
Reasoning about Semantic Web in Isabelle/HOL

Yue Tang
School of Computing

National University of Singapore
Republic of Singapore

tangy@comp.nus.edu.sg

Jing Sun
Department of Computer Science

The University of Auckland
New Zealand

j.sun@cs.auckland.ac.nz

Jin Song Dong
School of Computing

National University of Singapore
Republic of Singapore

dongjs@comp.nus.edu.sg

Brendan Mahony
Information Technology Division
Defence Science and Technology

Organization of Australia
Brendan.Mahony@dsto.defence.gov.au

Abstract

Semantic Web is regarded as the next generation of the
World Wide Web. It provides not only the structure of the
web but also meaningful semantics for the information pre-
sented. To make Semantic Web services understandable for
distributed agents, formal definitions of the ontologies and
their consistencies are essential. However, the existing tools
for reasoning about Semantic Web ontologies are still prim-
itive. We believe that mature Software Engineering tools,
such as theorem provers, can contribute to the reasoning
phase. In this paper, we present an approach of encoding
the Semantic Web ontology (DAML+OIL) into the generic
theorem prover Isabelle/HOL for automatic reasoning. Fur-
thermore, a translation tool was developed to transform Se-
mantic Web ontologies into their extended Isabelle theories.
With additional intermediate lemmas, Isabelle can be used
to perform both subsumption (class) level and instantiation
(instance) level reasoning of the Semantic Web ontologies.

Keywords: Semantic Web, DAML+OIL, Theorem prov-
ing, Isabelle/HOL.

1. Introduction

Recent research on the World Wide Web have extended
to the semantics of the web content. More meaningful in-
formation is embedded into the web content, which makes
it possible for intelligent agent programs to retrieve re-
lated information based on their requirements. The Seman-
tic Web [2] approach proposed by the World Wide Web
Consortium (W3C) attracts the most attention. It is regarded

as the next generation of the web. A Semantic Web ser-
vice is a web application developed based on the Seman-
tic Web technology. There have been some Semantic Web
services developed recently, e.g., ITTALKS [4]. Ontology
is one of the important concepts in Semantic Web services.
An ontology is a document defining the semantic relation-
ships between terms used in a Web service. A Semantic
Web service usually works in a distributed environment due
to the nature of the web. Hence, the consistency of its on-
tology is essential to make the service work correctly. Be-
cause the Semantic Web technology is still a relatively new
research field, it is lacking in supporting tools for reason-
ing about ontology consistencies. Recently, some effects
have been put to meet this needs. OilEd [1] is a graph-
ical ontology editor. Fast Classification of Terminologies
(FaCT) [9] is a Description Logic (DL) classifier. FaCT is
built in OilEd as a reasoner. The FaCT system works on
Description Logic, which is the basis of the Semantic Web.
When it is invoked, FaCT can point out possible inconsis-
tencies and help OilEd to show the graphical class hierar-
chy. However, FaCT has a main restriction. It can only sup-
port conceptual level reasoning but not instance level rea-
soning. Hence, it is impossible for FaCT to check instan-
tiation relations. Renamed ABox and Concept Expression
Reasoner (RACER) [8] is a TBox and ABox reasoner for
description logic SHIQ [10]. Similar to FaCT, RACER is
implemented in Common Lisp. It is a client-server system.
The front-end is called RACER Interactive Client Environ-
ment (RICE). They are connected through the socket-based
TCP/IP interface. RACER has been applied to projects in
Semantic Web and software engineering. It has an advan-
tage over FaCT that it can support both conceptual level and
instance level reasoning. Open World Assumption (OWA) is

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



adopted by RACER. It means that ‘what cannot be proven
to be true is not believed to be false’. RACER returns true
as long as it cannot deduce the result is false. This may
cause incorrectness of results that RACER returns.

