c?). (2)-transitions,
resp. (3)-transitions, denote the semantics of the transitions that contain an output action of the form c!t,
resp. an input action of the form c?x. (4), (5) and (6)-transitions denote the semantics of transitions whose
source state is any state in S\{s0}, with the additional condition that this state is reachable in JA K; (4), (5)
and (6) are respectively analogous to (1), (2) and (3).

Consequently, definition 3 is in accordance to the intuition of a fireable transition: for a transition to be
fired, first its source state must be reached, and then its guard must be satisfied.

3.3. Specifications

Reactive systems are usually specified by synchronising subsystems together. In our framework, a specifica-
tion is considered as the parallel composition of communicating automata (iostss).

Definition 4 (Specification). A specification S is a non-empty set of iostss, S = {(Si, s0i, Ti)Σi
|

0 ≤ i < k ∧ Σi = (Ωi, Vi, Ci)}, for some k ∈ N
∗, such that for all i the sets of attribute variables Vi are

pairwise disjoint. The parallel composition of automata in a specification is denoted by interleaving semantics
(cf. definition 6).

In a specification, if two different iostss communicate on a channel c (i.e. c ∈ Ci ∩ Cj , and i 6= j), then
c is used for internal communications, otherwise c is used for communications with the environment of the
system.

Example 1. Figure 1 shows a graphic representation of a cash machine specification, formed of two con-
current iostss (initial states are indicated by small dots). Two kinds of credit cards can be handled by the
specified machine: gold and normal cards. In the former case, overdraft is allowed, while in the latter case,
it is not. Basically, the left automaton is an interface with the environment, and the right automaton per-
forms internal operations with the bank. The left automaton acquires the necessary data through channels
nameCh (the customer’s name), typeCh (the type of card that has been introduced in the machine), and
amountCh (the amount the customer requested); it sends data that is needed for the right automaton to
operate, through internal channels intNameCh, normalCh, goldCh, and finally it sends data back to the
environment through channel amountCh (the amount of money to be delivered to the customer). The right
automaton acquires the customer’s name and the type of his credit card, and gets the customer’s account,
using the account access function. Then, depending on the account overdraft facilities, the balance after

2 Indeed, (Λ ∩ Act(Σ)) contains τ , and all the signal emissions and receptions.



6 S. Labbé and J.-P. Gallois

Fig. 1. iosts specification example.

withdrawal is checked to be greater than zero, or not (here, an account ac is a record that contains at least
a variable, bal, which indicates the balance of ac). Finally, the account is debited only if the withdrawal is
allowed. Then, the debited amount is transmitted through channel normalCh or goldCh (0 in the case the
withdrawal is not allowed).

Throughout this paper, a transition of figure 1 will be noted α ⇀ β, where α is the source state and β is
the target state of the transition. Since this notation is ambiguous for two transitions of the right automaton,
(k, τ, ac.bal < y, (del 7→ 0), l) will be noted k ⇀ 1l, and (k, τ, ac.bal ≥ y, (ac.bal 7→ ac.bal− y, del 7→ y), l) will
be noted k ⇀ 2l.

As we saw, our definition of a specification vitally depends on the notion of parallel composition of iostss.
In the following, we therefore need to formally define this notion. For that purpose, we define a Boolean
function rdv, that takes a transition and an iosts as argument, such that rdv(tr, A ) is true if and only if
there is a transition in A that may have a rendezvous with transition tr.

Definition 5 (Function rdv). The Boolean function rdv is formally defined by:

rdv((s1, a1, f1, σ1, s
′
1), (S, s0, T )Σ) = a1 6= τ ∧ ∃(s2, a2, f2, σ2, s

′
2) ∈ T,

(a1 = c! =⇒ a2 = c?) ∧ (a1 = c? =⇒ a2 = c!)
∧ (a1 = c!t =⇒ a2 = c?x) ∧ (a1 = c?x =⇒ a2 = c!t)

Example 2. Let us note A the right automaton in figure 1 then rdv(e ⇀ f, A ) is true because a rendezvous
is possible between e ⇀ f and a transition of A , namely j ⇀ k; rdv(a ⇀ b, A ) is false because no transition
in A performs an input action on channel nameCh.

Definition 6 formally defines the notion of the parallel composition of two iostss. Two iostss are syn-
chronised using a binary rendezvous mechanism when possible, otherwise all interleavings are considered.
Synchronised communication actions result in internal actions in the composed system.

Definition 6 (Parallel composition of IOSTS). Let A1 and A2 be two iostss such that ∀i ∈ {1, 2},
Ai = (Si, s0i

, Ti)Σi
, and Σi = ((Θi, Φi), Vi, Ci). The parallel composition of A1 and A2 is an iosts A =

(S, s0, T )Σ, where Σ = (Ω, V, C), such that:
S = S1 × S2, s0 = (s01

, s02
), Ω = (Θ1 ∪Θ2, Φ1 ∪Φ2), V = V1 ∪ V2, C = C1 ∪C2, and T ⊆ S ×Act(Σ)×

FΩ(V )×TΩ(V )V × S is defined as the following set of transitions:
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Fig. 2. Parallel composition of specification in figure 1.

{ ((s1, s2), a1, f1, σ1, (s
′
1, s2)) |

∃tr ∈ T1, tr = (s1, a1, f1, σ1, s
′
1) ∧ ¬rdv(tr, A2) } (7)

∪ { ((s1, s2), a2, f2, σ2, (s1, s
′
2)) |

∃tr ∈ T2, tr = (s2, a2, f2, σ2, s
′
2) ∧ ¬rdv(tr, A1) } (8)

∪ { ((s1, s2), τ, f1 ∧ f2, σ1 ∪ σ2, (s
′
1, s

′
2)) |

(s1, c?, f1, σ1, s
′
1) ∈ T1 ∧ (s2, c!, f2, σ2, s

′
2) ∈ T2 } (9)

∪ { ((s1, s2), τ, f1 ∧ f2, σ1 ∪ σ2, (s
′
1, s

′
2)) |

(s1, c!, f1, σ1, s
′
1) ∈ T1 ∧ (s2, c?, f2, σ2, s

′
2) ∈ T2 } (10)

∪ { ((s1, s2), τ, f1 ∧ f2, (x 7→ t) ◦ σ1 ∪ σ2, (s
′
1, s

′
2)) |

(s1, c?x, f1, σ1, s
′
1) ∈ T1 ∧ (s2, c!t, f2, σ2, s

′
2) ∈ T2 } (11)

∪ { ((s1, s2), τ, f1 ∧ f2, σ1 ∪ (x 7→ t) ◦ σ2, (s
′
1, s

′
2)) |

(s1, c!t, f1, σ1, s
′
1) ∈ T1 ∧ (s2, c?x, f2, σ2, s

′
2) ∈ T2} (12)

In definition 6, the sets at lines (7) and (8) denote the set of transitions that can be executed inde-
pendently; these transitions potentially create interleavings in the parallel composition. The set at line (7)
denotes the set of transitions in A that result from firing a transition in A1 while staying in the same state
in A2; the set at line (8) is symmetric to the set at line (7). Sets at lines (9), (10), (11) and (12) denote
synchronisations of A1 and A2: firing a transition in one of these sets means firing one transition in each
automaton. More precisely, the sets at lines (9) and (11) denote the sets of transitions that result from a
synchronisation of an output action performed in A2, with an input action performed in A1, on the same
channel; the set at line (10), respectively (12), is symmetric to the set at line (9), respectively (11).

Notice that, at lines (11) and (12), an expression of the form σ1 ∪ σ2 is a valid expression for a function,
since the domains of σ1 and σ2 are disjoint.

Example 3. Figure 2 represents an automaton that results from the parallel composition of our running
example, in figure 1. This example system is highly synchronised: the absence of interleavings results in a rel-
atively compact parallel composition of the specification. Another consequence is that many new transitions
are created in order to build the parallel composition iosts.

For instance, the transition (b, i) ⇀ (c, j) results from the parallel composition of transitions b ⇀ c and
i ⇀ j. Formally, using the line (11) (or (12) in a symmetric way) of definition 6, the parallel composition
of (b, intNameCh!nm, true, Id{nm,tp,am}, c) and (i, intNameCh?x, true, (ac 7→ account(x)), j) is denoted
by ((b, i), τ, true, σ, (c, j)), where σ = (x 7→ nm, ac 7→ account(nm)). As expected, the variable x at the
assignments of i ⇀ j refers to nm (via channel intNameCh).

Now, let us illustrate the case where a transition is labelled with an input action on a variable, and also
an assignment to the same variable. Specifically, let us insert an assignment to x at i ⇀ j, i.e. i ⇀ j is replaced
by i ⇀ 1j = (i, intNameCh?x, true, (x 7→ “smith”, ac 7→ account(x)), j) Then, according to definition 6, the
composition of b ⇀ c and i ⇀ j is ((b, i), τ, true, σ′, (c, j)), where σ′ = (x 7→ “smith”, ac 7→ account(nm)). It
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is worth noticing that according to the semantics of definition 3, the term nm that is received in variable x
via channel intNameCh, is overwritten by the assignment to x at i ⇀ j (i.e. σ′(x) = “smith”); but uses of
x at the assignments of i ⇀ j are still mapped to nm, indeed, σ′(ac) 6= account(“smith”).

Finally, some transition labels stay unchanged, as no synchronisation happened, cf. transition (a, i) ⇀
(b, i), that is built using the line (7) (or symmetrically, (8)) of definition 6.

3.4. Paths in IOSTS

Assuming A = (S, s0, T )Σ is an iosts, the two following definitions state what we will call successors and
predecessors of a transition in A , and paths and maximal paths in A .

Definition 7 (Successor/predecessor of a transition). Let tri and trj be two transitions in T , trj is
called a successor of tri in A if the source state of trj is the target state of tri; in this case, tri is called a
predecessor of trj .

Notation The number of successors of a transition tr is called the outer degree of tr, and is noted d(tr).

Definition 8 (Path in an automaton). A path p in A is a (possibly partial) function N→ T , such that:

• for all i ∈ N, if p is defined at i, then p is defined at j for all j ≤ i;

• and for all i ∈ N, if p is defined at i + 1, then the source state of p(i + 1) is the target state of p(i).

