
Annals of Software Engineering 13, 329–356, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Formal Object Approach to the Design of ZML

JING SUN, JIN SONG DONG, JING LIU and HAI WANG dongjs@comp.nus.edu.sg
Department of Computer Science, School of Computing, National University of Singapore,
10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore

Abstract. This paper addresses two issues: how formal object modeling techniques facilitate the XML
application development and how XML technology helps formal/graphical software design process. In
particular, the paper presents a XML/XSL approach to the development of a web environment for Z family
languages (Z/Object-Z/TCOZ). The projection techniques and tools from object-oriented Z (in XML) to
UML (in XMI) are developed using XSL Transformations (XSLT). Furthermore, object-oriented Z is used
to specify and design the essential functionalities of the web environment and the projection tools to UML.
In a sense, the paper also demonstrates a formal object approach to modeling XML applications.

Keywords: formal specification, Z/Object-Z/TCOZ, XML/XSL/XMI, UML

1. Introduction

Most discussions related to “Web and Software Engineering” are centered around two
main issues: how web technology assists software design and development and how
software engineering techniques facilitate web applications. This paper tries to address
both issues within a specific context “XML [(W3C) 2000a]/XSL [(W3C) 2000b] and
Formal/Graphical software modeling techniques.”

One reason for the slow adoption of formal methods (FM) is the lack of tools sup-
port and connections to the current industrial practice. Recent efforts and success in
FM have been focused on building ‘heavy’ tools, such as theorem provers and model
checkers. Although those tools are essential and important in supporting applications
of formal methods, they are usually less used in practice due to the intrinsic difficulty
involved in the technology. In order to achieve wider acceptance of formal methods,
it is necessary to develop ‘light’ weight tools, such as easy-access browsers for formal
specifications and projection/transformation tools from formal specifications to industry
popular graphical notations. World Wide Web (WWW) is a promising environment for
software specification and design because it allows sharing design models and providing
hyper textual links among the models [Kaiser et al. 1997]. Unified Modeling Language
(UML) [Rumbaugh et al. 1999] is commonly regarded as one of the dominate graphical
notations for industrial software system modeling. It is important to develop links and
tools from FM to WWW and to UML so that FM technology transfer can be success-
ful.

Z [Woodcock and Davies 1996] is a state-oriented formal specification language
based on set theory and predicate logic. Object-Z [Duke and Rose 2000; Smith 2000]

330 SUN ET AL.

is an object-oriented extension to Z. TCOZ [Mahony and Dong 2000; Mahony and
Dong 1999] integrates Object-Z with process algebra Timed-CSP [Schneider and Davies
1995]. In this paper, we plan firstly to use eXtensible Markup Language (XML) and
eXtensible Stylesheet Language (XSL) to develop a web environment that provide vari-
ous browsing and syntax checking facilities for Z family (Z/Object-Z/TCOZ) languages.
Second, with the emergence of XML Metadata Interchange (XMI) as a standard, e.g.,
Rational Rose UML supports XMI input, it is possible to build a transformation link
and projection tools from object-oriented Z specifications (in XML) to UML (in XMI)
via XSLT [(W3C) 1999] technology. We call this Z family XML web environment and
UML projection facilities, ZML.

Since we believe that FM can improve software reliability for web applications,
Z family languages (particularly Object-Z) are used to formally specify the essential
functionalities of the ZML. The Object-Z specification models are used as an initial
design document to guide the XML/XSL implementation. In a sense, the paper demon-
strates a formal approach to modeling XML applications. Consequently, we eat our own
medicine.

The remainder of the paper is organised as follows. Section 2 briefly introduces the
Z family (Z/Object-Z/TCOZ) notations. Section 3 formally specifies the functionalities
of the Z family web environment and UML projection tools in Object-Z itself. Sec-
tion 4 outlines the main approach and techniques of the paper, discusses related work.
Section 5 presents the implementation issues of the web environment and browsing fa-
cilities for Z family. Section 6 presents the implementation issues of the projection tools
from Object-Z (in XML) to UML (in XMI). Section 7 concludes the paper.

2. Z family languages overview

In this section, we will use a simple message queue system to illustrate the common and
difference among Z, Object-Z and TCOZ notations. Z schema calculus and Object-Z/
TCOZ inheritance expansions (which is the challenge of the ZML development) are
explained. Requirements of building ZML are highlighted (in italic fonts).

2.1. Z and schema calculus

A Z specification typically includes a number of state and operation schema definitions.
A state schema encapsulates variable declarations and related predicates (invariants).
The system state is determined by values taken by variables subject to restrictions im-
posed by state invariants. An operation schema defines the relationship between the
‘before’ and ‘after’ states corresponding to one or more state schemas. Complex schema
definitions can be composed from the simple ones by schema calculus. Z has been
widely adopted to specify a range of software systems (see [Hayes 1993]). Various
tools, i.e. editors, type/proof checkers and animators, for Z have been developed.

Consider the Z model of a FIFO message queue. Let the given type [MSG] repre-
sent a set of messages.

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 331

The total elements in the queue cannot be more than max (say, a number larger
than 100). The global constant max can be defined using Z axiomatic definition as

max : N

max > 100

The state, potential state change and initial state of the queue system can be speci-
fied in Z as

Queue
items : seq MSG

items � max

�Queue
items : seq MSG
items′ : seq MSG

items � max
items′ � max

QueueInit
Queue

items = 〈 〉

QueueInite
items : seq MSG

items � max
items = 〈 〉

where QueueInite is the schema inclusion expanded form of QueueInit.
The operations to add message to, and delete message from, the queue can be

modeled as

Add
�Queue
item? : MSG

items′ = items�〈item?〉

Delete
�Queue
item! : MSG

items 	= 〈 〉 ∧ items = 〈item!〉�items′

Complex operations can be constructed by using schema calculus, e.g., a new mes-
sage pushes out an old message, say Penguin, can be specified by using the sequential
composition schema operator ; as

Penguin =̂ Add; Delete

which is an (atomic) operation with the effect of an Add followed by a Delete. The
expanded form of Penguin is

Penguine
�Queue
item?, item! : MSG

∃ items′′ : seq MSG • items′′ = items�〈item?〉 ∧ items′′ 	= 〈 〉
∧items′′ = 〈item!〉�items′

Other forms of schema calculus include schema conjunction ‘∧’, disjunction ‘∨’,
implication ‘⇒’, negation ‘¬’ and pipe ‘�’, which has been discussed in many Z text
books.

The schema calculus expansions such as Penguine are useful for analysis, review
and reasoning about Z specifications. ZML should support all schema calculus expan-
sions automatically.

332 SUN ET AL.

2.2. Object-Z

Object-Z is an extension of the Z formal specification language to accommodate ob-
ject orientation. The main reason for this extension is to improve the clarity of large
specifications through enhanced structuring. The essential extension to Z in Object-Z
is the class construct which groups the definition of a state schema and the defini-
tions of its associated operations. A class is a template for objects of that class: for
each such object, its states are instances of the state schema of the class and its in-
dividual state transitions conform to individual operations of the class. An object
is said to be an instance of a class and to evolve according to the definitions of its
class.