At the same time, there are many existing tools that can
support logical reasoning very well in the software engi-
neering domain. It is believed that the Semantic Web could
become an novel application domain for software modeling.
The consequent research is to encode Semantic Web ontol-
ogy into a formal modeling language, then use an existing
proof tool to perform automated reasoning. Recently, there
are some approaches of using formal modeling tools for on-
tology consistency checking. Alloy is a light-weight soft-
ware modeling language based on first order logic. The ap-
proach of using Alloy to check and reason about Semantic
Web [6] makes it possible to support an automated ontol-
ogy verification. A Semantic Web ontology is transformed
from its DAML+OIL representation into an Alloy specifi-
cation. Alloy Analyzer then analyzes the model to check
the consistency of the ontology. This approach can support
both conceptual level and instance level reasoning. But it
has its own limitations. A finite scope must be provided for
AA to perform analysis. Most of the time this is not a prob-
lem as long as the scope is small. However, if the Semantic
Web ontology is widely distributed through the Internet, the
scope could be hard to define. Thus the confidence in the re-
sult will depend on the size of the scope adopted. Z is a for-
mal specification language based on set theory and predi-
cate logic. Z/EVES [12] is a theorem proving tool for the
Z language. One of the approaches is checking the ontol-
ogy consistency using Z with its proof tool Z/EVES [5].
Unlike the approach of Alloy, it does not have a limita-
tion on the scope. This is because Z/EVES is a theorem
prover and can support large scale proofs. Hence, it pro-
vide us with confidence in the consistency of an ontology.
Unfortunately it is not yet a perfect approach. Like Alloy,
Z/EVES depends too much on the underlying formal mod-
eling language Z. Semantic Web ontology has to be con-
verted into Z/Alloy models in order to perform consistency
verifications. The process of such translation may cause in-
consistency as well.

In this paper, we present an approach of directly encod-
ing the Semantic Web meta-language (DAML+OIL) into
the generic theorem prover Isabelle [11] for consistency rea-
soning. There are three main contributions of this paper,
i.e., an formal definition of the DAML+OIL semantics in
the Isabelle high order logic, a transformation program for
translating Semantic Web ontology into their Isabelle theo-
ries and an automatic ontology reasoning environment pro-
vided by the Isabelle theorem prover. Firstly, an Isabelle
theory library is defined for the generic DAML+OIL seman-
tics. With this theory, concrete examples of Semantic Web
ontologies are expressed as its extensions. Consequently,

a transformation program for translating an ontology into
its corresponding Isabelle theory becomes necessary. This
program is developed based on an existing Java library for
DAML+OIL. It is reusable and extensible for future en-
hancement. Finally, based on the Isabelle proving facilities,
we can perform automatic ontology consistency checking
both at conceptual and instance levels.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly introduces the background knowledge for Se-
mantic Web and the generic theorem prover Isabelle. Sec-
tion 3 presents Isabelle theory definitions for DAML+OIL
semantics. Section 4 introduces a program that can trans-
form a Semantic Web ontology into its Isabelle theory
representation. Section 5 demonstrates a case study on a
complete ontology reasoning process: starting from trans-
formation, followed by goal identifications, ending with
additional supporting lemmas and final proofs. Examples
of both class-level reasoning and instance-level reasoning
are presented. section 6 concludes the paper and discusses
about future work.

2. Backgrounds

2.1. Semantic Web overview

The Semantic Web [2] has been considered as the next
generation of the World Wide Web. It not only includes
structural and visible data like traditional WWW, but also
describes data with machine-understandable semantics. In
a word, web contents become readable to intelligent soft-
ware agents in addition to human beings.

Figure 1. Semantic Web layers proposed by
Tim Berners-Lee

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



Figure 1 shows the structure of the Semantic Web layers,
a vision from Tim Berners-Lee, the creator of the WWW. It
illustrates a clear picture of relations between all layers. We
put our focus on the ontology (DAML+OIL) related layers,
i.e., from the RDF and RDFS up to the logic framework and
proof layers (in Isabelle).