Notice that if a path is a partial function, then it is a finite path. In this paper, we note 〈tri, . . . , trj〉 a
finite path p such that k is the greatest integer at which p is defined, p(0) = tri and p(k) = trj (in this case
we say p starts with tri).

Example 4. In figure 1, transitions e ⇀ f and e ⇀ g are both successors of transition d ⇀ e, and 〈c ⇀
d, d ⇀ e, e ⇀ g〉 is a finite path starting with c ⇀ d in the left automaton.

The following definition recalls the graph theory notion of maximal path and extends it to iostss.
Intuitively, a maximal path in A is a path that cannot be continued by any transition in T .

Definition 9 (Maximal path). A path p in A is called a maximal path, if either p is a total function (i.e.
p is an infinite path), or a partial function such that: let k be the greatest integer at which p is defined, then
there exists no path p′ in A such that p′(i) = p(i) for all i ≤ k, and p′(k + 1) is defined.

Example 5. The path that consists in the infinite sequence of transitions in (i ⇀ j, j ⇀ m, m ⇀ i)∗ is a
maximal path in the right automaton of figure 1. Still in figure 1, suppose that we insert a new node n and a
transition i ⇀ n in the right automaton. Then i ⇀ n has no successor in the right automaton, and the path
〈i ⇀ j, j ⇀ m, m ⇀ i, i ⇀ n〉 is a maximal path starting with i ⇀ j in the right automaton.

4. Slicing IOSTS Specifications

Referring to section 2, program slicing could be coarsely summarised as finding a subset of a program (called
slice) with respect to another subset of the program (called criterion). We aim for a specification slicing
algorithm that closely conforms to this initial concept. Hence, the slicing criteria our algorithm operates on,
and the slices it produces, are both formed from elements of the specification. Our approach to slicing formal
specifications based on communicating automata is inspired by previous works on dependence-based program
slicing (cf. section 2). In this section, we introduce dependence relations defined on specifications, that may
be understood as extensions of previous dependence relations defined on programs. These new dependencies
will enable the construction of a dependence graph, from which slices can be efficiently extracted.

Control dependence and data dependence are binary relations, extensively used in the area of compiler
construction and program analysis. These dependence relations are involved in numerous transformation
and optimising techniques, such as vectorisation and parallelization [AK02], instruction scheduling and data-
cache optimisation [Muc97], node splitting, code motion and loop fusion [FOW87]; and in program analysis
techniques such as program slicing [Kri03, OO84, Tip95].

In accordance to our idea of adopting a dependence-based approach for slicing formal specifications, we
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need to define dependence relations on specifications. Since information appear on transitions, the dependence
relations are defined between transitions (in the following we set the conditions to be met for a transition
to be dependent on another one). In sections 4.1 and 4.2, the notions of data and control dependencies are
extended to iostss. Then in section 4.3, an extra dependence relation – called communication dependence –
is defined, in order to denote the dependencies arising from data and control flows related to communication
actions. The three aforementioned sections come with complete descriptions of our algorithms for computing
the dependence relations. As we will see in sequel, having calculated the three dependence relations, the
construction of the dependence graph is straightforward (cf. section 4.5). Our method for slicing a specifi-
cation with respect to a criterion will then be presented as finding a solution to a reachability problem –
parametrised by the slicing criterion – in the dependence graph. Prior to that, the discussion in section 4.4
provides key elements to evaluate the precision of our dependence-based approach. Throughout the sections
4.1, 4.2, and 4.4, we will assume A = (S, s0, T )Σ is an iosts over signature Σ = (Ω, V, C).

4.1. Control Dependence

Intuitively, a program statement n is control dependent on a statement m, if whenever an execution of the
program reaches m, a choice can be made that determines whether or not n will be executed in the rest of
the execution. This section is structured as follows: at first the traditional definition of control dependence is
described, then we will see why this definition is inapplicable to iostss. Finally we show how this difficulties
may be overcome, and give a detailed description of our algorithm.

4.1.1. Traditional Definition

Control dependence is traditionally defined in terms of a postdominance relation in a control flow graph
(cfg) [AK02, Muc97]. A cfg is a graph that represents a sequential imperative program3, and notably has
a single end node. Intuitively, a node ni is postdominated by a node nj in a cfg if in every execution of the
program, nj always occurs after ni. Stating a formal definition for this always occurs after relation is enabled
by the fact cfgs satisfy the unique end node property. All definitions of the postdominance relation we are
aware of, indeed require the unique end node property to be satisfied. Following is the usual definition: a
node ni is postdominated by a node nj if every path from ni to the end node contains nj . Having calculated
the postdominance relation in a cfg, the control dependence relation can be obtained according to the
traditional definition of control dependence [AK02, Muc97]: a statement nj is said to be control dependent
on a statement ni if there exists a nontrivial path p from ni to nj such that every statement nk 6= ni in p is
postdominated by nj, and ni is not postdominated by nj.

The definition above meets the intuitive concept of control dependence, as it allows the identification of
statements that may affect the execution of other statements. Since the statements in iostss are attached
to transitions, the concept of control dependence could at first glance be adapted to iostss by redefining the
postdominance relation between iosts transitions instead of cfg nodes. However, this definition assumes
the structure under analysis satisfies the unique end node property, and thus is not directly applicable to
automata or modern program structures, that may have multiple end nodes or no end node at all. Addressing
the issue of multiple end nodes is usually done by inserting an additional end node into the structure, along
with edges from each original end node to the new one [Muc97, RAB+05]. The main purpose of iostss
is to design and study reactive systems, which are intended to run indefinitely, and therefore have usually
no specific end node(s). In this case, it is most of the time unclear whether an additional end node can
be automatically inserted, without disrupting the control dependence calculation. We indeed observe that
inserting an irrelevant end node in an automaton, together with irrelevant transitions towards this node, will
yield undesirable additional control dependencies, causing an inadequate over-approximation of the control
dependence relation.

4.1.2. New Definition

In a recent work, Ranganath et al. [RAB+05] state new definitions for calculating control dependencies,
without any restriction about the existence of end node(s) in the program structure. The key observation

3 In a cfg, nodes represent the program statements, and edges represent the program control flow.
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enabling this achievement is that, regarding control dependence, reaching again a start node in a reactive
program is analogous to reaching an end node in a program. In [RAB+05], the definition of nj being control
dependent on ni checks for occurrences of nj in maximal paths from ni, instead of paths from ni to the
assumed unique end node, as in previous definitions. Furthermore, the general idea of control dependence
remains the same: executing one branch of ni always leads to nj, whereas executing another branch of ni may
cause nj to be bypassed. Two fundamental new definitions for control dependence are stated in [RAB+05];
one is sensitive to potentially non-terminating loops, while the other is not.

In an iosts, an infinite execution of a loop may prevent some transitions from being executed4, creating
a control dependence on these transitions (according to the intuitive notion of a control dependence outlined
above). As it is known to be undecidable whether a loop always terminates in general, and as a correct static
analysis has to take every execution of the system into account, we make the assumption that each loop in
an iosts is potentially infinite. Otherwise, the control dependence relation would omit actual dependencies,
arising in the case of an infinite loop, consequently making the slicing approach incorrect. Moreover, the
non-termination sensitiveness of the control dependence relation involved in slicing is essential for the slices
computed to preserve dynamic properties of the original specification, with respect to the criterion (e.g.
for model checking). Thus, we base our definition of control dependence on Ranganath et al.’s definition of
non-termination sensitive control dependence.

Definition 10 (Control dependence (tri
cd
−→ trj)). A transition trj ∈ T is control dependent on a tran-

sition tri ∈ T if tri has at least two successors, tr′i and tr′′i , such that the following are true.

• for all maximal paths starting with tr′i in A , trj always occurs;

• there exists a maximal path starting with tr′′i in A , on which trj does not occur.

Example 6. In figure 1, k ⇀ 1l is control dependent on j ⇀ k: first, j ⇀ k has two successors k ⇀ 1l and
k ⇀ 2l; second, k ⇀ 1l occurs on all maximal paths from k ⇀ 1l (this is rather obvious); and third, there
exists a maximal path from k ⇀ 2l, on which k ⇀ 1l does not occur – for instance, the path that consists of
an infinite sequence of transitions in (k ⇀ 2l, l ⇀ i, i ⇀ j, j ⇀ k)∗. Besides, l ⇀ i is not control dependent on
j ⇀ k, since l ⇀ i occurs on all maximal paths from j ⇀ k.

4.1.3. Algorithm

From Ranganath et al.’s algorithm for computing non-termination sensitive control dependence on control
flow graphs [RAB+05], we derive our algorithm for computing control dependencies on iostss (algorithm 1
in figure 3), according to definition 10.

Control-flow Analysis In algorithm 1, the set of the successors of a transition tr in A is denoted by
succs(tr, A ), and the set of transitions that have at least 2 successors in A is denoted by conds(A ).
Algorithm 1 performs a symbolic control-flow analysis on an automaton A : symbolic values are propagated
along the transitions of A , to collect control-flow information, and store this information in sets. The aim of
algorithm 1 is to iteratively search for a fixpoint for all the sets of symbolic values, then indicating relevant
information about the control structure of A , for the purpose of control dependence calculation. The symbolic
values are called ptri,trj

, denoting all the maximal paths in A starting with tri immediately followed by trj .
A set Str,trc

is attached to each couple of transitions (tr, trc) such that trc ∈ conds(A ). More precisely,
Str,trc

denotes the set of all the maximal paths in A that start with trc and contain tr.
In phase (1), successors of conditional transitions are inserted in a worklist. In phase (2), the symbolic

values are propagated along transitions, and inserted in sets Str,trc
when necessary: typically, ptrc,trj

is
inserted in Str,trc

only if all the maximal paths starting with trc immediately followed by trj contain tr. Two
cases are distinguished when processing a transition trl from the worklist. Phase (2.1) deals with the case
where trl has only one successor trs: the idea is that, if a maximal path starting with a transition trc contain
trl, then this path also contains trs. Phase (2.2) deals with the case where trl has at least 2 successors: the
idea is that, if all the maximal paths starting with trl contain a transition trm, then all the maximal paths
starting with a transition trc and containing trl, contain also trm.