Consider the following specification of the Queue system in Object-Z:

Queue

items : seq MSG

items � max

INIT

items = 〈 〉

Add
�(items)
item? : MSG

items′ = items�〈item?〉

Delete
�(items)
item! : MSG

items 	= 〈 〉 ∧ items = 〈item!〉�items′

Operation schemas have a �-list of those attributes whose values may change.
By convention, no �-list means no attribute changes value. The standard behavioural
interpretation of Object-Z objects is as transition systems [Smith 1995]. A behav-
iour of a transition system consists of a series of state transitions each effected by
one of the class operations. A Queue object starts with items empty then evolves
by successively performing either Add or Delete operations. Operations in Object-Z
are atomic, only one may occur at each transition, and there is no notion of time
or duration. It is difficult to use the standard Object-Z semantics to model a sys-
tem composed by multi-threaded component objects whose operations have dura-
tion.

2.3. TCOZ and inheritance

Timed CSP [Schneider and Davies 1995] has strong process control modeling capa-
bilities. The multi-threading and synchronization primitives of CSP are extended with
timing primitives. The approach taken in the Timed Communicating Object Z (TCOZ)
[Mahony and Dong 1998] is to identify Object-Z operation schemas (semantically) with

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 333

(terminating) CSP processes that perform only state update events; to identify active
classes1 [Dong and Mahony 1998] with non-terminating CSP processes (MAIN); and to
allow arbitrary (channel-based) communications interfaces between objects.

The syntactic implications of this approach are that the basic structure of a TCOZ
document is the same as for Object-Z. A document consists of a sequence of definitions,
including type and constant definitions in the usual Z style. TCOZ varies from Object-Z
in the structure of class definitions, which may include CSP channel and processes defin-
itions. Since operation schemas take on the syntactic role of CSP processes, they may be
combined with other schemas and even CSP processes using the standard CSP process
operators. Thus, it becomes possible to represent multi-threaded computation. TCOZ
is a superset of Object-Z and all Object-Z classes are treated as passive classes (without
MAIN operation) in TCOZ.

Inheritance is a mechanism for incremental specification, whereby new classes may
be derived from one or more existing classes. Active class can be defined by inher-
iting passive classes. For instance, an active Queue can be derived from the previous
(Object-Z) queue model as

ActiveQueue
Queue

Ti, Tj : T [durations for Join/Leave operations]
in, out : chan [channels for input and output]

Join =̂ [item : MSG | # items < max] • in?item → Add • DEADLINE Tj
Leave =̂ [items 	= 〈 〉] • out!head(items)→ Delete • DEADLINE Tl
MAIN =̂ µQ • Join � Leave; Q

where the expanded form of this active queue model is

ActiveQueuee

items : seq MSG
Ti, Tj : T; in, out : chan

items � max

INIT

items = 〈 〉

Add
�(items)
item? : MSG

items′ = items�〈item?〉

Delete
�(items)
item! : MSG

items 	= 〈 〉 ∧ items = 〈item!〉�items′

1 Objects of active classes have their own thread of control, while passive objects (of Object-Z classes) are
controlled by others.

334 SUN ET AL.

Join =̂ [item : MSG | # items < max] • in?item → Add • DEADLINE Tj
Leave =̂ [items 	= 〈 〉] • out!head(items)→ Delete • DEADLINE Tl
MAIN =̂ µQ • Join � Leave; Q

where real-time type T can be modelled by N if discrete or by R if continuous.
Essentially, all definitions are pooled with the following provisions. Inherited type

and constant definitions and those declared in the derived class are merged. The state
and initialization schemas of derived classes and those declared in the derived class are
conjoined. Operation schemas with the same name are also conjoined.

We believe the browsing facility is particularly useful to Object-Z/TCOZ since the
notations support cross references and various inheritance techniques for large speci-
fications. It is necessary to view a full expanded version of an inheriting class for the
purpose of reasoning/reviewing the class in isolation. It is desirable for ZML to auto-
matically support the inheritance zoom-in/out features.

2.4. Instantiation and composition

Let C be the name of a class. It denotes semantically a collection of objects of the
class. Objects may have object references as attributes, i.e. conceptually, an object may
have constituent objects. Such references may either be individually named or occur in
aggregates. For example, the declaration c : C declares c to be a reference to an object
of the class described by C. The term c.att denotes the value of attribute att of the object
referenced by c, and c.Op denotes the evolution of the object according to the definition
of Op in the class C. Both Object-Z and TCOZ support object composition, e.g., two
queues and two active-queues can be composed in Object-Z and TCOZ, respectively, as

TwoQueues

q1, q2 : Queue

Join =̂ q1.Add
Leave =̂ q2.Delete
Transfer =̂ q1.Delete ‖ q2.Add

TwoActiveQueues

q1 : ActiveQueue[talk/out]
q2 : ActiveQueue[talk/in]
MAIN =̂ q1 |[talk]| q2

The Object-Z parallel operator ‘‖’ used in the definition of Transfer (in TwoQueues)
achieves inter-object communication: the operator conjoins constraints and equates vari-
ables with the same name and also equates and hides any input variable to one of the
components of ‖ with any output from the other component that has the same base name
(i.e. the inputs and outputs are denoted by the same identifier apart from ? and ! decora-
tions).

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 335

The CSP parallel operator ‘|[talk]|’ used in the definition of MAIN (in TwoActive
Queues) captures the concurrent and synchronization behaviour of the two communicat-
ing active processes q1.MAIN and q2.MAIN.

The models of TwoQueues and TwoActiveQueues appear to have similar behaviour.
However, the behaviour of TwoQueues is purely sequential. For example, Join (q1.Add)
and Leave (q2.Delete) cannot concurrently operate or partially overlapping in durations
(even assuming duration of Object-Z operations can be explicitly modelled). This limi-
tation is overcome in the (TCOZ) TwoActiveQueues (since two active queues have their
own threads of control, only synchronizing through talk channel).

Object-Z/TCOZ models of complex systems may involve complex composition hier-
archies, it is useful to have hyper links for all defined types (particularly the class types)
automatically created in the design document – a clear requirement for ZML tool.

3. Formal design model of ZML

The construction of a formal design model for ZML must start with formalizing the re-
lated syntax definitions of Z family languages. The typing and dynamic semantics issues
are not related since ZML only concerns the syntax checks. Therefore, the static and dy-
namic semantics of Z family languages were deliberately left out in the following model.
Pure Z notation can be used as the meta notation for the formal design of ZML. How-
ever, Object-Z is superior because it can construct a more compact and reusable design
model. The Object-Z design model can be more easily extended when a new notation is
considered to be included in ZML. TCOZ is more suited for modeling timed/concurrent
interactive systems, and perhaps it is an overkill for designing ZML even though ZML
is computationally complex (when dealing with schema calculus and inheritance expan-
sions) but the interactive behaviour of ZML is simple.