2.1.1. RDF and RDFS

In order to fulfill the requirements of understand-
able data in the Semantic Web, ontologies are defined and
distributed throughout the World Wide Web. An ontol-
ogy can be viewed as a kind of XML document containing
the formal definitions of terminologies and their rela-
tions. The Resource Description Framework (RDF) [7]
forms a foundation for intelligent agents to exchange in-
formation. It provides a framework for meta-data process-
ing. An RDF statement is a logic triple that has the form:
<subject property object>, where subject
refers to a Web resource, property and object de-
scribe one of its properties (relations) with other web
resources. Hence, in contrast to a simple XML docu-
ment, an RDF document is more semantically meaning-
ful. The RDF Schema (RDFS) [7] provides a vocabulary for
RDF documents in addition to their RDF model and syn-
tax. In addition, RDFS also puts constraints on RDF
structures. Therefore, it can help software agents to explic-
itly ‘understand’ (extract) the information in a Semantic
Web document.

2.1.2. DAML+OIL

The DARPA Agent Markup Language (DAML) [7] is a
web ontology language based on description logic. Com-
bined with the Ontology Interchange Language (OIL) [3],
DAML+OIL [13] is developed on the basis of XML and
RDFS with well-defined semantics. It provides more logic
constructs for defining classes and properties as well as in-
stances, domains and ranges of properties. It is much more
powerful than RDFS on modeling Semantic Web ontolo-
gies.

The following is an example ontology in DAML+OIL.
It defines a web resource Person with relations and re-
strictions. Animal is a class and hasParent is a prop-
erty. Person is a subclass of Animal and has the prop-
erty hasParent.

<daml:Class rdf:ID="Person">
<rdfs:subClassOf rdf:resource="#Animal"/>
<rdfs:subClassOf>
<daml:Restriction>
<daml:onProperty rdf:resource="#hasParent"/>
<daml:toClass rdf:resource="#Person"/>
</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

With the DAML+OIL language, constraints between dif-
ferent web resources can be specified to a deeper content.
Thus logical relationships in the ontology can be made more
machine understandable to their semantic web services.

2.2. Isabelle overview

Isabelle [11] is a generic proof system for implement-
ing logical formalisms. It provides powerful mechanisms in
defining hierarchical logic theories (object logics). New ob-
ject logics can be built from Isabelle metalogic, by means of
constructing and proving new theories. Its fundamental in-
ference techniques are based on higher order unification and
term rewriting.

2.2.1. Isabelle theory library

Isabelle supports library definitions. A library is called
theory in Isabelle. It can be either pre-defined or
user-defined. Isabelle is released with a wide range of
pre-defined logic theories, such as First Order Logic (FOL),
Higher Order Logic (HOL), Zermelo Frankel set the-
ory (ZF), Constructive Type Theory (CTT), the Logic
of Computable Functions (LCF), and so on. In ad-
dition, users can also define their own theories, e.g.,
MyTheory.thy. The main content of a theory file can in-
clude type declarations, function definitions, lemmas and
proofs.

2.2.2. Definitional modeling using Isabelle/HOL

Isbelle/HOL [11] implements the Isabelle high or-
der logic library. Some of the building blocks in developing
Isabelle logics are as follows.

• Theory definition — New theories are defined as an
extension on the existing theories. Thus definitions and
lemmas and proof rules can be inherited. The general
form of the theory definition command is:

theory MyTheory = theory1 +...+ theoryn

: where theory1, ..., theoryn are exist-
ing supporting theories.

• Type definition — New types are constructed by the
declaration typedecl or datatype. Isabelle sup-
ports recursive datatype definitions. The general form
of a type definition is:

typedecl typeName
datatype myType = NAT nat

| TYPE2 type2
| TYPE3 type3

• Function definitions — Functions are defined by their
name, inputs, outputs and their actual definitions. They
provide essential information for constructing proofs.
A function can be defined as follows.

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



consts myFunction :: "nat list => nat => bool"
defs myFunction_def : "myFunction NL V ==

ALL n:(set NL). n=V"

• Lemmas and Theorems — The goal to be proved in a
theory is defined as lemma or theorem. It is a logic
statement. Theorems and lemmas can be proved by ap-
plying proof rules and tactics. The format of lemma
and theorem definitions are as follows.
lemma myLemma1 : "P ==> Q ==> S"

by auto
theorem myTheorem : "[|M, N|] ==> S"

apply (rule myLemma1)
apply (blast)
done

3. Isabelle theory definition for DAML+OIL

3.1. Basic concepts

DAML+OIL is based upon RDF and RDFS with the ad-
dition of class, property and object concepts. DAML+OIL
primitives are encoded into Isabelle definitions according to
their semantics [7].