4 For instance, a transition that is not in a loop l, but is a successor of a transition in l, will be prevented from execution when
l executes indefinitely.
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Input: A = (S, s0, T )Σ : an iosts

Data:
• S[|T |, |T |] : a matrix of sets of symbolic values, such that S[tri, trj ] represents Stri,trj

• worklist : a set of transitions

Output: CD[|T |] : an array of sets of transitions
// At the end of algorithm 1, for each tr ∈ T , CD[tr] contains all the transitions,
// on which tr is control dependent.

/* (1) Initialisation */
worklist← ∅1

foreach tr ∈ T do2

CD[tr]← ∅3

foreach trc ∈ conds(A ) do S[tr, trc]← ∅4

foreach trc ∈ conds(A ) do5

foreach trs ∈ succs(trc, A ) do6

S[trs, trc]← {ptrc,trs
}7

worklist← worklist ∪ {trs}8

/* (2) Symbolic control-flow analysis */
while worklist 6= ∅ do9

trl ← first(worklist)10

/* (2.1) One successor case */
if |succs(trl, A )| = 1 and trl 6∈ succs(trl, A ) then11

trs ← element(succs(trl, A ))12

// Since trs is the only successor of trl,
// maximal paths that contain trl also contain trs.
foreach trc ∈ conds(A ) do13

if S[trl, trc]\S[trs, trc] 6= ∅ then14

S[trs, trc]← S[trs, trc] ∪ S[trl, trc]15

worklist← worklist ∪ {trs}16

/* (2.2) Multiple successors case */
if |succs(trl, A )| > 1 then17

foreach trm ∈ T do18

if |S[trm, trl]| = |succs(trl, A )| then19

// Since all the maximal paths from trl contain trm, maximal paths from trm

// contain the transitions that appear in maximal paths from trl.
foreach trc ∈ conds(A )\{trl} do20

if S[trl, trc]\S[trm, trc] 6= ∅ then21

S[trm, trc]← S[trm, trc] ∪ S[trl, trc]22

worklist← worklist ∪ {trm}23

worklist← worklist\{trl}24

/* (3) Compute control dependencies */
foreach tr ∈ T do25

foreach trc ∈ conds(A ) do26

// If S[tr, trc] contains strictly less elements than succs(trc, A ), then there is
// at least one path that induces a control dependence of trc on tr.
if 0 < |S[tr, trc]| < |succs(trc, A )| then27

CD[tr]← CD[tr] ∪ {trc}28

return CD29

Fig. 3. Algorithm 1: Compute control dependencies.
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Control Dependencies When a fixpoint is found for all the sets of symbolic values Stri,trj
, phase (2)

of the algorithm terminates and the non-termination sensitive control dependence relation can be deduced
from a walk into the sets Stri,trj

, in phase (3). Namely, if the cardinality of the set Str,trc
is strictly greater

than 0, then it means that there is a successor of trc from which all the maximal paths include tr; if the
cardinality of the set Str,trc

is also lesser than the number of successors of trc, then it means that there exists
a maximal path from a successor of trc, on which tr does not occur, and thus tr is control dependent on trc,
by definition 10. Finally, the algorithm stores the control dependence relation in CD, which is an array of
sets of transitions, indexed by the set of transitions in A , and such that for all tr in A , CD[tr] is the set of
transitions of A on which tr is control dependent.

4.1.4. Complexity Analysis

In this section, is evaluated the time complexity of algorithm 1. We did not detail the computation of succs
and conds, which are assumed to be in the data structure – if not, these data can be computed in the worst
case in O(|T |2).

Initialisation In phase (1), the loop at line 2 initialises the sets Str,trc
for each transition tr in T , and

each transition trc in conds(A ), in time O(|T |.|conds(A )|). The loop at line 5 processes each successor of
each conditional transition, adding, at each iteration, one element in the worklist, and one element in a set
Strs,trc

(where trs is a successor of a conditional transition trc). Hence, each iteration of the loop at line 5
has a constant time cost, and this loop completes in time O(

∑

trc∈conds(A ) d(trc)), where d(trc) is the outer

degree of trc – note that the following equality holds: d(tr) = |succs(tr)|.

Control-flow Analysis In phase (2), the termination condition of the main loop, at line 9, is that all the
sets Str,trc

stabilise: in this case, none of the conditionals at lines 14 and 21 can be true, and consequently
no more transition can be added in the worklist. By construction, each set Str,trc

contains at most d(trc)
elements (cf. section 4.1.3). In each iteration of the loop at line 9, either all the sets Str,trc

remain the same,
or there is at least one of these sets whose size is increased (at line 15 or 22). In the latter case only, a
transition is added in the worklist, contributing one iteration of the main while loop (line 9). Consequently,
given tr ∈ T and trc ∈ conds(A ), the set Str,trc

stabilises after at most d(trc) iterations. Furthermore, given
a transition tr in T , all the sets Str,trc

stabilise after at most
∑

trc∈conds(A ) d(trc) iterations of the main

loop. Finally, for all tr ∈ T and trc ∈ conds(A ), the sets Str,trc
stabilise after O(|T |.

∑

trc∈conds(A ) d(trc))

iterations; this is thus the maximum number of iterations of the main loop.
In each iteration of the main loop, the loop at line 13 processes at most all the transitions in conds(A ),

and the loop at line 20 processes at most all the transitions in conds(A ), for each transition in T . As a con-
sequence, phase (2.1) iterates O(|conds(A )|) times, and phase (2.2) iterates O(|T |.|conds(A )|) times, both in
the worst case. Hence, phase (2) has a total time complexity of O(

∑

trc∈conds(A ) d(trc).|T |2.|conds(A )|.lg(|T |)).

The factor lg(|T |) denotes the cost of operations on sets Str,trc
(at lines 14, 15, 21 and 22): each of these

sets contains at most |T | elements.

Control Dependencies In phase (3), the algorithm computes the control dependence relation, in traversing
the set conds(A ) for each transition in T (cf. section 4.1.3). At each iteration of the loop at line 25, at most
one element is added in one of the sets CD[tr]; this can be done in constant time (indeed, no ordering of the
sets CD[tr] is required). Hence, the cost of phase (3) is in O(|T |.|conds(A )|).

In conclusion, considering that the complexity of phase (2) dominates the complexity of phases (1)
and (3), the overall complexity of algorithm 1 is O(

∑

trc∈conds(A ) d(trc).|conds(A )|.|T |2.lg(|T |)).

4.2. Data Dependence

Data dependencies are constraints arising from flows of data between statements. As we mentioned in the
introduction of section 4, data dependencies have been widely studied in the areas of compiler construction
and static analysis, leading to numerous optimisation and transformation techniques. This section first states
a preliminary definition of variable definitions and uses, and then recalls that several intuitive ideas may
underlie the notion of data dependence; therefore the notion of data dependence we use in the setting of
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slicing iostss will be made clear. We conclude this section by describing our algorithm for the calculation
of data dependence.

4.2.1. Variable Definitions and Uses

Definitions for data dependencies are usually stated in terms of variable definitions and uses. In a program,
a variable x is said to be defined at a statement s if a value is assigned to x at s; x is said to be used
at s if either s is an assignment and x appears on the right-hand side of s, or s is a conditional and x
appears in s. The following definition is our proposition for extending these notions to iostss. In iostss,
variables can be used in transition guards and can be used or defined in variable substitutions, in a similar
fashion to conditionals and assignments in programs. Additionally, our extension to iostss has to handle
communication actions, where definitions and uses of variables are also involved.

Definition 11 (Variable definitions/uses). Let tr = (s, a, f, σ, s′) be a transition in T , and x be a vari-
able in V .

• x is defined at tr if either σ(x) 6= x, or a = c?x for some c ∈ C.

• x is used at tr if either x is a variable of formula f , or there exists a term t ∈ TΩ(V ) such that x is a
variable of term t, and one of the following is true: either σ(y) = t for some y ∈ V , or a = c!t for some
c ∈ C.

Example 7. In figure 1, x is defined at i ⇀ j because x appears on the right hand side of an input action,
ac is defined at i ⇀ j because ac appears on the left hand side of an assignment, x is used at i ⇀ j because
x appears on the right hand side of an assignment, and tp is used at e ⇀ f because tp appears in the guard
of e ⇀ f .

4.2.2. Traditional Definitions

Depending on the aimed application, several definitions of data dependence have been stated. In the most
general setting, the data dependence relation is introduced as a joint relation, composed of four varieties
of data dependencies [Muc97]. Let ni and nj be two statements, such that ni precedes nj in their given
execution order. A flow dependence, or true dependence, holds between ni and nj if ni sets the value of a
variable, and nj uses this variable value; an antidependence holds between ni and nj if ni uses a variable
value and nj sets it; an output dependence holds between ni and nj if both statements set the value of some
variable; and finally an input dependence holds between ni and nj if both statements read the value of some
variable. Data dependencies can be further classified as loop-carried or loop-independent [FOW87]. A data
dependence between two statements is called loop-carried if the dependence arises when the two statements
occur in two different instances of a loop5, otherwise this dependence is called loop-independent.

Only flow dependence is relevant for the purpose of slicing, as it identifies statements that are directly
involved in the computations performed at another statement. In this work, the data dependence relation
will therefore be restricted to flow dependencies.

Further in this section, is described our algorithm for computing loop-carried and loop-independent data
dependencies in an iosts. Our slicing algorithm indeed deals with the two kinds of data dependencies in the
same manner, i.e. whenever a transition trj in the slicing criterion is data dependent on another transition
tri, tri is included in the slice, no matter whether the data dependence between tri and trj is loop-carried or
loop-independent. Therefore, the distinction will not be made, for the purpose of slicing iosts specifications;
although Nanda [Nan01] found this distinction useful for the purpose of slicing multi-threaded programs, in
the presence of threads nested in loops.