3.1. Formal models of the Z family web environment

Firstly, the character sets are defined by a Z free type definition as

Char :: = ‘a’|‘b’| . . . |‘1’|‘2’| . . . |‘:’|‘/’|‘#’| . . .
The string type is defined as a sequence of characters:

String == seq Char

The URL type is defined as a string starting with “http : //”:

URL == {s : String | ∃ st : String • s = 〈‘h’, ‘t’, ‘t’, ‘p’, ‘:’, ‘/’, ‘/’〉 � st }
The given type Name contains all the valid identifiers, such as names of type,

schema, class and so on. It is assumed that only alphabets and ‘_’ can appear in an
identifier:

Name == {s : String | ran s ⊆ {‘a’, ‘b’, , . . . , ‘A’, ‘B’, . . . , ‘_’}}

336 SUN ET AL.

Type declaration contains either a given type or a combination of constructors and
types such as A×B. The constructors include binary constructors i.e. ‘ → ’, ‘ -→ ’ and
unary constructors i.e. ‘P’, ‘F’.

TypeConst == {s : String | #s = 1 ∧ ran s ⊆ {‘P’, ‘F’, ‘P1’, ‘ × ’, ‘ → ’, ‘ -→ ’, . . .}}
Syntactically, a type constructor, a type and a predicate constructor are similar,

which are modelled as

TypeConstructor

content : TypeConst

Type

name : Name

PredConstructor

content : String

A declaration type Dtype is a sequence of class-union of type constructors and
defined types. A predicate is similarly modeled.

Dtype == seq(TypeConstructor ∪ ↓ Type)

Predicate == seq(PredConstructor ∪ ↓ Type)

where ↓ Type denotes a union of all classes defined by inheriting Type.
Type definition Typedef is for defining user given types such as simple type, abbre-

viation and free types. Axiom definition Axiomdef is used to define global constants or
functions such as liberal, generic and unique functions:

Typedef
Type

defs : Dtype

Axiomdef
Type

decpart : Name → Dtype
axpart : P Predicate

The declaration part decpart is a set of pairs, where the first element of a pair is a
variable name and the second is the variable’s type declaration. Note that the function
is used here to indicate that one variable can only have one type declaration. The axiom
part axpart consists a set of predicates, which states the properties of a particular schema.

There are three kinds of inclusions in Z: a direct (inc) form, a � (del) form and a
� (xi) form:

Inclusion == {‘inc’, ‘xi’, ‘del’} -→ P Name

Z language has two types of schema definitions: schema box (1) and schema cal-
culus (2):

Schemadef =̂ Schemadef 1 ∪ Schemadef 2

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 337

The schema box format is defined as

Schemadef 1
Type

incl : Inclusion
decpart : Name → Dtype
axpart : P Predicate

For the second format Schemadef 2, a type CalcOp is introduced to model all
the possible calculus operators, and the class CalcConstructor is for defining a single
schema calculus. A PredCalc can be either a Type or a CalcConstructor:

CalcOp == {s : String | #s = 1 ∧ ran s ⊆ {‘ ∧ ’, ‘ ∨ ’, ‘◦9 ’, ‘ � ’, ‘¬’, . . .}}
PredCalc == CalcConstructor ∪ ↓ Type

CalcConstructor

op : CalcOp
items : P PredCalc

Schemadef 2
Type

calc : PredCalc

Object-Z language is mainly composed of class definitions. Firstly, we model state,
initial and operation schemas as follows:

Statedef

decpart : Name → Dtype
axpart : P Predicate

Initdef

axpart : P Predicate

Opdef
Statedef

name : Name
delta : P Name

An Object-Z class is modeled as

Classdef
Type

inherit : Type -→ (Name → Name) [inherit classes with rename list]
state : Statedef [state schema]
init : Initdef [initial schema]
ops : P Opdef [operation schemas]

A ZDefinition is either a Typedef , Axiomdef , Schemadef or Classdef :

ZDefinition =̂ Typedef ∪ Axiomdef ∪ Schemadef ∪ Classdef

338 SUN ET AL.

The Z family web browsing environment is modelled as

WebBE

zspec : P ZDefinition [a specification]
mainpage : URL [the main URL address]
currpage : URL [the current page URL address]
expandpos : Name -→ B [all expansible positions]

INIT

currpage = mainpage
dom expandpos = {c : Classdef ∩ zspec | c.inherit 	= ∅ • c.name}

∪{s1 : Schemadef1 ∩ zspec | s1.incl 	= ∅ • s1.name}
∪{s2 : Schemadef 2 ∩ zspec • s2.name}

ran expandpos = { false}

Clicklink
�(currpage)
l? : Name

l? ∈ {s : zspec • s.name}
currpage′ = mainpage�〈‘#’〉�l?

Clickexpand
�(zspec)
e? : Name

e? ∈ dom expandpos
∃1 def : (Classdef ∪ Schemadef) • def .name = e?∧

¬ expandpos(e?)⇒ zspec′ = zspec − {def } ∪ {expand(def)})
expandpos(e?)⇒ zspec′ = zspec − {def } ∪ {expand−1(def)})

expandpos′ = expandpos ⊕ {(e?,¬ expandpos(e?))}

As for the expansion purpose we introduced an attribute expandpos which stores
the names of inherited classes and schemas defined by inclusion/schema-calculus. There
are two major operations for clicking on either type links or on the expansible positions.
The Clicklink operation changes the current context to its corresponding type declaration
context. The operation Clickexpand changes the status of the expansion mode and the
content of the specification definitions.

The expand function is defined to handle all the class inheritance, schema inclusion
and schema calculus expansions:

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 339

expand : (Classdef ∪ Schemadef) � (Classdef ∪ Schemadef)

∀ def : (Classdef ∪ Schemadef) •
def ∈ Classdef ⇒ expand(def) = expandc(def)
def ∈ Schemadef 1 ⇒ expand(def) = expandz1(def)
def ∈ Schemadef 2 ⇒ expand(def) = expandz2(def)

where expandc, expandz1, expandz2 and other auxiliary functions are defined in the Ap-
pendix.

3.2. Formal model of the projection facilities

An UML class consists of a class name, a set of attributes and a set of operation names:

UMLClass

name : String
attris : String → Dtype
ops : P String

An UML diagram UMLDiagram is a collection of UML classes and together with
their relationships to each other such as inheritance and aggregation:

UMLDiagram

classes : P UMLClass
inh, agg : UMLClass ↔ UMLClass

dom(inh ∪ agg) ∪ ran(inh ∪ agg) ⊆ classes
∀ h : classes • (h, h) /∈ inh+

A function project models the transformation from an Object-Z specification to a
UML class diagram:

project : P Classdef → UMLDiagram

∀ (oz, uml) : project •
{c : oz • c.name} = {c : uml.classes • c.name} •
∀ c1, c2 : oz •

∃1 c
′ : uml.classes •
c′.name = c1.name
c′.attris = {cls : oz • cls.name} –� c1.state.decpart
c′.ops = {o : Opdef | o ∈ c1.ops • o.name}

340 SUN ET AL.

c2.name ∈ {t : ran c1.state.decpart • t.name} ⇒
∃1 (c

′
1, c

′
2) : uml.agg • c′1.name = c1.name ∧ c′2.name = c2.name

c2.name ∈ {inh : dom c1.inherit • inh.name} ⇒
∃1 (c

′
1, c

′
2) : uml.inh • c′1.name = c1.name ∧ c′2.name = c2.name

Note that our projection function from Object-Z/TCOZ specifications to UML di-
agrams focuses on UML class diagrams at the current stage. The projection to UML be-
haviour diagrams such as statecharts may not be uniquely determined given an Object-Z/
TCOZ specification. We will discuss about the projection to statechart diagrams further
in section 6.