An Isabelle theory SW is defined for the semantic model
of DAML+OIL meta-language using HOL as the basic logic
library.

theory SW = Main:

Based on the above sematic web DAML+OIL definition,
new Semantic Web ontologies can be created as extensions
to the SW theory. For example,

theory OntologyExample = SW:

Everything in the Semantic Web context is a type of re-
source. It can be classified as a class, a property or an
instance resource type. To specify these types and the re-
lationship between them, three axiomatic types are declared
and one data type SWresource is created as follows.

typedecl class
typedecl property
typedecl resource
datatype SWresource = Class class

| Property property
| Resource resource

A class is a kind of resource that is related to a
set of instances in some category. The instances can be
any type of resource, i.e., SWresource. The function
instanceOf declares the relationship between a class
and its set of instances which can be any type of Semantic
Web resource. Given a class, this function returns a set of
SWresource that represents the instances of the class.

consts instanceOf :: "class => SWresource set"

A property also has a basic relation called subVal.
It declares the relationship between a property and a set
of subject-value pairs. Given a property, this function re-
turns a set of SWresource pairs.

consts subVal ::
"property => (SWresource * SWresource) set"

3.2. Class elements

A class elements mainly describe the relations among
classes in DAML+OIL. In this section, four com-
monly used relations are encoded into Isabelle, i.e.,
subClassOf, disjointWith, sameClassAs and
disjointUnionOf.

3.2.1. subClassOf

The subClassOf function describes the relation be-
tween two classes. A class C1 is subclass of another class
C2 if and only if all C1’s instances are also inside class C2.
The declaration and definition of subClassOf are as fol-
lows.

consts subClassOf :: "class => class => bool"
(infixl "[<]" 65)

defs subClassOf_def: "C1 [<] C2 ==
(instanceOf C1) \<subseteq> (instanceOf C2)"

where the ‘infixl’ statement defines a binary symbol
‘[<]’ introduced for the subClassOf relation.

3.2.2. disjointWith

The disjointWith function defines that two classes
C1 and C2 are disjoint so that they have no common set of
instances.

consts disjointWith :: "class => class => bool"
defs disjointWith_def : "disjointWith C1 C2 ==

(instanceOf C1) \<inter> (instanceOf C2) = {}"

The sameClassAs and disjointUnionOf functions
are defined similarly.

3.3. Property restrictions

The property restrictions focus on the relationships be-
tween web resources. In this subsection, some commonly
used property restrictions are discussed.

3.3.1. toClass

According to DAML+OIL semantics, the function
toClass constructs a class C1 with a restriction on its in-
stances. An instance of C1 either has no values in property
P, or if it has values in property P, the respective val-
ues must belong to another class C2.

consts
toClass :: "property => class => class => bool"
defs
toClass_def : "toClass P C1 C2 == ALL c1 c2.

c1:(instanceOf C1) = ((c1,c2):(subVal P)
--> c2:(instanceOf C2))"

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



3.3.2. hasValue

The function hasValue restricts the property value
for a class C. All the instances of class C have the same
value of property P.

consts hasValue :: "property => class =>
SWresource => bool"

defs hasValue_def : "hasValue P C R == ALL c.
c:(instanceOf C) -->
{r. (c,r):(subVal P)}={R}"

Other property restrictions such as hasClass, cardinal-
ity, maxCardinality, minCardinality, cardinalityQ, maxCar-
dinalityQ, minCardinalityQ are defined correspondingly.