4.2.3. New Definition

A definition of a variable x at transition tri, such that there is no redefinition of x on a path to trj , is said
to reach trj . A straightforward adaptation of the traditional definition of data dependencies to the iosts

framework would state: a transition trj is data dependent on a transition tri in A if there exists a variable x
that is defined at tri and used at trj , and the definition of x at tri reaches trj . However, this is not sufficient

5 For instance, a definition in a loop iteration that is used in a subsequent iteration of the same loop.
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according to the semantics of iostss (cf. definition 3): it may indeed happen that x is redefined at trj by
the mean of an input action. In this case, the definition of x at tri cannot be used at trj , unless x is also
used in the guard of trj .

Definition 12 (Data dependence (tri
dd
−→ trj)). A transition trj ∈ T is data dependent on a transition

tri = (s, a, f, σ, s′) ∈ T if there exists a variable x ∈ V and a path p = 〈tri, . . . , trj〉 in A such that:

• x is defined at tri;

• and for all tr ∈ 〈p(1), . . . , trj〉, x is not defined at tr;

• and one of the following is true:

1. x is used at f ,

2. or x is not defined at a and x is used at tr.

Example 8. In figure 1, m ⇀ i is data dependent on i ⇀ j because there exists a variable (namely, ac) that
is defined at i ⇀ j, used at m ⇀ i, not defined by any input action at m ⇀ i, and such that there is a path
from i ⇀ j to m ⇀ i, on which ac is not redefined – namely, 〈i ⇀ j, j ⇀ m, m ⇀ i〉.

Now, let us insert a use of y at j ⇀ m: there are two possibilities, either in the guard or in assignments.
On one hand, if j ⇀ m is replaced by j ⇀ 1m = (j, goldCh?y, y > 0, Id{ac,x,y,del}, m), then the definition
of y at j ⇀ k can be used at the guard of j ⇀ 1m, for instance, following the path 〈j ⇀ k, k ⇀ 1l, l ⇀
i, i ⇀ j, j ⇀ 1m〉, and thus j ⇀ 1m is data dependent on j ⇀ k. On the other hand, if j ⇀ m is replaced by
j ⇀ 2m = (j, goldCh?y, true, (x 7→ y + 1), m), then the definition of y at j ⇀ k cannot be used at j ⇀ 2m
because the input action on y at j ⇀ 2m kills that definition; then j ⇀ 2m is not data dependent on j ⇀ k.

A definition d of a variable x at transition tri, that reaches trj , is called a reaching definition of trj .
Considering definition 12, and assuming that we are able to calculate the reaching definitions on an iosts,
then the data dependence relation is given by marking transitions trj as data dependent on transitions tri,
whenever there is a use at trj of a reaching definition from tri, that satisfies condition 1. or 2. of definition 12.
Specifically, the problem of finding all the reaching definitions in an iosts is for each transition tr to find all
the definitions that may reach tr when executing the automaton.6

The problem of reaching definitions is a well-known application of dataflow analysis theory and algo-
rithms. A dataflow analysis is generally defined as the analysis of a cfg in a theoretical framework that
consists of a complete lattice and a set of monotone transfer functions [KSV96, Muc97]. Defining a dataflow
analysis in such a framework is advantageous in proving its correctness and termination. Dataflow analyses
of iostss may be defined in a similar way.

4.2.4. Dataflow Analysis

A framework for dataflow analysis of iostss consists of a complete lattice and a set of transfer functions.
The lattice L denotes the partially ordered set of values – called dataflow facts – that are relevant to the
analysis; values in L are intended to be associated to each transition of the automaton. The set of transfer
functions contains a transfer function ftr for each transition tr in the automaton. ftr calculates the dataflow
facts to be transferred to the successors of tr when tr is encountered during analysis. Notice that transfer
functions should be monotone, and preferably distributive, for the solutions of dataflow analyses to be more
precise [KSV96].

Reaching definitions is a forward dataflow analysis, i.e. the analysis starts from the initial node and
then walks through the structure under analysis, in the same direction as the control flow; as opposed to
postdominance (cf. section 4.1), that can be calculated via backward dataflow analysis from a supposed
unique end node. Reaching definitions are thus calculable on iostss by deriving an algorithm from standard
algorithms for solving forward dataflow analyses.

There are two families of algorithms for solving dataflow analyses: elimination methods (e.g. interval,
structural analyses) and iterative algorithms (e.g. worklist, round robin, node listing algorithms). Elimi-
nation methods are significantly harder to implement than iterative methods, and are mainly intended to

6 Finding the definitions that actually reach a point is undecidable in general. It would be the same problem as requiring that
p be a feasible path in definition 12.
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efficiently handle dataflow information updates during a complex optimisation process [Muc97]. Among it-
erative methods, the worklist algorithm is the most flexible and allows optimisations that spare needless
analyses of program statements. Other approaches may be called dense analyses [TGL06], in the sense
that parts of the system under analysis are needlessly re-analysed. For instance, a round robin algorithm
systematically analyses all the statements at each iteration, until a fixpoint is reached.

In the remainder of this section we present our worklist algorithm for computing data dependencies in
an iosts.

4.2.5. Generic Dataflow Algorithm

As an introduction to our algorithm, we propose a brief description of a generic worklist algorithm for solving
forward dataflow analyses on iostss.

A set of transitions to visit is maintained by the algorithm, initialised with the set of all the transitions
that have the initial state of the automaton as source state. At each iteration of the algorithm, a transition
trl from the worklist is processed. This means that a new dataflow fact (i.e. an element of the lattice, e.g.
reaching definitions) is computed for trl, using the transfer functions associated to trp, for each predecessor
trp of trl. Then, transition trl is removed from the worklist; if the new data flow fact for trl is not included
in the previously computed data flow fact for trl, then the successors of trl are added in the worklist. The
algorithm iterates until a fixpoint is reached for all the dataflow facts.

4.2.6. Specific Algorithm

The generic dataflow algorithm, briefly described in section 4.2.5, may be instantiated to solve specific
forward dataflow analyses, by providing the relevant lattice L, partially ordered by an order relation ⊑, and
relevant transfer function space {ftr : L→ L | tr ∈ T }. The following explains how algorithm 2 instantiates
the generic algorithm to enable the computation of reaching definitions, and consequently data dependencies,
in an iosts A (cf. figure 4).

Reaching Definitions A preliminary step (phase (1) of algorithm 2) is to mark all the variable definitions
and uses in the automaton, according to definition 11; this marking requires a single-pass through the set
of transitions. During this pass, encountered variable definitions and uses are respectively stored in def and
ref , which are arrays of sets of variables, indexed by the set of transitions in A . Specifically, def [tr] and
ref [tr] denote the sets of variables that are respectively defined and used at transition tr. When initialising
def and ref at lines 3 and 4, expressions vars(t) and vars(f), for terms t ∈ TΩ(V ) and formulae f ∈ FΩ(V ),
denote the sets of variables that appear in t and f .

For implementation issues, we consider a variable definition as a couple (v, tr), meaning that variable v is
defined at transition tr. The set of definitionsD is the set of dataflow facts for the reaching definitions analysis,
and the lattice L is the powerset of D. By construction, L is partially ordered by subset inclusion ⊆. For each
transition tr we define a transfer function ftr : L→ L such that if D is a set of definitions reaching tr, then
ftr(D) is the set of definitions reaching the successors of tr. This is done by the mean of defining gen and kill,
still in phase (1). These arrays contain sets of definitions. Specifically, gen[tr] denotes the set of definitions
that will be propagated from tr, while kill[tr] denotes the set of definitions, whose propagation will be stopped
by tr. Then, for each transition tr in A , ftr is defined by ∀D ∈ L, ftr(D) = (D\kill[tr])∪ gen[tr]. Reaching
definitions information is updated in phase (2) each time a transition trl is processed, using functions ftrp

for
each predecessor trp of trl. If new reaching definitions have been found, the current knowledge of reaching
definitions for trl (i.e. RD[trl]) is updated, and all the successors of trl are added in worklist. The algorithm
iterates until a fixpoint on is found for all the sets RD[tr].

Data Dependencies Once the reaching definitions information is known, the computation of the data
dependence relation is performed in phase (3) of the algorithm, according to definition 12: a transition trj is
data dependent on a transition tri, if there is a reaching definition from tri, that is used at the guard of trj ,
or is used at trj while being not killed by any input action at trj . The data dependence relation is stored in
DD, which is an array of sets of transitions, indexed by the set of transitions in A , and such that for all tr
in A , DD[tr] is the set of transitions of A on which tr is data dependent.
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Input: A = (S, s0, T )Σ : an iosts, where Σ = (Ω, V, C)
Data:
• def [|T |], ref [|T |] : arrays of sets of variables

• gen[|T |], kill[|T |], RD[|T |] : arrays of sets of definitions

• newInfo : a set of definitions

• worklist : a set of transitions

Output: DD[|T |] : an array of sets of transitions
// At the end of algorithm 2, for each tr ∈ T , DD[tr] contains all the transitions,
// on which tr is data dependent.

/* (1) Initialisation */
worklist← ∅1

foreach tr = (s, a, f, σ, s′) ∈ T do2

def [tr]← {v ∈ V | ∃c ∈ C, a = c?v} ∪ {v ∈ V | ∃x ∈ V, σ(x) 6= x ∧ v ∈ vars(σ(x))}3

ref [tr]← {v ∈ V | ∃c ∈ C, ∃t ∈ TΩ(V ), a = c!t ∧ v ∈ vars(t)}4

. ∪ {v ∈ V | v ∈ vars(f)} ∪ {v ∈ V | ∃x ∈ V, σ(x) 6= x ∧ v ∈ vars(σ(x))}
RD[tr]← ∅5

DD[tr]← ∅6

gen[tr]← {(v, trk) ∈ V × T | trk = tr ∧ v ∈ def [tr]}7

kill[tr]← {(v, trk) ∈ V × (T \{tr}) | v ∈ def [tr]}8

if source(tr) = s0 then worklist← worklist ∪ {tr}9

/* (2) Compute the sets of reaching definitions */
while worklist 6= ∅ do10

trl ← first(worklist)11

newInfo← ∅12

// Compute the definitions that reach trl from all its predecessors,
// and put the union in newInfo.
foreach trp ∈ preds(trl) do13

newInfo← newInfo ∪ (RD[trp]\kill[trp]) ∪ gen[trp]14

// If new reaching definitions have been found for trl,
// then update RD[trl] and insert all the successors of trl in the worklist.
if RD[trl] ⊂ newInfo then15

RD[trl]← newInfo16

foreach trs ∈ succs(trl) do17

worklist← worklist ∪ {trs}18

worklist← worklist\{trl}19

/* (3) Compute data dependencies */
foreach tr = (s, a, f, σ, s′) ∈ T do20

foreach (v, trk) ∈ RD[tr] do21

// (v, trk) reaches tr.
// Then tr is data dependent of trk if either v appears in f ,
// or v is not defined at a, and in the meantime v is used at tr.
if (v ∈ vars(f)) ∨ ((6 ∃c ∈ C, a = c?v) ∧ (v ∈ ref [tr])) then22

DD[tr]← DD[tr] ∪ {trk}23

return DD24

Fig. 4. Algorithm 2: Compute data dependencies.
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4.2.7. Complexity Analysis

This section provides an evaluation of the time complexity of algorithm 2.