4. Main implementation issues and related background

Formal method like CafeOBJ system [Futatsugi and Nakagawa 1997] has included an
environment supporting formal specifications over networks. Pure Z notation on the
web based on HTML and Java applet has also been investigated by Bowen and Chip-
pington [1998] and Ciancarini, Mascolo and Vitali [1998]. HTML has been successful
in presenting information on the Internet, however, the lack of content information and
overburdened of all kinds of tags have made the retrieval and exchange of resource to
become more and more difficult to perform.

Our work uses the latest technology of XML and XSL for displaying and trans-
forming Z family notations on the web. The users only need to follow the defined syntax
in writing the XML document, the layout part is user transparent. Our XML format is
inspired by the work (Java Applet) of Ciancarini et al. [1998], however, we use dif-
ferent technology XML/XSL. The developed XML/XSL web environment covers not
only the pure Z notation but also Object-Z and TCOZ with various type referencing and
expansion facilities. Furthermore, the projection tools from Object-Z to UML are built
into our system. The conceptual projection techniques are derived from our research on
linking UML with Object-Z [Liu et al. 2000], which are similar to the translation rules
developed by Kim and Carrington [2000]. The difference is that we are working on the
projection from Object-Z/TCOZ to UML where Kim and Carrington focus on translat-
ing UML to a partial Object-Z specification (a different direction from ours). We share
similar goals (of visualizing Object-Z) with the work of [Wafula and Swatman 1995].
Other work (e.g., [Evans and Clark 1998]) on linking Z and UML mainly concentrates
on using Z to define the semantics for UML class diagrams.

The reason that we chose XML rather than MathML is due to its extensibility.
Though MathML is rich in writing mathematical expressions, the document structure
is not suitable for authoring formal specification languages such as Z/Object-Z/TCOZ.
For example, the Z schema box is more difficult to be constructed in MathML. Further-
more, MathML usually consists of heavy load of defined tags, which is unbearable for
the authors whose focus is on the abstraction of the model rather than the structure of the
expressions themselves. In addition, we want to construct a web environment as close as

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 341

Figure 1. ZML overview diagram.

possible to the LATEX style files for Z/Object-Z (fuzz.sty, oz.sty and coz.sty) so that a sim-
ple translation tool can be developed to map existing Z/Object-Z/TCOZ specifications
in LATEX to our web ZML format.

The main process and techniques for ZML are depicted by figure 1. In the fol-
lowing sections, we use the queue example to facilitate the detailed discussion of our
implementation approaches.

The formal model defined in section 3 is acted as a precise design reference doc-
ument and provides clear guidelines to our XML/XSL implementations. For example,
the ZML syntax structure is derived from the model; the XSL codes for implementing in-
heritance and schema calculus expansions in section 5 is based on the expand function
defined in section 3.1 and the appendix; the XSLT codes for projecting Object-Z to UML
in section 6 is based on the project function defined in section 3.2.

5. Web environment for Z family

5.1. Syntax definition and usage

Firstly, a customized XML document for Object-Z is defined according to its syntax
formal definitions. This document is used for checking the syntax validity of the user
input specifications in XML. The World Wide Web Consortium (W3C) has provided

342 SUN ET AL.

two mechanisms for describing XML structures: Document Type Definition (DTD) and
XML Schema. The former is originated from SGML Recommendation and used a to-
tally different syntax. XML Schema is a kind of XML file itself and is going to play
the role of DTD in defining customized XML structure in the future. It is consistent
with XML syntax and easy to write over DTD. We use XML Schema to define our ZML
structure syntax for the Z family notations. Part of the XML Schema (for defining a class
and its operation schema) is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
...
<ElementType name="op" content="eltOnly" order="seq">

<element type="name" minOccurs="1" maxOccurs="1"/>
<element type="delta" minOccurs="0" maxOccurs="1"/>
<element type="decl" minOccurs="0" maxOccurs="*"/>
<element type="st" minOccurs="0" maxOccurs="1"/>
<element type="predicate" minOccurs="0" maxOccurs="*"/>
<AttributeType name="layout" dt:type="enumeration" dt:values="simpl calc"

default="simpl"/>
<attribute type="layout"/>

</ElementType>
<ElementType name="classdef" content="eltOnly">

...
<element type="op" minOccurs="0" maxOccurs="*"/>
...

</ElementType>
...
</Schema>

It states that the op tag is an element of classdef and consists of one name, a
� − delta list, a number of declarations decl, an horizontal line st and some predicate
definitions. An attribute layout is defined to distinguish between vertical layout schemas
simpl and horizontal layout schemas calc.

Z family languages consist of a rich set of mathematical symbols. Those symbols
can be presented directly in Unicode that is supported by XML. We have defined all
entities in the DTD so that users do not have to memorize all the Unicode numbers
when authoring their ZML documents. Part of the entity declaration DTD is defined as
follows:

<?xml version="1.0" encoding="UTF-8"?>
...
<!ENTITY emptyset "∅">
<!ENTITY mem "∈">
<!ENTITY pset "ℙ">
...

As most existing Z specifications were constructed in LATEX, translating them to
our format can be a trivial task due to that each entity is given a Z LATEX compatible
name. DTD is chosen to define our entity declaration because XML Schema does not
support entity declaration at the moment. When authoring ZML files, the user simply
declares the name space of the XML schema and Entity DTD file as follows:

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 343

<?xml version="1.0" encoding="UTF-8"?>
...
<!DOCTYPE unicode SYSTEM
"http://nt-appn.comp.nus.edu.sg/fm/zml/unicode.dtd">
<objectZnotation xmlns="x-schema:

http://nt-appn.comp.nus.edu.sg/fm/zml/objectZschema.xml"
xmlns:HTML="http://www.w3.org/Profiles/XHTML-transitional">

...
</objectZnotation>

With the above namespace links, the XML editing tools can check the validity of
the file via XML Schema definition and the DTD entity declarations. Any unspecified
structures and entity symbols would be reported as a syntax error. The following is the
Web browsing environment for the Queue class (of the queue specification example) in
our ZML format:

<classdef layout="simpl" align="left">
<name>Queue</name>
<state>

<decl>
<name>items</name>
<dtype>&seq; <type>MSG</type></dtype>

</decl>
<st/>
<predicate># items ≤ max</predicate>

</state>
<init>

<predicate>items=&emptyseq;</predicate>
</init>
<op layout="simpl">

<name>Add</name>
<delta>items</delta>
<decl>
<name>item?</name>
<dtype><type>MSG</type></dtype>

</decl>
<st/>
<predicate>items’=items &cat; &lseq;item?&rseq;</predicate>

</op>
<op layout="simpl">

<name>Delete</name>
...