3.4. Property elements

3.4.1. subPropertyOf

The function subPropertOf defines a relation be-
tween two properties. One property P1 is said to be a
sub-property of another property P2 if and only if the set
of subject-value pairs in P1 is a subset of that in P2.

consts subPropertyOf ::
"property => property => bool"

defs subPropertyOf_def : "P1 subPropertyOf P2
== (subVal P1) \<subseteq> (subVal P2)"

3.4.2. domainOf

The function domainOf restricts the domain of a
property P. All subjects from P are instances of a do-
main class C.

consts domainOf :: "property => class => bool"
defs domainOf_def : "domainOf P C ==
ALL (sub,val):(subVal P).sub:(instanceOf C)"

3.4.3. transitiveProp

The function transitiveProp defines the transi-
tivity of the subject-value pairs in a property P.

consts transitiveProp :: "property => bool"
defs transitiveProp_def :

"transitiveProp P == ALL r1 r2 r3.
(r1,r2):(subVal P) & (r2,r3):(subVal P)
--> (r1,r3):(subVal P)"

Other property elements such as rangeOf, sameProp-
ertyAs, inverseOf, uniqueProp, unambigousProp are de-
fined in a similar way.

In this section, an Isabelle encoding (SW.thy) of the
DAML+OIL semantic web language in Higher Order Logic
(HOL) is presented. We have defined a complete library of
the DAML+OIL semantics in Isabelle. Due to the space lim-
itation of the paper, only parts of the encoding are listed
here. This generic theory (SW.thy) acts as a foundation
library for modeling other user-defined Semantic Web on-
tologies.

4. Transform from DAML+OIL to Isabelle

In section 3, we defined an Isabelle theory (SW.thy)
for DAML+OIL semantics. The consequent task is to de-
velop a tool to transform a Semantic Web ontology into its
corresponding Isabelle theory file. Our DAML2Isa transla-
tion tool was implemented based on the Jena semantic web
toolkit developed by the HP Labs Semantic Web Research
Group.

4.1. Transformation rules

The DAML2Isa tool implements transformation rules
from DAML+OIL ontology to Isabelle theory. Every Se-
mantic Web ontology is transformed as a new theory file in
Isabelle. The theory SW.thy acts as a base library for the
new theories. An ontology information includes class, prop-
erty, restriction, etc. Resources, such as classes, properties
and general resources, are transformed as constant defini-
tions in Isabelle, while restrictions are transformed as ax-
ioms. A brief description of the translation rules are as fol-
lows.

• Class transformation — A DAML+OIL class is
transformed to an Isabelle constant definition with
class type. The RDF ID is extracted as the class
name. Axioms are generated based on the con-
straints that this class has.

• Property transformation — A property is trans-
formed as a constant definition with property type.
The RDF ID is taken as the property name. Proper-
ties may have property elements, which are trans-
formed to Isabelle axioms.

• Restriction transformation — Property restrictions
are transformed to axiom definitions in Isabelle. The
axiom name is composed of the restriction name and
property name followed by other related information.

Detailed translation rules are implemented in the
DAML2ISa transformation tool. DAML+OIL ontolo-
gies can be automatically translated from their XML
representations into their corresponding Isabelle theo-
ries. In the next section, we will demonstrate a complete
consistency reasoning process of a ‘Human Being’ ontol-
ogy case study using Isabelle.

5. Reasoning about Semantic Web ontology

5.1. Reasoning procedure

Figure 2 shows the proof procedure for reasoning about
DAML+OIL Semantic Web ontology in the Isabelle theo-
rem prover. First, an ontology in DAML+OIL is input into
the DAML2Isa transformation program. The DAML2Isa

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



DAML+OIL 
Ontology 

DAML2Isa 
Transformation 

Program 

Isabelle 
Theory 

Isabelle 
Theorem Prover

Proved? 

Done 

Yes

Supporting
Lemma 

No

Goals To 
Be Proved 

Figure 2. Ontology reasoning using Isabelle

produces an output file containing the generated Isabelle
theory. After adding the goals to be proved, the file is in-
put into Isabelle. If the goals can be proved instantly using
Isabelle default tactics, it is done. Otherwise, it is neces-
sary to add more supporting lemmas and pass the document
to Isabelle again until all goals are proved.