Initialisation Phase (1) of the algorithm can be completed in a single walk through the set of transitions
T : each transition tr is syntactically analysed to initialise def [tr] and ref [tr], in time proportional to the
number of definitions in A . Notice that in our implementation of this algorithm, gen and kill are not
explicitly stored in arrays; the reason why is explained in the sequel. Consequently, if we note D the set of
definitions in A , the complexity of phase (1) of the algorithm is in O(|T |.|D|).

Reaching Definitions kill and gen information is only used at line 14, for computing the reaching def-
initions from trp to trl, trp being a predecessor of the transition under analysis, trl. The purpose of the
enclosing loop at line 13 is to compute

⋃

trp∈preds(trl)
((RD[trp]\kill[trp]) ∪ gen[trp]), which is the new

dataflow fact7 for trl. Referring to section 4.2.6, it is equivalent to say that the loop at line 13 computes
⋃

trp∈preds(trl)
ftrp

(RD[trp]). In our implementation of this loop, computing and storing the whole sets gen

and kill is unnecessary, because (RD[trp]\kill[trp]) is deduced on-the-fly from RD[trp] and def [trp]; and
gen[trp] is a straightforward transcription of def [trp].

Each iteration of the main while loop (at line 10) may contribute further iterations only if the conditional
at line 15 is satisfied. That is, if the new dataflow fact newInfo, computed by the loop at line 13 for trl,
provides more information than the previously known set of reaching definitions for trl, i.e. RD[trl]. In this
case, each successor of the processed transition is added in the worklist; this leads to a worst case total of
∑

tr∈T d(tr) insertions in the worklist.
As we saw in section 4.2.6, transfer functions ftr are defined on a lattice L. L is the powerset of D, the set

of definitions in A , and is partially ordered by subset inclusion ⊆. Let us show that the transfer functions
ftr, for all tr ∈ T , are monotone. For all D1 and D2 in L, and given k and g in L, we can say:

D1 ⊑ D2 =⇒ D1 ⊆ D2

=⇒ (D1\k) ⊆ (D2\k)
=⇒ (D1\k) ∪ g ⊆ (D2\k) ∪ g

In particular, let k = kill[tr], and g = gen[tr], then:

(D1\k) ∪ g ⊆ (D2\k) ∪ g =⇒ ftr(D1) ⊆ ftr(D2)
=⇒ ftr(D1) ⊑ ftr(D2)

As a summary, ∀D1, D2 ∈ L, D1 ⊑ D2 =⇒ ftr(D1) ⊑ ftr(D2). This shows that ftr are monotone
functions.

Now, back to our algorithm: as we saw above, an iteration of the main loop (line 10) contributes
∑

tr∈T d(tr) iterations in the worst case, which is possible only if the new dataflow fact computed for trl at
line 14 strictly includes the previous dataflow fact for trl. As ftrp

are monotone, and L is finite, this case can
happen only a finite number of times, which is, in the worst case, the length of the longest chain in L. The
longest chain in L “leads” from the least element ∅ to D at the top of the lattice; the length of this chain is
|D| + 1. Hence, the main loop completes after O(|D|.

∑

tr∈T d(tr)) iterations. In each iteration of the main
loop, the loop at line 13 has a cost in O(|T |.lg(|D|)): the factor lg(|D|) reflects the cost of set operations
at line 14, where each set contains at most all the elements of D. Finally, the complexity of phase (2) is
O(

∑

tr∈T d(tr).|T |.|D|.lg(|D|)).

Data Dependencies Algorithm 2 computes the data dependence relation in phase (3), by matching reach-
ing definitions and uses of variables, as explained in section 4.2.6. In the worst case, all the definitions reach
each transition, and then the complexity of phase (3) is O(|T |.|D|) (same as phase (1)).

In conclusion, the overall complexity of algorithm 2 is O(
∑

tr∈T d(tr).|T |.|D|.lg(|D|)), since the complexity
of phase (2) dominates the complexity of phases (1) and (3).

7 in this case, the new set of reaching definitions for trl.
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4.3. Communication Dependence

An iosts communicates with its environment via communication actions (cf. section 3.1.2). As we saw in
section 4.2, a variable may be defined through an input action, that is, the variable is assigned a value that
depends on variables used in the corresponding output actions. This remark shows that communication ac-
tions induce inter-automata data dependencies. Communication actions also induce inter-automata control
dependencies, as an input action may be executed only if a corresponding output action is performed. Our
definition of a communication dependence encompasses the different kinds of dependencies induced by com-
munication actions. These dependencies are not handled by our definitions of control and data dependencies
(in sections 4.1 and 4.2), since these definitions only consider intra-automata control flows and data flows.

Informally, there is a communication dependence between two transitions in two different iostss if there
exists a channel that potentially allows a control flow or a data flow to occur between these two transitions.
Let S be a specification that contains at least 2 iostss; let (Si, s0i, Ti)Σi

and (Sj , s0j , Tj)Σj
be two distinct

iostss in S , where Σi = (Ωi, Vi, Ci), and Σj = (Ωj , Vj , Cj).

Definition 13 (Communication dependence (tri
com
←→ trj)). Two transitions tri = (si, ai, fi, σi, s

′
i) ∈

Ti and trj = (sj , aj , fj, σj , s
′
j) ∈ Tj are communication dependent on each other if there exists a channel

c ∈ Ci ∩Cj such that: (1)

{

• aj = c?x for some x ∈ Vj ;
• and ai = c!t for some t ∈ TΩ(Vi). or (2)

{

• aj = c?
• and ai = c!

The communication dependence relation
com
←→ denotes all the dependencies induced by communication

actions. In cases (1) and (2), there are two inter-automata control dependencies tri
com
−→ trj and trj

com
−→ tri:

by definition of the rendezvous mechanism, tri and trj control each other’s execution.

Furthermore, there is an inter-automata data dependence tri
com
−→ trj in case (1), as a variable definition

at trj uses variable values at tri. Note that the notion of inter-automata data dependence is not analogous
to the notion of data dependence, defined in section 4.2. As will be seen in the sequel, the inter-automata

dependence tri
com
−→ trj , in conjugation with the data dependence relations, is useful as a link between trj

and the transitions trd, such that variables that are used in the communication action at tri may refer
to a definition at trd (in other terms, such that tri is data dependent on trd, according to definition 12).
These indirect dependencies will be caught by our slicing algorithm (cf. section 4.5); for that reason, the

aforementioned indirect dependencies are not explicitly included in the definition of
com
−→.

Example 9. In figure 1, j ⇀ k and e ⇀ f are mutually communication dependent: there exists a channel
(namely, normalCh), on which e ⇀ f performs an output action and j ⇀ k performs an input action.

Moreover, the inter-automata data dependence (e ⇀ f)
com
−→ (j ⇀ k) induce an indirect data dependence of

j ⇀ k on d ⇀ e, since the definition of the variable am at d ⇀ e is used at the communication action at e ⇀ f

(i.e. (d ⇀ e)
dd
−→ (e ⇀ f)).

4.3.1. Related Work

Related works on communication dependencies may be found mainly in the field of static analysis of multi-
threaded programs.

In [Sar97], Sarkar defined a dataflow analysis on parallel graphs (called ppgs), which communicate
through events. Dataflow analysis is made more precise by taking into account the synchronisation con-
straints imposed by the wait/post communication mechanism. In ppgs, a wait statement for an event e has
to wait for all its synchronisation predecessors (i.e. the post statements for e) to complete execution. This
does not work on iostss, where an input action on a channel c has to wait for only one of the corresponding
output actions on c to complete execution (cf. 3.2).

Millett et al. define in [MT00] a method for slicing Promela (the input language of the Spin model checker).
In [MT00], channels are handled as variables, thus no communication dependence relation is defined, but
their handling of shared variables is similar to our handling of communication dependencies. The reader is
referred to section 5 for more considerations on related work.
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Input: S = {(Si, s0i, Ti)Σi
| 0 ≤ i < k ∧ Σi = (Ωi, Vi, Ci)} :

a specification formed of k iostss (given k ∈ N
∗)

Data:
• emit[|

⋃

0≤i<k Ci|] : an array of sets of transitions

• rcv[|
⋃

0≤i<k Ci|] : an array of sets of transitions

• C : a set of channels

Output: ComD[|
⋃

0≤i<k Ti|] : an array of sets of transitions

// At the end of algorithm 3, for each tr ∈ T , ComD[tr] contains all the transitions,
// on which tr is communication dependent.

/* (1) Initialisation */
C ←

⋃

0≤i<k Ci1

T ←
⋃

0≤i<k Ti2

foreach c ∈ C do3

emit[c]← ∅4

rcv[c]← ∅5

foreach tr = (s, a, f, σ, s′) ∈ T do6

ComD[tr]← ∅7

Let i be such that tr ∈ Ti8

if a matches with c! or c!x, where c ∈ Ci and x ∈ Vi then9

emit[c]← emit[c] ∪ tr10

if a matches with c? or c?x, where c ∈ Ci and x ∈ Vi then11

rcv[c]← rcv[c] ∪ tr12

/* (2) Compute communication dependencies */
foreach c ∈ C do13

foreach tre ∈ emit[c] do14

Let i be such that tre ∈ Ti15

foreach trr ∈ rcv[c] do16

Let j be such that trr ∈ Tj17

if i 6= j then18

// trr is inter-automata control dependent and data dependent on tre.
ComD[trr ]← ComD[trr ] ∪ {tre}19

// tre is inter-automata control dependent on trr.
ComD[tre]← ComD[tre] ∪ {trr}20

return ComD21

Fig. 5. Algorithm 3: Compute communication dependencies.