</op>
</classdef>

5.2. XSL transformation

With a valid XML file in hand, the next step is to transform the XML file into HTML
format and display it on the web. XSL is a stylesheet language to describe rules for
matching and transforming XML documents. A XSL file is a XML document itself and
it can perform the transformation between XML to HTML, XML to XML, XSL to XSL
and so on. This kind of transformation can be done on the server side or the client side.
Since Internet Explorer 5 (IE5) has already supported XSL technology, the current ZML
environment is based on client side (browser) transformation (server side transformation

344 SUN ET AL.

will be discussed later). A partial XSL stylesheet segment for displaying operation op
and class definition classdef are defined as below:

<xsl:template match="op[@layout=’simpl’]">
<html>

<tr>
...
<td height="24" valign="middle" align="left" nowrap="true">
<i><xsl:value-of select="name"/></i>
...

</td>
...

</tr>
<xsl:for-each select="delta | decl">

<xsl:apply-templates select="."/>
</xsl:for-each>
<xsl:apply-templates select="st"/>
<xsl:for-each select="predicate">

<xsl:apply-templates select="."/>
</xsl:for-each>
...

</html>
</xsl:template>

<xsl:template match="classdef[@layout=’simpl’] | classdef[@layout=’gen’]">
<html>

...
<a><xsl:attribute name="name"><xsl:value-of select="name"/>

</xsl:attribute>
...
<xsl:apply-templates select="state"/>
<xsl:apply-templates select="init"/>
<xsl:apply-templates select="op"/>
...

</html>
</xsl:template>

XSL stylesheet defines match method for each customized tag in the XML structure
and describes the corresponding HTML codes. From the example above, in matching
the ‘op’ tag the XSL will display the operation name, �-list, declaration and predicates
accordingly; in matching the ‘classdef’ tag the XSL will first convert the class name
into a HTML bookmark for the type reference usage and then apply the templates of
drawing state schema, initiation schema, operations and so on. To apply a template in
XSL is similar to make a function call in programming language, and each template will
perform its own transformation. When authoring Z family specifications in our ZML
format, the users only need to construct their ZML files and add an URL to the defined
XSL stylesheet location as follows:

<?xml version="1.0" encoding="UTF-8"?> <?xml-stylesheet
type="text/xsl"
href="http://nt-appn.comp.nus.edu.sg/fm/zml/objectzed.xsl"?>

With this link, the browser (IE5) will automatically transform ZML document into
desired HTML outputs. This process is totally user transparent and much faster than

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 345

Figure 2. Queue specification on web.

the Java Applet approaches [Bowen and Chippington 1998; Ciancarini et al. 1998]. For
example, the Queue and ActiveQueue classes in ZML format specified previously
is transformed into HTML as in figure 2.

A full demonstration of the Queue specification example is available at http://
nt-appn.comp.nus.edu.sg/fm/zml/xml-web/queue.xml

5.3. Extensive browsing facilities

This section discusses the extensive browsing facilities for type reference, class inheri-
tance expansion and schema calculus expansion.

5.3.1. Type referencing
When building a large formal model, which could include large numbers of type defi-
nitions, users often want to recall the definition of a particular type. Type referencing
allows the user to browse back to actual type definition.

This functionality is achieved in two steps. Firstly when a type definition node in
XML is transferred to HTML, its name is converted into a HTML bookmark. Secondly,
when the user needs to reference a type in a declaration or predicate, a hyper link that
point to the defined bookmark was created. The XSL template for the type node is shown
as follows:

<xsl:template match="type">
<xsl:choose>

<xsl:when test="//classdef[any name=context(-1)] |
//tydef[any name=context(-1)] |
//schemadef[any name=context(-1)]">

<a>
<xsl:attribute name="href">#<xsl:value-of/>

</xsl:attribute><xsl:value-of/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of/>

</xsl:otherwise>

346 SUN ET AL.

</xsl:choose>
</xsl:template>

5.3.2. Class inheritance and schema calculus expansions
The aim of class inheritance expansion is to allow user to view the full definition of a
derived class. In the ActiveQueue class case (in the right-hand side of figure 2), when a
user clicks the button ‘+’, the full definition of class of “ActiveQueue” will be shown.
This implementation is based on the inheritance expansion rules defined in the expandc
function of appendix. Clicking button ‘−’ is for going back to the unexpanded ver-
sion.

The core part of the expansion techniques uses the match facilities provided by
XSL to find the corresponding definitions in the parent class and merge them in the
derived class. Part of the XSL for merging the declarations in the state schema of a class
is as follows:

<xsl:for-each select="//classdef[name=context(-1)/inherit/type]/state/decl">
...
</xsl:for-each>
<xsl:for-each select="state/decl">
...
</xsl:for-each>
...

As we can see from above, the select constraint will restrict a search through the
entire ZML document for a match of same named class definition corresponding to the
name in the inherit list. And then the state declaration of super class is merged with
the current class. Thus, the whole definition of state declarations in the derived class is
constructed. In addition, DHTML and JavaScript are used to control the visibility of the
two versions of class definitions.

Schema inclusion and schema calculus expansions are similar to class inheritance
expansion and can be constructed using the same mechanism.

5.4. Server side transformation

As mentioned in section 5.2 the current ZML web environment is based on client
(browser) side transformation. It is not compatible for browsers that do not support
XSL technology presently such as Netscape. To make our ZML data available to all
kinds of browsers, we can perform the transform on the server side and sent back pure
HTML to the browsers. The following Active Server Pages (ASP) code for transforming
the XML file to HTML on the server side can achieve this:

<%
’Load the XML
set xml = Server.CreateObject("Microsoft.XMLDOM")
xml.async = false
xml.load(Server.MapPath("queue.xml"))
’Load the XSL
set xsl = Server.CreateObject("Microsoft.XMLDOM")
xsl.async = false

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 347

xsl.load(Server.MapPath("objectzednewnt.xsl"))
’Transform the file
Response.Write(xml.transformNode(xsl))

%>

The first block of the code creates an instance of the Microsoft XML parser
(XMLDOM), and loads the XML file into memory. The second block of code cre-
ates another instance of the parser and loads the XSL document into memory. The last
line of code transforms the ZML document via the XSL document, and returns the result
HTML to the browser.

The next section is focused on projecting Object-Z/TCOZ models (in XML) to
UML diagrams (in XMI).

6. UML photos

UML can be used to visualize the Object-Z/TCOZ models. The textual specifications of
UML models are in XMI format. Based on XSL Transformations (XSLT) [(W3C) 1999]
technology, we define an XSL file to capture all translation rules from Object-Z/TCOZ
(in XML) to UML (in XMI). XT [Clark 1999] is chosen as the XSLT processor and
Rational Rose 2000 is used as the UML tool. By now we have fully implemented the
visualization of UML class diagrams (including reverse transformation) and are looking
into other dynamic UML diagrams, i.e. statecharts. In our approach, all elements from
the static view, such as attributes, operations, classes and their relationships (inheritance
and aggregation) can be successfully captured through the transformation process.