5.2. Example ontology

A partial DAML+OIL example ontology about ‘Human
Beings’ is used as a case study to illustrate the proce-
dures of reasoning about Semantic Web ontology using Is-
abelle. This example ontology is available at the DAML
web site for easy reference. The ontology defines four re-
source classes, Animal, Person, Male and Female,
and their properties. The DAML+OIL ontology (in XML)
can be translated into its corresponding Isabelle theory by
the DAML2Isa tool automatically. After transforming a
DAML+OIL ontology into its Isabelle theory, the next step
is to identify the proof goals and apply reasoning tactics to
perform the verification.

5.3. Subsumption reasoning

The purpose of subsumption reasoning is to verify the
subclass relationship between two classes. This can be done
through different ways of inference based on the informa-
tion presented in the ontology.

5.3.1. Transitivity of a subclass

The most direct way of subsumption reasoning is
based on the transitive property of a subclass relation. For
example, suppose there is a class Man which is a sub-
class of Person and Male, we can infer that class Man
is also a subclass of the Animal class. The goal that class
Man is a subclass of Animal is defined in Isabelle as a the-
orem:

theorem
subClassOf_Man_Animal : "Man [<] Animal"

In order to prove this goal, a supporting lemma is needed
in the main theory SW.thy to express the transitivity prop-
erty of a subClassOf function.

lemma
subClass_trans : "C1 [<] C2 ==> C2 [<] C3

==> C1 [<] C3"
by auto

The above lemma can be easily proved using the Isabelle
auto proof tactic. With this supporting lemma, our original
goal theorem subClassOf Man Animal can be proved
based on combining the other two axioms.

theorem
subClassOf_Man_Animal : "Man [<] Animal"
apply (rule subClass_trans)
apply (rule subClassOf_Man_Male)
apply (rule subClassOf_Male_Person)
done

Note that the apply command denotes to apply a particu-
lar proof rule or tactic in attempts to solve a goal.

5.3.2. Class restriction on property

Another widely used method of subsumption reason-
ing is based on class restrictions on properties. If a class C1
has a restriction on property P, and another class C2 has the
same restriction on property P and possibly additional re-
strictions, then class C2 is a subclass of C1. For example,
suppose a class Adult is subclass of Animal and has re-
striction toClass on property hasParent.

consts
Adult :: class

axioms
subClassOf_Adult_Animal : "Adult [<] Animal"
toClass_hasParent_Adult_Person :

"toClass hasParent Adult Person"

The following presents a supporting lemma for proving this
goal based on functions subClassOf and toClass.

lemma
toClass_subClass : "toClass P C1 C ==>

toClass P C2 C ==> C1 [<] C2"
apply (unfold subClassOf_def)
apply (unfold toClass_def)
apply (blast)
done

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



Provided with the above additional lemma, the goal
subClassOf Adult Person can be proved effec-
tively as follows.

theorem
subClassOf_Adult_Person : "Adult [<] Person"
apply (rule toClass_subClass)
apply (rule toClass_hasParent_Adult_Person)
apply (rule toClass_hasParent_Person_Person)
done

5.4. Instantiation reasoning

As stated previously, Isabelle can support instance level
reasoning for Semantic Web ontologies. Instance level rea-
soning focuses on the relation between a Semantic Web re-
source and a class.

5.4.1. Membership of a class

A Semantic Web resource can be proved to be an instance
of a class as long as there is enough information. For in-
stance, based on set theory, if an element (Semantic Web
resource) is an instance of a set (class), it must be an in-
stance of any super set (super class). Here is a more compli-
cated case. Suppose that there exist two Semantic Web re-
sources anAdult and aPerson. The resource anAdult
is an instance of class Animal, aPerson is an in-
stance of class Person, and the resource anAdult has
a property hasParent on aPerson. We can prove that
anAdult is also an instance of the Person class.Once
again, a supporting lemma is necessary for the proof.
The lemma toClassD1 explains more about the func-
tion toClass.

lemma
toClassD1 [elim] : "toClass P C1 C2 ==>

(c1,c2):(subVal P) ==> c2:(instanceOf C2)
==> c1:(instanceOf C1)"

by (unfold toClass_def) blast

With the three additional axioms, the requirement for prov-
ing the theorem is fulfilled. It can be concluded that
anAdult is an instance of the class Person.