4.3.2. Algorithm

Algorithm 3 enables the computation of the communication dependence relation in an iosts specification
S (cf. figure 5).

Initialisation Phase (1) of the algorithm fills two arrays of transitions, emit and rcv, indexed by the set
of channels in S . emit denotes for each channel c the set of transitions that perform an output action on c,
while rcv denotes for each channel c the set of transitions that perform an input action on c.

Communication Dependencies Phase (2) processes every transition, marking transitions tre and trr

as communication dependent on each other, whenever trr performs an input action on a channel and tre

performs an output action on the same channel – specifically, this is done by inserting tre in ComD[trr ] and
trr in ComD[tre], where ComD[trr ] (resp. ComD[tre]) denotes the set of transitions, on which trr (resp. tre)
is communication dependent. Algorithm 3 is conservative, but efficient (cf. section 4.3.3).
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4.3.3. Complexity Analysis

In this section, is evaluated the time complexity of algorithm 3.

Initialisation Loops at lines 3 and 6 complete in a single walk through respectively the set of channels C
and the set of transitions T in specification S ; then phase (1) completes in O(|C| + |T |).

Communication Dependencies By definition 2, a transition of an iosts is labelled by at most one
communication action. Thus, once the for loop at line 6 has completed, each transition is either in emit or
in rcv, i.e. the total number of elements in “emit ∪ rcv” is at most the total number of transitions in T .
Consequently, the loop at line 14 completes in O(|T |). Phase (2) consists of executing the loop at line 14 for
each element of C, hence phase (2) completes in O(|C|.|T |).

Finally, the overall complexity of algorithm 3 is O(|C|.|T |).

4.4. On Correct, Precise and Optimal Slicing

We say a transition trj is directly dependent on a transition tri, denoted as tri
d
−→ trj , if trj is either control

dependent, data dependent or communication dependent on tri (i.e.
d
−→ is the union of

cd
−→,

dd
−→, and

com
−→).

Intuitively, trj is indirectly dependent on tri if there is a sequence of dependencies in
d
−→, leading from

tri to trj . Still intuitively, trj is transitively dependent8 on tri if trj is indirectly dependent on tri, with the
additional condition that there is a path in the specification that corresponds to the sequence of dependencies
that leads from tri to trj .

Definition 14 (Indirect/Transitive Dependence). A transition trj is transitively dependent on a tran-
sition tri in a specification S , if there is a sequence [tr1, . . . , trk] where tr1 = tri and trk = trj , such that
for all 1 ≤ m < k:

1. trm
d
−→ trm+1

2. and there is a path 〈trm, . . . , trm+1〉 in the parallel composition of S .

If condition 1. is satisfied, then we say that trj is indirectly dependent on tri.

4.4.1. General Results

The minimum property a slicer should satisfy, is to be correct. That is, transitions that actually have an
influence on the given slicing criterion should not be sliced away, and thus a specification is a correct slice of
itself (it corresponds to the most conservative slicing algorithm, which is analogous to the identity function).

Intuitively, a slicing algorithm is optimal if, given a slicing criterion, it produces a slice that contains only
the transitions that actually have an influence on the criterion. An optimal slice is then the smallest correct
slice, in terms of number of transitions: there exists no better solution, since further slicing any transition
away would invalidate the correctness of the slice (and adding transitions would lower the precision).

However, the following undecidability result prevents slicing algorithms from being optimal – it actually
concerns most of the static analyses: it is undecidable whether a condition can be satisfied within the possible
executions of the system [Göd31]. Weiser [Wei81] showed, as a consequence, that optimal program slicing is
undecidable. Even in a decidable arithmetic (e.g. Presburger arithmetic [Pre30]), the undecidability of the
termination problem still prevents slicing algorithms from being optimal. In dataflow analyses, a common way
to cope with these difficulties, is to define feasible paths and optimality of a solution in a non-deterministic
version of the system under analysis, i.e. branching choices are interpreted as non-deterministic choices.
Our definition of a transitive dependence (definition 4.4) underlines such an abstraction, i.e. guards are not
considered when thinking of feasible paths.

We consider that a dependence-based slicing algorithm is precise if it takes into account all the transitive

8 One could find more appropriate the name of precise dependence for this concept. However, our definition can be understood
as an extension of Krinke’s transitive dependence [Kri98] to iosts specifications.
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dependencies of the specification, and only transitive dependencies. Loosely speaking, precise slicing is of
intermediary precision, between correct slicing and optimal slicing.

4.4.2. Dependence Properties

Now we point out three important properties of the dependence relations, concerning specification slicing.

1. By definition, data dependencies and control dependencies are always transitive. Definitions 10 and
12 imply that whenever there is a data or control dependence between two transitions, there exists a
path between these transitions in the automaton, and consequently there exists a path in the parallel
composition of the specification, too (this leads us to the result);

2. Referring to the definition of a transition in an iosts (definition 2), since there is a unique communica-

tion action – possibly silent (τ) – per transition, then whenever tri
com
−→ trj , there exists no trk in the

specification, such that trk
com
−→ tri or trj

com
−→ trk;

3. Let A1 and A2 be two iostss; let tri1 , trj1 be two transitions in A1, and tri2 , trj2 be two transitions in

A2. If tri1

cd,dd
−→ trj1 , trj1

com
−→ tri2 and tri2

cd,dd
−→ trj2 hold, then using property 1. and according to the

interleaving semantics of a specification (see definition 6): if the rendezvous is feasible, then there exists a
path 〈tri1 , . . . , trc, . . . , trj2〉 in the parallel composition of A1 and A2, where trc is the transition resulting
from the parallel composition of trj1 and tri2 . If the rendezvous is not feasible, then the precision of the
resulting slice is lowered: irrelevant transitions may be included in the slice.

4.4.3. Discussion

Property 2. indicates that property 3. can be generalised to the relation
d
−→. Property 3. indicates a potential

loss of precision: the relation
d
−→ is not transitive in the case where no rendezvous is feasible, in the non-

deterministic abstraction of the specification, between two transitions that are related by a communication
dependence. However, the information of which rendezvous are feasible is contained in the parallel compo-
sition of the specification. This point suggests two possible improvements of the accuracy of our method.

The first improvement is slicing the parallel composition of the specification with respect to data and
control dependence only; this solution is not suitable for the purpose of specification understanding, debug-
ging, or even simulation: for these purposes, it is indeed preferable that the slice be under the form of a set of
concurrent iostss, and keep track of internal communication actions. Moreover, as the parallel composition
of a specification is of exponential size in the worst case, computing it as a first step of a model reduction
process seems not a convincing solution.

The second improvement consists of using the parallel composition information to refine our definition of a
communication dependence. This solution seems interesting, but only an empirical study will tell whether the
accuracy improvement is worth the overhead induced by checks in the parallel composition of the specification
(as mentionned above, this overhead might indeed be exponential).

4.4.4. Precision Considerations

Still, in this paper we keep definition 13 for communication dependence, and the sequel explains our reasons.
First of all, every possible rendezvous is taken into account by our communication dependence relation,

hence the correction of resulting slices is not compromised.
Second, definition 13 allows the design of a simple and very efficient algorithm for the computation of

communication dependencies9.
Third, property 3. also shows that, in the case where for all the couples of transitions that are related by

a communication dependence, the corresponding rendezvous is feasible in the non-deterministic abstraction

of the specification, then
d
−→ is transitive. That is, whenever tri

d
−→∗ trj holds, trj is transitively dependent

on tri. Now, experience suggests that it is reasonable to make that assumption: in practical specifications,
most of couples of transitions, that according to definition 13 are communication dependent, are designed to

9 Krinke’s and Nanda’s algorithms for computing transitive dependencies have a worst-case exponential complexity, although
they claim their implementations are practical [Kri03, Nan01].
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run in parallel. In this case a rendezvous is feasible in the non-deterministic abstraction of the specification;

under this assumption,
d
−→ is transitive.

4.5. Specification Slicing

Having calculated the three dependence relations
cd
−→,

dd
−→ and

com
−→, respectively defined in sections 4.1, 4.2,

and 4.3, and given the following definition, the construction of a dependence graph is straightforward.

Definition 15 (Dependence graph). Let S be a specification, where S = {(Si, s0i, Ti)Σi
| 0 ≤ i < k}

for some k ∈ N
∗. A graph G = (N, E) is a dependence graph for S if and only if:

• There is a bijection between the sets N and
⋃

0≤i<k Ti;

• and for each couple of transitions (tri, trj) such that tri
d
−→ trj holds, if we call ni and nj the nodes that

respectively represent tri and trj , then there is an edge from ni to nj in the dependence graph.

Referring to the main intuition of slicing (cf. section 2), the information on which the extraction of slices is
mainly based, is the data dependence relation; however, as we saw in previous sections, control dependencies
and communication dependencies have to be taken into account too, for the slices respectively to preserve
some dynamic properties of the original system, and to handle the data flows and control flows occurring
when automata communicate in the system.

The following definition is our definition of a backward specification slice; it could still be easily adapted
to calculate forward slices (cf. [Kri03], and footnotes in section 1). A slice of a specification is computed with
respect to a slicing criterion, which is a set of transitions of the specification. Informally, a specification slice
is a specification, such that for each transition tr in the slice, there is at least one transition in the slicing
criterion, that is indirectly dependent on tr. The construction of a slice with respect to a slicing criterion
Crit proceeds by finding the sets of transitions T ′

i , from which the transitions in Crit are reachable via the

transitive closure of the dependence relation
d
−→, noted

d
−→∗.

Definition 16 (Slice of a specification). Let S be a specification, where S = {(Si, s0i, Ti)Σi
| 0 ≤ i <

k ∧ Σi = (Ωi, Vi, Ci)}, for some k ∈ N
∗. Let T =

⋃

0≤i<k Ti be the global set of transitions, and Crit ⊆ T

be a slicing criterion.