The XML file for formal specifications and the XMI file for UML diagrams have
similar structures (an observation from their formal models defined in section 3). An
XMI file has the structure as follows:

<XMI xmi.version="1.0">
<XMI.header>
<XMI.content>
<XMI.extensions>

</XMI>

The XMI.header section includes some optional information about UML model.
Elements in UML diagrams, such as classes in class diagrams and states in the stat-
echarts, are specified in the XMI.content section, while their layout, colors and other
displaying properties are specified in the XMI.extensions section.

The XSL file used in this section is the implementation of the transformation rules
(abstractly defined in formal models, the project function, in section 3.2) and the file is
consistent with UML.DTD. The template technology plays a key role in implementing
the translation rules. Consider the implementation issues and the translation rules based
on the formal model, the following guidelines are formed:

• Each class in Object-Z/TCOZ XML models corresponds to a class in UML XMI
models. They have the same name, attributes and operations.

348 SUN ET AL.

• If a type value in the Inherit part of a class matches the name of any other class in the
current ZML file, we regard that former class inherits the second one and illustrate
the inheritance relationship between these two classes in the UML class diagram. In
the case of spelling mistakes or missing reference of the Inherit type, we ignore the
relationship.

• If a type value in the decl part, that is, the type of an attribute, matches the name of
any class in current ZML file, this is regarded as aggregation relationship between
these two classes. The cardinality of the aggregation will be calculated and classified
into UML aggregation ranges.

Due to the space limitation (XMI files for UML models are normally very large and
complex with all details about property specifications), only the sketch of a simplified
XMI unit – class Queue – is given as an example in the paper:

<Foundation.Core.Class xmi.id = ’ S.10001 ’>
<name> Queue </name>
<namespace>

<xmi.idref = ’G.1’/>
</namespace>
<GeneralizableElement.specialization>

<xmi.idref = ’ G.13 ’/>
<!-- { ActiveQueue -> Queue }-->

</GeneralizableElement.specialization>
<Classifier.feature>

<Attribute xmi.id = ’ S.10002 ’>
<name> items </name>
<multiplicity>1..1</multiplicity>
<DataType xmi.idref = ’ G.11 ’/>

<!-- seq MSG -->
</Attribute>
<Operation xmi.id = ’ S.10003 ’>

<name>Init</name>
</Operation>
<Operation xmi.id = ’ S.10004 ’>

<name> Add </name>
</Operation>
<Operation xmi.id = ’ S.10005 ’>

<name> Delete </name>
</Operation>

</Classifier.feature>
</Foundation.Core.Class>

The projection rules for translating formal model to UML class diagrams are trivial.
As in figure 3, the UML class diagram depicts the static view of the four graph classes
constructed from the previous sections. Note that this diagram was generated automat-
ically from the XML model via our XSL transformation. All attributes and operations
match their definitions in the formal model. Now we demonstrate how the relationships
between classes are captured during the transformation.

The relationship between ActiveQueue and Queue is Inheritence. This relationship
in XMI segment is as follows (simplified):

<Foundation.Core.Generalization xmi.id = ’ G.13 ’>
<name/>

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 349

Figure 3. Generated class diagram.

<Generalization.subtype>
<Class xmi.idref = ’ S.10006 ’/>

<!-- ActiveQueue -->
</Generalization.subtype>
<Generalization.supertype>

<Class xmi.idref = ’ S.10001 ’/>
<!-- Queue -->

</Generalization.supertype>
</Foundation.Core.Generalization>

The relationship between TwoQueues and Queue is Aggregation. The aggregation
relationship is illustrated in the following XMI segment (simplified):

<Association xmi.id=’G.2’>
<name />
<connection>

<AssociationEnd xmi.id=’G.3’>
<name />
<multiplicity>1</multiplicity>
<type>

<xmi.idref=’S.10011’/>
<!-- TwoQueues -->

</type>
</AssociationEnd>
<AssociationEnd xmi.id="G.4">

<name />
<multiplicity>1..*</multiplicity>
<type>

<xmi.idref="S.10001" />
<!-- Queue -->

</type>
</AssociationEnd>

</connection>
</Association>

350 SUN ET AL.

Figure 4. ActiveQueue statechart diagram.

Currently we are investigating the dynamic view transformation. The basic seman-
tic links between TCOZ class and UML statecharts are:

• TCOZ operation names are corresponding to UML statechart states.

• TCOZ events and guards are corresponding to the triggers of the UML state transi-
tions.

Based on these semantic links, a statechart diagram for the class ActiveQueue may
be constructed as in figure 4.

Brief structures of a SimpleState Join and a transition (from Main to Join) in the
statechart in XMI are:

<State_Machines.SimpleState xmi.id="G.21">
<name>Join</name>

</State_Machines.SimpleState>
<State_Machines.Transition xmi.id="G.24">

<name />
<source>

<SimpleState xmi.idref="G.22" />
<!-- Main -->

</source>
<target>

<SimpleState xmi.idref="G.23" />
<!-- Join -->

</target>
<trigger>

<SignalEvent xmi.idref="G.28" />
<!-- in?item -->

</trigger>
<guard>

<Guard xmi.id = ’G.30’ />
<expression>

#items < max
</expression>

</guard>
</State_Machines.Transition>

The documentation about Object-Z/TCOZ to UML transformation and down-
loadable codes are available at http://nt-appn.comp.nus.edu.sg/fm/zml/
xmi-uml/xmi.htm

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 351

7. Conclusions

The first contribution of this paper is the demonstration of the XML/XSL approach to the
development of a web environment for Z family languages. The ZML web environment
includes the auto type referencing and browsing facilities such as the Z schema calculus
and Object-Z/TCOZ inheritance expansions. Our ideas for putting Z family (Z/Object-Z/
TCOZ) on the Web can be easily adopted by other formal specification notations, such as
VDM and VDM++. In fact, since TCOZ includes most Timed CSP constructs, its web
environment can be used for process algebra (CSP/Timed-CSP) specifications. Perhaps
this may create a new culture for constructing formal specifications on the web in XML
rather than in LATEX. We hope it can be the starting point for developing a standard
XML environment for all formal notations (including integrated formal notations, i.e.
RAISE [Nielsen et al. 1989], SOFL [Liu et al. 1998] etc.) – Formal specification Markup
Language (FML). This may also make an impact on formal methods education through
the web.

The second contribution of this work is the investigation of the semantic links and
web transformation environment (XSLT) between Object-Z/TCOZ (in XML) with UML
diagrams (in XMI). Although we have some ideas on Object-Z behaviour projections
to statecharts, the development of the Web environment for systematic transformation
from Object-Z/TCOZ to statechart/collaboration diagrams remains a challenge. The
engineering work for developing further techniques and putting these techniques into
commercial case tools perhaps requires involvement from industry partners. We are
currently in contact with various UML tools vendors.

The third contribution of this paper is the demonstration of a formal design ap-
proach to modeling web applications. Object-Z has been used to specify and design the
essential functionalities of ZML (the Z family web environment and UML projections).
We have found that the formal model is acted as a precise design document and has also
provided clear guidelines to the XML/XSL implementations.