theorem
instanceOf_anAdult_Person :

"anAdult:(instanceOf Person)"
apply (rule toClassD1)
apply (rule toClass_hasParent_Person_Person)
apply (rule instanceOf_hasParent_anAdult_aPerson)
apply (rule instanceOf_aPerson_Person)
done

5.4.2. Non-membership of a class

Although Isabelle does not support model checking,
users can still perform inconsistency checking at an in-
stance level. For example, sometimes an inconsistency can
be found by proving that a Semantic Web resource is not

an instance of a certain class. As stated in the example on-
tology, class Female is disjoint with the class Male.
Suppose there is a resource aFemale which is an in-
stance of Female. It is obvious that aFemale is not
an instance of Male. In order to prove this, a support-
ing lemma disjointWithD is necessary.

lemma
disjointWithD [elim] : "disjointWith C1 C2

==> x:(instanceOf C1) ==> x˜:(instanceOf C2)"
by (unfold disjointWith_def) blast

Therefore, the final proof is as follows.

theorem
notInstanceOf_aFemale_Male :

"aFemale˜:(instanceOf Male)"
apply (rule disjointWithD)
apply (rule disjointWith_Female_Male)
apply (rule instanceOf_aFemale_Female)
done

5.5. Instance property reasoning

Instance property reasoning is another important aspect
of reasoning about Semantic Web ontologies. A Semantic
Web application serves meaningful queries based on the un-
derstanding of ontology. Sometimes the necessary informa-
tion is not directly stored in the database. The agent has to
analyze what it knows to reply to the queries. We take a
common relation between two persons as an example. Sup-
pose a web resource Adam hasFather Peter. Can we
conclude that Peter hasChild Adam? In order to an-
swer this question, we have to define two more properties
hasFather and hasChild. Let hasFather be a sub-
property of hasParent, and hasChild be the inverse of
hasParent.

consts
hasFather :: property

axioms
subPropertyOf_hasFather_hasParent :

"hasFather [<<] hasParent"
consts
hasChild :: property

axioms
inverseOf_hasChild_hasParent :

"inverseOf hasChild hasParent"
consts
Adam :: SWresource
Peter :: SWresource

axioms
instanceOf_Adam_Person :

"Adam:(instanceOf Person)"
instanceOf_Peter_Person :

"Peter:(instanceOf Person)"
instanceOf_hasFather_Adam_Peter :

"(Adam,Peter):(subVal hasFather)"

Two supporting lemmas are defined to help on the above
query.

lemma
rev_inverseOfD : "inverseOf P1 P2 ==>
(sub,val):(subVal P2) ==> (val,sub):(subVal P1)"

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



apply (unfold inverseOf_def)
apply (blast)
done

lemma
subPropertyD [elim] : "P1 [<<] P2 ==>
(sub,val):(subVal P1) ==> (sub,val):(subVal P2)"
apply (unfold subPropertyOf_def)
apply (blast)
done

By applying these two lemmas and three available ax-
ioms, the goal to prove Peter hasChild Adam can be
reached step by step. Since hasFather is sub-property of
hasParent, the fact Adam hasFather Peter ensures
Adam hasParent Peter. Furthermore, hasChild is
inverse of hasParent. Now we can conclude that Peter
hasChild Adam.

theorem
instanceOf_hasChild_Peter_Adam :

"(Peter,Adam):(subVal hasChild)"
apply (rule rev_inverseOfD)
apply (rule inverseOf_hasChild_hasParent)
apply (rule subPropertyD)
apply (rule subPropertyOf_hasFather_hasParent)
apply (rule instanceOf_hasFather_Adam_Peter)
done

In this section, we discussed the different reasoning tasks
performed by Isabelle through a ‘human being’ ontology
example. we presented each reasoning proof together with
the supporting lemmas used. In our implementation, we de-
fined a sufficient set of supporting lemmas in the SW.thy
theory library for assisting effective reasoning.