For each 0 ≤ i < k, let T ′
i = {tr ∈ Ti | ∃tr

′ ∈ Crit, tr
d
−→∗ tr′}, and S′

i =
⋃

tr∈T ′

i
{source(tr), target(tr)}.

For each 0 ≤ i < k, let V ′
i and C′

i be respectively the set of variables and the set of channels that appear
in T ′

i .
Then, the specification SliceCrit(S ) is a slice of S , with respect to Crit:

SliceCrit(S ) = {(S′
i, s0i, T

′
i )Σ′

i
| 0 ≤ i < k ∧ T ′

i 6= ∅ ∧Σ′
i = (Ωi, V

′
i , C′

i)}

Remark By definition, a slice may be smaller than the original specification, in terms of transitions, but
also in terms of automata: let k′ = |SliceCrit(S )|, then k′ ≤ k in general. In the case there is an iosts, in
which no transition may influence the criterion, then k′ < k holds.

Our definition of a specification slice is more intuitive in the perspective of the dependence graph. A slice
of a specification, with respect to a criterion, is the set of transitions such that there exists a path from their
corresponding node in the dependence graph to a node that corresponds to a transition in the criterion.

4.5.1. The Slicing Algorithm

General Idea An efficient algorithm to extract slices from specifications, according to our definitions, starts
with the construction of a dependence graph (cf. definition 15). The general idea is to extract slices from a
specification by identifying the nodes that are backward reachable in the dependence graph, from the nodes
that represent the transitions of the criterion; the desired slice is then formed from the transitions that
correspond to the nodes identified in the previous step.

Algorithm Description Based on this general idea, algorithm 4 automatically extracts a slice S ′ from a
specification S , given a slicing criterion Crit (cf. figure 6). However, the dependence graph is not explicitly
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Input:
• S = {Ai = (Si, s0i, Ti)Σi

| 0 ≤ i < k ∧ Σi = (Ωi, Vi, Ci)} :
a specification formed of k iostss (for a given k ∈ N

∗)

• Crit : a set of transitions

Data:

• CD[|
⋃

0≤i<k Ti|], DD[|
⋃

0≤i<k Ti|], ComD[|
⋃

0≤i<k Ti|] : arrays of sets of transitions

• worklist : a set of transitions

Output: S ′ = {(S′
i, s0i, T

′
i )Σ′

i
| 0 ≤ i < k ∧ Σ′

i = (Ωi, V
′
i , C′

i)} : a specification formed of

k′ iostss, where k′ ≤ k
// S ′ is built over the sets T ′

i of transitions that induce a dependence over the criterion.

/* (1) Compute dependencies */
CD ← ∅ ; DD ← ∅ ; ComD ← ∅1

foreach i ∈ {0 . . . k − 1} do2

CD ← CD ∪ (ComputeControlDependencies(Ai))3

DD ← DD ∪ (ComputeDataDependencies(Ai))4

if k > 1 then ComD ← (ComputeCommunicationDependencies(S ))5

/* (2) Initialisation */
worklist← ∅6

foreach i ∈ {0 . . . k − 1} do7

S′
i ← ∅ ; T ′

i ← ∅ ; V ′
i ← ∅ ; C′

i ← ∅8

foreach tr ∈ Crit do9

Let i be such that tr ∈ Ti10

T ′
i ← T ′

i ∪ {tr}11

worklist← worklist ∪ {tr}12

/* (3) Find the transitions that induce a dependence on the criterion */
while worklist 6= ∅ do13

trl ← first(worklist)14

foreach tr ∈ (CD[trl] ∪DD[trl] ∪ ComD[trl]) do15

if ¬(∃j, tr ∈ T ′
j) then16

Let i be such that tr ∈ Ti17

T ′
i ← T ′

i ∪ {tr}18

worklist← worklist ∪ {tr}19

worklist← worklist\{trl}20

/* (4) Finalise the slice with respect to the criterion */
foreach i ∈ {0 . . . k − 1} do21

RecoverReachability(Ai)22

foreach tr = (s, a, f, σ, s′) ∈ T ′
i do23

S′
i ← S′

i ∪ {source(tr), target(tr)}24

V ′
i ← V ′

i ∪ def [tr] ∪ ref [tr]25

if a matches with c!, c!x, c?, or c?x then26

C′
i ← C′

i ∪ {c}27

S ′ ← {(S′
i, s0i, T

′
i )Σ′

i
| T ′

i 6= ∅}28

k′ ← |S ′|29

return S ′
30

Fig. 6. Algorithm 4: Slicing iosts specifications.
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built; rather, the dependence relations are stored under the form of arrays CD, DD and ComD, indexed by
the transitions of the specification, such that for each tr in the specification, CD[tr], DD[tr] and ComD[tr]
denote the sets of transitions, on which tr is respectively control, data and communication dependent.

In phase (1), the loop at line 2 computes the control and data dependence relations for each iosts

in S , using respectively algorithms 1 and 2; the resulting control and data dependence information is stored
respectively in CD and DD. Here we indulge a slight notation abuse, for saving clarity in algorithm 4:
strictly speaking, lines 3 and 4 should not be written as set unions, since CD and DD are arrays. In our
implementation, line 3 is replaced by two instructions: first, (Compute control dependencies (Ai)), and
second, a loop where, for each tr ∈ Ai, CD[tr] is set accordingly. Line 4 can be replaced analogously. Finally,
if the specification contains at least 2 iosts, then the communication dependence relation is computed using
algorithm 3, and is stored in ComD.

In phase (2) of algorithm 4, the sliced specification S ′ is initialised with the transitions of Crit, as the
criterion is the basis of the final slice. The worklist will be used to find backward reachability information in
the dependence graph, from transitions in Crit; worklist is therefore initialised with the set of transitions
in Crit.

Once phase (1) has been completed, CD[trj ] ∪ DD[trj ] ∪ ComD[trj ] denote for each trj the set of

transitions tri, on which trj is dependent, i.e. {tri | tri
d
−→ trj}. This property is used in phase (3), to

deduce backward reachability in the dependence graph, from the sets CD, DD and ComD. The loop at
line 13 processes each transition in the worklist, exactly once. For each processed transition, each of its
predecessors in the dependence graph, that has not been processed yet, is inserted in the worklist (this is
done in the loop at line 15). Each processed transition is inserted in the appropriate set T ′

i .
Finally, the construction of the slice S ′ is achieved in phase (4): the loop at line 21 calls a procedure

RecoverReachability, for each automaton in the specification (cf. the following reachability remark), and sets
the remaining data of the slice S ′, according to the transitions that have been inserted in sets T ′

i (here
we suppose that def and ref information, computed by algorithm 2, is still available). At line 28, all the
non-empty automata are inserted in S ′, and then the construction of S ′ ends with setting the value of k′,
the definitive size of the slice, in terms of automata.

Reachability Remark Once phases (1), (2) and (3) of algorithm 4 are achieved, the sets of relevant
transitions T ′

i have been successfully constructed. Then it may happen that transitions that were reachable
in the specification are no longer reachable in the slice formed of the sets of transitions T ′

i ; this problem is
solved by processing an additional reduction procedure, called RecoverReachability, for each automaton. This
procedure call is optional to the user of our prototype tool, and we implemented two different algorithms
for reachability recovery, inspired from τ -reduction of labelled transition systems, and ǫ-reduction of finite
non-deterministic automata with ǫ-transitions. The algorithms will not be described in this paper; basically,
the reduction procedures modify source and target nodes of transitions (cf. example 10).

Example 10. Let us insert a use of nm at c ⇀ d, i.e. c ⇀ d is replaced by c ⇀ 1d = (c, goldCh?y, true, (nm 7→
“customer ”+nm), d). Given the slicing criterion {c ⇀ 1d}, algorithm 4 determines that only transitions a ⇀ b
and c ⇀ 1d may influence the criterion. The reachability in the slice is then restored by creating a new state
b c, to be both the target state of a ⇀ b and the source state of c ⇀ 1d.

Reuseability Remark Noticing that the dependence graph is a highly reusable data structure, a depen-
dence-based approach to slicing is very efficient for the purpose of computing multiple slices of a given
specification. Actually, once the dependence graph has been constructed for a given specification, numerous
slices can be extracted from the specification, each of which in nearly linear time (namely, O(|T |.lg(|T |)),
cf. section 4.5.2). For that purpose, phase (1) is performed exactly once, for a given specification, and then
phases (2) and (3) are performed consecutively, for each different criterion.

4.5.2. Complexity Analysis

This section provides an evaluation of the time complexity of algorithm 4.

Dependencies Computation In phase (1), the loop at line 2 computes the data and control dependence
relations, for each iosts Ai in the input specification S . Using the results of section 4.1.4, the complexity
of line 3 is O(

∑

trc∈conds(Ai)
d(trc).|conds(A)|.|Ti|2.lg(|Ti|)). Using the results of section 4.2.7, if we call Di
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the set of variable definitions in Ai, then the complexity of line 4 is O(
∑

tr∈Ti
d(tr).|Ti|.|Di|.lg(|Di|)). As

conds(Ai) is the set of conditional transitions in Ai (cf. section 4.1.3), then by definition conds(Ai) ⊆ Ti.
Furthermore, it is reasonable to claim that, in practical specifications, Di is proportional to Ti. Consequently,
the complexity of an iteration of the loop at line 2, for computing the dependencies of Ai, is dominated by
O(E), where E =

∑

tr∈Ti
d(tr).|Ti|3.lg(|Ti|). The overall complexity of the loop at line 2 is dominated by

the sum, for all i, of expression E. However, as O(
∑

i |Ti|3.lg(|Ti|)) is dominated by O(|T |3.lg(|T |)), the
complexity of the loop at line 2 is dominated by O(

∑

tr∈T d(tr).|T |3.lg(|T |)).
Using the results of section 4.3.3, the complexity of line 5 is O(|C|.|T |). By definition of a transition of

an iosts, |C| ≤ |T | (cf. definition 2). The complexity of line 5 is thus in O(|T |2), which is dominated by the
complexity of the loop at line 2, as we saw above. In conclusion, the complexity of phase (1) is dominated
by O(

∑

tr∈T d(tr).|T |3.lg(|T |)).