Since we have constructed a web XSL environment as close as possible to the LATEX
style files for Z/Object-Z (fuzz.sty and oz.sty), one immediate future work is to develop
a translation tool to map existing Z/Object-Z specifications in LATEX to the ZML format.
Perhaps a reverse tool is also necessary as long as LATEX is not totally replaced by XML
technology.

Acknowledgements

This work is supported by the academic research grants, Integrated Formal Methods
(R-252-000-050-107) and Adding Formality to UML (R-252-000-076-112) from Na-
tional University of Singapore.

We would also like to thank the numerous anonymous referees who have reviewed
the manuscript and whose valuable comments have contributed to the clarification of
many of the ideas presented in the paper.

352 SUN ET AL.

Appendix. Auxiliary functions of ZML formal models

The following auxiliary functions capture the semantics of schema calculus and class
inheritance expansions.

The expandc function expands a class definition according to its inheritance list,
and outputs the expanded version:

expandc : Classdef � Classdef

∀ c : Classdef •
c.inherit = ∅ ⇒ expandc(c) = c

c.inherit 	= ∅ ⇒
expandc(c).name = c.name
expandc(c).inherit = ∅

expandc(c).state.decpart = ⋃{c0 : classdef , t : Type | c0.name = t.name
∧ t ∈ dom c.inherit • expandc(rename(c0, c.inherit(t))).state.decpart}
∪ c.state.decpart

expandc(c).state.axpart = ⋃{c0 : classdef , t : Type | c0.name = t.name
∧ t ∈ dom c.inherit • expandc(rename(c0, c.inherit(t))).state.axpart}
∪ c.state.axpart

expandc(c).init.axpart = ⋃{c0 : classdef , t : Type | c0.name = t.name
∧ t ∈ dom c.inherit • expandc(rename(c0, c.inherit(t))).init.axpart}
∪ c.init.axpart

expandc(c).ops = {opers : classify(
⋃{c0 : classdef , t : Type | c0.name

= t.name ∧ t ∈ dom c.inherit • expandc(rename(c0, c.inherit(t))).ops}
∪ c.ops) • merge(opers)}

The function rename captures the class renaming facilities. Given a class and a
renaming list, the function returns the renamed class:

rename : (Classdef × (Name → Name))→ Classdef

∀ c : Classdef ; l : Name → Name •
dom l ∈ (dom c.state.decpart ∪ {op : c.ops • op.name})⇒

l = ∅ ⇒ rename(c, l) = c

l 	= ∅ ⇒
rename(c, l).name = c.name
rename(c, l).inherit = {i : c.inherit • (fst(i),

{(a, b) : snd(i) • (a,match1(b, l))})}
rename(c, l).state.decpart = {(na, dt) : c.state.decpart •

(match1(na, l), dt)}
rename(c, l).state.axpart = {p : c.state.axpart

• {(n, pred) : p • (n,match2(pred, l))}}

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 353

rename(c, l).init.axpart = {p : c.init.axpart
• {(n, pred) : p • (n,match2(pred, l))}}

rename(c, l).ops = {op2 : Opdef | op1 : c.ops •
op2.name = match1(op1.name, l)
op2.detla = {d : op1.delta • match1(d, l)}
op2.axpart = {p : op1.axpart • {(n, pred) : p
• (n,match2(pred, l))}}

The match1,match2 function is used to find the corresponding item in an item list.
Note that if an item is not in the given list it returns itself:

match1 : (Name × (Name → Name))→ Name

∀ old : Name; l : Name → Name •
old ∈ dom l ⇒ match1(old, l) = l(old)
old /∈ dom l ⇒ match1(old, l) = old

match2 : ((PredConstructor ∪ ↓ Type)× (Name → Name))
→ (PredConstructor ∪ ↓ Type)

∀ old : (PredConstructor ∪ ↓ Type); l : Name → Name •
old ∈ PredConstructor ⇒

old.content ∈ dom l ⇒ match2(old, l).content
= l(old.content)

old.content /∈ dom l ⇒ match2(old, l).content
= old.content

old ∈ ↓ Type ⇒
match2(old, l) = old

Function classify takes in a set of operation definition and divides them into subsets,
which within each subset the name of the operation is the same:

classify : P Opdef → P(P Opdef)

∀ (s, ss) : classify • s = ⋃
ss ∧

∀ops : ss • ∀op1, op2 : ops • op1.name = op2.name

The function merge merges a set of same named operations into only single oper-
ation definition:

merge : P Opdef → Opdef

∀ ops : P Opdef •
merge(ops).name ∈ {op : ops • op.name}
merge(ops).delta = ⋃{op : ops • op.delta}
merge(ops).decpart = ⋃{op : ops • op.decpart}
merge(ops).axpart = ⋃{op : ops • op.axpart}

354 SUN ET AL.

The expandz1 function expands a schema box definition according to the inclusion
of other schemas, and outputs the expanded schema:

expandz1 : Schemadef 1 � Schemadef 1

∀ s : Schemadef •
s.incl = ∅ ⇒ expand(s) = s

s.incl 	= ∅ ⇒
expandz1(s).name = s.name
expandz1(s).incl = ∅

expandz1(s).decpart = ⋃{namei : s.incl(‘inc’); s1 : Schemadef 1 |
s1.name = namei • s1.decpart} ∪ ⋃{namexd : (s.incl(‘xi’)∪
s.incl(‘del’)); s1 : Schemadef 1 | s1.name = namexd • s1.decpart∪
{(na, dt) : s1.decpart • (na�〈‘′’〉, dt)}} ∪ s.decpart

expandz1(s).axpart = ⋃{namei : s.incl(‘inc’); s1 : Schemadef 1 |
s1.name = namei • s1.axpart} ∪ ⋃{namex : s.incl(‘xi’); s1 :
Schemadef 1 | s1.name = namex • s1.axpart ∪ {p : s1.axpart •
{(n, pred) : p • (n,match2(pred))}} ∪ predxi(findlist(s1))}∪⋃{named : s.incl(‘del’); s1 : Schemadef 1 | s1.name = named •
s1.axpart ∪ {p : s1.axpart • {(n, pred) : p • (n,match2(pred))}}}
∪s.axpart

The findlist function is used to find the pre-state and post-state for a schema box
definition:

findlist : Schemadef 1 → (Name → Name)

∀ s : Schemadef 1 • findlist(s) = {decl : s.decpart • (fst(decl), fst(decl)�〈‘′’〉)}
The predxi function is used to get the inexplicit predicates for xi schema, that is its

post-state unchanged:

predxi : (Name → Name)→ (P Pred)

∀ l : dom predxi • (∃ post, pre, eq : PredConstructor • post.content = snd(l) ∧
eq.content = 〈‘=’〉 ∧ pre.content = fst(l) ∧ predxi(l) = post�eq�pre)

The expandz2 function expands a schema calculus definition, outputs the definition
with schema box format:

expandz2 : Schemadef 2 � Schemadef 1

∀ s : Schemadef 2 •
expand2(s).name = s.name [Name]
expand2(s).incl = formIncl(s.calc) [Incl]
expand2(s).decpart = formDecpart(s.calc) [Decpart]
expand2(s).axpart = {formAxpart(s.calc)} [Axpart]