6. Conclusion

In this paper, we demonstrate an approach of reason-
ing about Semantic Web ontologies using generic theo-
rem prover Isabelle. First, an Isabelle representation of
the DAML+OIL semantic web meta-language was defined,
which can be used as a theory library for detailed ontol-
ogy modeling in Isabelle/HOL. Furthermore, a set of sup-
porting lemmas were developed for the purpose of effec-
tive reasoning. Second, a DAML2Isa transform tool was de-
veloped for the automatic translation from DAML+OIL on-
tologies into their corresponding Isabelle theory files. Third,
a case study illustrated the detailed procedures for reason-
ing about Semantic Web ontologies in Isabelle/HOL. Three
types of reasoning tasks are discussed, i.e., subsumption, in-
stantiation and instance property reasoning. In conclusion,
Isabelle can check the consistency of Semantic Web ontol-
ogy at both conceptual level and instance level. At the same
time, it can help answer queries that are not included in the
knowledge base. In summary, we believe that the generic
theorem prover Isabelle can play a contribution role in the
reasoning about Semantic Web ontologies.

One part of the future work is to enhance the general Is-
abelle theory library SW.thy. It will be more effective if

the theory includes not only essential functions but also a
sufficient set of supporting lemmas. Isabelle is a generic
theorem prover. As a result, it lacks complete automation.
Hence, another part of the future work is to reduce user in-
teractions as much as possible so that the reasoning proce-
dure can become more efficient. As discussed earlier, model
checkers and theorem provers complement to each other.
To improve the performance of reasoning about Semantic
Web ontologies, it could be a better solution that Isabelle is
worked together with a model checker such as Alloy.

References

[1] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd:
a reason-able ontology editor for the semantic web. In Proc.
of the Joint German/Austrian Conf. on Artificial Intelligence
(KI 2001), pages 396–408. Springer-Verlag, 2001.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, May 2001.

[3] J. Broekstra, M. Klein, S. Decker, D. Fensel, and I. Horrocks.
Adding formal semantics to the web: building on top of RDF
Schema. In ECDL Workshop on the Semantic Web: Mod-
els, Architectures and Management, 2000.

[4] R. S. Cost, T. Finin, A. Joshi, Y. Peng, C. Nicholas, I. Sobo-
roff, H. Chen, L. Kagal, F. Perich, Y. Zou, and S. Tolia.
Ittalks: A case study in the semantic web and daml.

[5] J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. Verifying
DAML+OIL and beyone in Z/EVES. In The 26th Interna-
tional Conference on Software Engineering (ICSE’04), Scot-
land, UK, May 2004. IEEE Press.

[6] J. S. Dong, J. Sun, and H. Wang. Checking and Reasoning
about Semantic Web through Alloy. In Proceedings of 12th
Internation Symposium on Formal Methods Europe: FM’03,
Pisa, Italy, Sept. 2003. LNCS, Springer-Verlag.

[7] R. Fikes and D. L. McGuinness. An axiomatic semantics
for RDF, RDF Schema, and DAML+OIL. Technical Report
KSL-01-01, Knowledge Systems Laboratory, 2001.

[8] V. Haarslev and R. Möller. RACER system description.
In Proceedings of Automated Reasoning: First International
Joint Conference, pages 701–706. Siena, June 2001.

[9] I. Horrocks. The FaCT system. Tableaux’98, Lecture Notes
in Computer Science, 1397:307–312, 1998.

[10] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning
for very expressive description logics. Logic Journal of the
IGPL, 8(3):239–263, 2000.

[11] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL –
A Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer, 2002.

[12] M. Saaltink. The Z/EVES system. In J. P. Bowen, M. G.
Hinchey, and D. Till, editors, ZUM’97: Z Formal Specifica-
tion Notation, volume 1212 of Lecture Notes in Computer
Science, pages 72–85. Springer-Verlag, 1997.

[13] F. van Harmelen, P. F. Patel-Schneider, and I. H. (editors).
Reference description of the DAML+OIL ontology markup
language. Contributors: T. Berners-Lee, D. Brickley, D. Con-
nolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, O.
Lassila, D. McGuinness, L. A. Stein, ..., March, 2001.

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 