Initialization In phase (2), data of the output specification is initialised, and all the transitions of the
criterion are inserted in the worklist. This phase completes in O(|T |), although there are usually much less
transitions in the criterion than in T .

Slice Computation In the loop at line 13, each time a transition is processed, it is added in the slice, and in
the worklist (lines 18 and 19). The test at line 16 thus ensures that each transition is processed at most once.
The test at line 16, and the processing of a transition, both have a constant-time cost. Consequently, the
complexity of the loop at line 13 is O(|T |). The loop at line 21 processes each transition of the specification,
exactly once; processing one transition has a cost of O(lg(|Di|)), due to the set operation at line 25. The
complexity of the loop at line 21 is thus dominated by O(

∑

i |Ti|.lg(|Di|)). Again, in practical specifications,
|Di| is proportional to |Ti|. If we note D the global set of variable definitions in the specification, then |D| is
proportional to |T |, and the complexity of phase (3) is dominated by O(|T |.lg(|T |)).

In conclusion, the overall complexity of algorithm 4 is dominated by O(
∑

tr∈T d(tr).|T |3.lg(|T |)). Notice

that this complexity result was obtained after several over-approximations10 to simplify the expression.
Referring to the reuseability remark in section 4.5.1, once a first slice has been extracted, each subsequent
slice can be extracted in O(|T |.lg(|T |)).

4.5.3. Application Example

Figure 7 is a representation of the slice of the specification in figure 1, with respect to the slicing criterion
{m ⇀ i}, that is produced by our slicing algorithm (cf. algorithm 4). Shaded transitions in figure 7 are not
included in the slice. To obtain this result, the slicing algorithm first computes all the data, control and
communication dependencies in the specification, and then it intuitively starts from the slicing criterion,
and collects all the transitions that are backward reachable from it, in the dependence graph. Transitions
collected during the search form the desired slice.

In figure 7, m ⇀ i is data dependent on j ⇀ m because of the definition and uses of y at these transitions.
j ⇀ m is in turn control dependent on i ⇀ j, by definition (cf. section 4.1), and communication dependent on
e ⇀ g, because of the potential rendezvous between these transitions, on channel goldCh. Analogously, b ⇀ c,
c ⇀ d and d ⇀ e are backwards reachable in the dependence graph, from i ⇀ j and e ⇀ g, and this process
continues until no more transitions can be added to the slice. To summarise, following is a representation of
a search through the dependence graph that leads to the desired slice:

(m ⇀ i)
dd
←− (j ⇀ m)















(j ⇀ m)
cd
←− (i ⇀ j)

{

(i ⇀ j)
com
←− (b ⇀ c)

{

(b ⇀ c)
dd
←− (a ⇀ b)

(j ⇀ m)
com
←− (e ⇀ g)

{

(e ⇀ g)
dd
←− (c ⇀ d)

(e ⇀ g)
dd
←− (d ⇀ e)

Many other dependencies exist in the dependence graph, but either they cannot be reached backwards from

10 For instance, the most complex algorithm (algorithm 1), is called on each Ai, and not on the whole specification at once: the
asymptotic cost of

P

i
|Ti|3.lg(|Ti|) can be far less than the cost of approximation |T |3.lg(|T |); on the example of figure 1, the

former is 3274, while the latter is 16384. Furthermore,
P

trc∈conds(A ) d(trc) is usually significantly smaller than
P

tr∈T
d(tr);

on the example of figure 1, the former is 6, while the latter is 19.
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Fig. 7. Slice of the specification in figure 1, wrt. {T24}.

the criterion, or they do not add new transitions once the search described above has been performed. For

instance: the control dependence (j ⇀ k)
cd
−→ (k ⇀ 1l) is not taken into account, since j ⇀ k is not backward

reachable from m ⇀ i; although c ⇀ d is in the slice, the data dependence (c ⇀ d)
dd
−→ (a ⇀ b) is not taken

into account, since a ⇀ b is already in the slice after (a ⇀ b)
dd
−→ (b ⇀ c) has been reached by the algorithm.

In conclusion, the slicing algorithm has identified the parts in the specification, that have no potential
influence on the criterion; these parts are consequently not included in the slice. On the example of figure 7,
the criterion corresponds to a successful withdrawal with a gold card, and it is interesting to notice that all
the parts of the specification that only deal with normal card withdrawals have been sliced out.

5. Related Work

This section is a brief overview of mostly related works, on slicing communicating automata specifications,
on precision issues regarding dependence relations, and finally on communicating automata specifications.
The reader is kindly referred to previous sections for related works on control dependencies [RAB+05, AK02,
Muc97] (in section 4.1), data dependencies [Muc97, FOW87, Nan01, KSV96, TGL06] (in section 4.2) and
communication dependencies [Sar97, MT00] (in section 4.3).

5.1. Slicing Communicating Automata Specifications

To the best of our knowledge, the unique previously published work on slicing automata specifications was
Bozga et al.’s. In [BFG03b], they presented an approach to improve automatic test generation by calculating
slices of specifications based on extended automata that communicate using fifo queues, as opposed to
iostss, which communicate using binary rendezvous. The slicing definitions in [BFG03b] are not dependence-
based as ours, and thus do not have the convenient properties of dependence-based slicing (cf. sections 2.2
and 4.5). In [BFG03b], slices are calculated with respect to sets of signals (inputs or outputs), while our
slicing criteria are sets of transitions in the specification. Finally, Bozga et al. give several definitions of a
slice, each of which is dedicated to test case generation, and involves external data (test purposes, feeds).
Our definition of a specification slice only involves the specification characteristics, and therefore is intended
to be more general and closer to the traditional concepts of the program slicing literature.
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5.2. Precision Issues

Regarding dependence precision issues, Krinke [Kri98] pioneered the concept of transitive dependence in a
concurrent programming language with fork/join mechanisms. In that work, threaded witnesses are used to
define transitive dependencies, and ensure a good level of precision of the method. In section 4.4, we extended
the notion of transitive dependence to iosts specifications (definition 14). In such specifications, there are
no shared variables, nor procedure calls; thus, the only source of intransitivity may lie in communication
actions (cf. the related discussion, in section 4.4.4).

Note that we agree with Millett et al. in [MT00], on the point that even imprecise slices may be use-
ful; however, the aforementioned discussion may lead to believe there is a higher potential of imprecise
dependencies in their handling of shared variables, than in our handling of communication actions.

5.3. Communicating Automata Specifications

Amongst related works on automata specifications in general, Gaston et al. propose in [GGRT06] a method
to define test purpose and generate test cases on iosts specifications, using symbolic execution techniques.
Rapin et al. propose in [RGLG03] symbolic execution techniques, for the purpose of exhibiting all the
behaviours of iolts specifications – the formalism of iostss extends the formalism of ioltss, by handling
data types (cf. section 3.1).

6. Conclusion

As mentioned in the beginning of this article, slicing has proven to be useful in debugging and program
understanding. In current research, slicing techniques are being examined in the context of model reduction
for model checking [BW05, DH99, WDQ03], simulation [MT00], test case generation [BFG03b]. The challenge
of obtaining the benefits of slicing on formal specifications based on communicating extended automata,
namely iostss, is at the origin of the present work.

6.1. Synthesis

In this article, we present definitions and efficient algorithms for the computation of dependence relations
in iosts specifications – namely, control dependence in section 4.1, data dependence in section 4.2 and
communication dependence in section 4.3. Starting from these results, we present in section 4.5 a definition
of a slice of a specification with respect to a criterion, together with an algorithm for the automatic extraction
of slices in such specifications. In section 4.4, we defined a measure of precision for iosts specifications slicing
approaches, and indentified the necessary conditions for our approach to be exhaustively precise. We also
emphasized a potential lowering of the precision and claimed that it is acceptable, notably for complexity
reasons; but also because it may not dominate in practice, assuming that in practical specifications, dual
communication actions are usually designed to run in parallel.

Throughout the present article, formal definitions are illustrated on a running example. All these al-
gorithms have been implemented in a slicing prototype tool for iosts specifications, that has shown to
be effective for specification reduction, debugging and understanding, on examples such as the short one
presented in this article (cf. figures 1 and 7).

The model reduction results obtained with our slicing tool give rise to interesting prospects in formal
validation methods, e.g. test case generation or model checking; these challenging application areas have
become active in very recent years [BFG03b, BW05, DHH+06, WDQ03]. For that purpose, our slicing tool
has been successfully connected to the Agatha tool [BFG+03a, RGLG03]. We are currently working on the
next step, of major interest: evaluating the impact of slicing in conjugation with Agatha, for the purpose
of specification validation.
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6.2. Ongoing and Future Work

In ongoing work, we think of refining our method, by designing a “fine-grained” iosts specifications slicing
method, in which transitions are no longer considered as atomic elements, allowing one to “slice out” parts
of transitions, and consequently, to compute smaller and more precise slices (this implies a modification of
our definition of a specification, but we will show that the dependence definitions would remain correct).

Finally, the two following directions may also be considered for future work, although certainly increasing
the overall complexity of the method. First, improving the accuracy of the communication dependence
relation, for instance using a May Happen in Parallel algorithm [NA98] for iostss: the idea is that if two
transitions tri and trj communicate on the same channel, but never happen in parallel, then we should
not observe any communication dependence between tri and trj . As seen in section 4.4.3, the accuracy of
the communication dependence relation could also be improved using parallel composition information. The
resulting method should be empirically compared to the one presented in this article, as it is a priori unclear
whether the precision benefit is worth the induced complexity overhead.

Second, iostss use pairwise disjoint sets of attribute variables in a specification (according to definition 4),
i.e. iostss cannot interact using shared variables; this assumption may be removed. As a consequence, an
additional kind of inter-automata data dependencies – similar to Krinke’s interference dependencies [Kri98] –
would have to be handled by the method. It is worth noticing that Müller-Olm and Seidl showed in [MOS01]
that slicing in this setting is pspace-complete; for the rest, all the methods we are aware of, that deal with
such dependencies in a precise way, have worst-case exponential complexity [Kri98, Nan01].
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