A FORMAL OBJECT APPROACH TO THE DESIGN OF ZML 355

Some auxiliary functions for the expansion of schema calculus are defined as fol-
lows. formIncl, formDepart, formAxpart functions will generate the inclusion, type dec-
laration and predicate part of the schema box correspondingly:

formIncl : PredCalc → Inclusion

∀ p : PredCalc •
(p ∈ ↓ Type)⇒

formIncl(p) = {∃1 s1 : Schemadef 1 | s1.name = p.name • s1.incl}
(p ∈ CalcConstructor)⇒

formIncl(p) = ⋃{pi : p.items • formIncl(pi)}

formDecpart : PredCalc → Decpart

∀ p : PredCalc •
(p ∈ ↓ Type)⇒

formDecpart(p) = {∃1 s1 : Schemadef 1 | s1.name = p.name • s1.decpart}
(p ∈ CalcConstructor)⇒

formDecpart(p) = ⋃{pi : p.items • formDecpart(pi)}

formAxpart : PredCalc → Pred

∀ p : PredCalc •
(p ∈ ↓ Type ⇒

∃1 s1 : Schemadef 1 • s1.name = p.name ∧
formAxpart(p) = tail(�/{prd : s1.axpart; op : PredConstructor |
op.content = 〈‘ ∧ ’〉 • op�prd}))

(p ∈ CalcConstructor ⇒
formAxpart(p) = tail(�/{pi : p.items; op, op1, op2 : PredConstructor |
op.content = p.op ∧ op1.content = 〈‘(’〉 ∧ op2.content = 〈‘)’〉 •
op�op1

�formAxpart(pi)�op2}))

References

Bowen, J.P. and D. Chippington (1998), “Z on the Web using Java,” In ZUM’98: The Z Formal Specification
Notation, 11th International Conference of Z Users, J.P. Bowen, A. Fett, and M.G. Hinchey, Eds.,
Lecture Notes in Computer Science, Vol. 1493, Springer-Verlag, Berlin, pp. 66–80.

Ciancarini, P., C. Mascolo, and F. Vitali (1998), “Visualizing Z Notation in HTML Documents,” In
ZUM’98: The Z Formal Specification Notation, 11th International Conference of Z Users, J.P. Bowen,
A. Fett, and M.G. Hinchey, Eds., Lecture Notes in Computer Science, Vol. 1493, Springer-Verlag,
Berlin, pp. 81–95.

Clark, J. (1999), “XT Version 19991105,” http://www.jclark.com/xml/xt.html
Dong, J.S. and B. Mahony (1998), “Active Objects in TCOZ,” In The 2nd IEEE International Conference

on Formal Engineering Methods (ICFEM’98), J. Staples, M. Hinchey, and S. Liu, Eds., IEEE Computer
Society Press, pp. 16–25.

356 SUN ET AL.

Duke, R. and G. Rose (2000), Formal Object Oriented Specification Using Object-Z, Cornerstones of Com-
puting, Macmillan.

Evans, A.S. and A.N. Clark (1998), “Foundations of the Unified Modeling Language,” In BCS-FACS North-
ern Formal Methods Workshop, D.J. Duke and A.S. Evans, Eds., Electronic Workshops in Computing,
Springer Verlag.

Futatsugi, K. and A. Nakagawa (1997), “An Overview of CAFE Specification Environment,” In The IEEE
International Conference on Formal Engineering Methods (ICFEM’97), M. Hinchey and S. Liu, Eds.,
IEEE Computer Society Press, Hiroshima, Japan, pp. 170–181.

Hayes, I., Ed. (1993), Specification Case Studies, International Series in Computer Science, 2nd ed.,
Prentice-Hall.

Kaiser, G., S. Dossick, W. Jiang, and J. Yang (1997), “An Architecture for WWW-based Hypercode En-
vironments,” In The 19th International Conference on Software Engineering (ICSE’97), R. Adrion,
A. Fuggetta, and R. Taylor, Eds., IEEE Press, Boston, USA, pp. 3–13.

Kim, S.K. and D. Carrington (2000), “An Integrated Framework with UML and Object-Z for Developing
a Precise Specification,” In The 7th Asia-Pacific Software Engineering Conference (APSEC’00), IEEE
Press, pp. 240–248.

Liu, J., J.S. Dong, B. Mahony, and K. Shi (2000), “Linking UML with Integrated Formal Techniques,” In
Unified Modeling Language: Systems Analysis, Design, and Development Issues, K. Siau and T. Halpin,
Eds., Idea Group Publishing, pp. 210–223.

Liu, S., A.J. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba (1998), “SOFL: A Formal Engineering Methodology
for Industrial Applications,” IEEE Transactions on Software Engineering 24, 1.

Mahony, B. and J.S. Dong (1999), “Sensors and Actuators in TCOZ,” In FM’99: World Congress on Formal
Methods, J. Wing, J. Woodcock, and J. Davies, Eds., Lecture Notes in Computer Science, Vol. 1709,
Springer-Verlag, Toulouse, pp. 1166–1185.

Mahony, B. and J.S. Dong (2000), “Timed Communicating Object Z,” IEEE Transactions on Software
Engineering 26, 2, 150–177.

Mahony, B.P. and J.S. Dong (1998), “Blending Object-Z and Timed CSP: An Introduction to TCOZ,” In
The 20th International Conference on Software Engineering (ICSE’98), K. Futatsugi, R. Kemmerer, and
K. Torii, Eds., IEEE Press, Kyoto, Japan, pp. 95–104.

Nielsen, M., K. Havelund, R. Wagner, and C. George (1989), “The RAISE Language, Method and Tools,”
Formal Aspects of Computing 1, 85–114.

Rumbaugh, J., I. Jacobson, and G. Booch (1999), The Unified Modeling Languauge Reference Manual,
Addison-Wesley.

Schneider, S. and J. Davies (1995), “A Brief History of Timed CSP,” Theoretical Computer Science 138.
Smith, G. (1995), “A Fully Abstract Semantics of Classes for Object-Z,” Formal Aspects of Computing 7,

3, 289–313.
Smith, G. (2000), The Object-Z Specification Language, Advances in Formal Methods, Kluwer Academic.
(W3C), W.W.W.C. (1999), “XSL Transformations (XSLT) Version 1.0,” http://www.w3.org/TR/

xslt
(W3C), W.W.W.C. (2000a), “Extensible Markup Language (XML),” http://www.w3.org/XML
(W3C), W.W.W.C. (2000b), “Extensible Stylesheet Language (XSL),” http://www.w3.org/Style/

XSL
Wafula, E.N. and P.A. Swatman (1995), “FOOM: A Diagrammatic Illustration of Inter-Object Com-

munication in Object-Z Specifications,” In The 1995 Asia-Pacific Software Engineering Conference
(APSEC’95), IEEE Computer Society Press.

Woodcock, J. and J. Davies (1996), Using Z: Specification, Refinement, and Proof, Prentice-Hall Interna-
tional.

