
Formal Aspects of Computing (2002) 13: 142–160
c© 2002 BCS Formal Aspects

of Computing

Deep Semantic Links of
TCSP and Object-Z: TCOZ Approach
Brendan Mahony1 and Jin Song Dong2

1 Information Technology Division, Defence Science and Technology Organisation of Australia, Edinburgh, South Australia, Australia
2 Computer Science Department, School of Computing, National University of Singapore, Singapore

Abstract. Formal methods can be used in effective combination only if the semantic links between individual
methods are clearly established. This paper discusses the semantic design of TCOZ, a language blended from
Object-Z and TCSP. The semantic model adopted is the infinite timed failures model of TCSP, extended to
include initial state and update events for modelling operations on internal state. An infinite trace model has
been used so as to ensure proper account is taken of the potentially unbounded non-determinism allowed by
Z schemas.

Keywords: TCSP; Object-Z; TCOZ; Integrated Formal Methods

1. Introduction

Hoare [Hoa99] observes that formal methods are increasingly being used in effective combinations. Ultimately,
the effective combination of formal methods can only be achieved if the semantic links between individual
methods are clearly established and (consequently) the semantics of those methods are well integrated.

A recent research focus in formal methods is the integration of Z/Object-Z and CSP/CCS [Fis00, Smi97,
GaS97, Suh99, SmD01, TaA97, MaD98]. One such approach is the blending of Object-Z [DuR00, Smi00] and
TCSP [ScD95], called Timed Communicating Object-Z (TCOZ) [MaD98]. TCOZ builds on the respective
strengths of both notations in order to provide a single elegant notation for modelling both state and process
aspects of complex systems. The notion of blending Object-Z with CSP has been suggested independently
by Fischer/Wehrheim [Fis00, FiW99] and Smith/Derrick [Smi97, SmD01]. TCOZ is novel in that it includes
timing primitives, it supports the modelling of true multi-threaded concurrency, it clearly separates the design
of control logic from algorithm design, it clearly separates the communications interface of classes from their
internal structure, and it integrates the notions of operational refinement and process refinement into a single
notion of class refinement. All these features are based on two general semantic links:

• Object-Z operation schemas are semantically identified with terminating CSP processes (that perform only
state update events).

Correspondence and offprint requests to: Brendan Mahony, Information Technology Division, Defence Science and Technology Or-
ganisation of Australia, PO Box 1500, Edinburgh, South Australia 5111, Australia. E-mail: Brendan.Mahony@dsto.defence.gov.au or
dongjs@comp.nus.edu.sg

Deep Semantic Links of TCSP and Object-Z: TCOZ Approach 143

• The behaviour of active objects is semantically identified with non-terminating CSP processes (multi-
threading).

We consider these two semantic links are ‘deeper’ than say Smith/Derrick’s approach [SmD01] which
semantically identifies Object-Z operations with CSP channel/events, and classes with CSP processes. Although
Smith/Derrick’s ‘shallow’ links are less disruptive of the individual notations’ syntax/semantics, the Object-Z
classes are treated as ‘modules’; and the powerful composition mechanism, class instantiation, is lost. On the
other hand, TCOZ links TCSP constructs deeply into the Object-Z class structure (operations) so that complex
operations and active object behaviour can be constructed by TCSP process expressions. Class constructs
can encapsulate not only data/state but also TCSP processes. In one sense, TCOZ provides mechanisms to
structure TCSP models.

This paper presents detailed discussions of the semantic links between Object-Z and TCSP. The paper also
summarises the essential process semantics aspects of TCOZ that appeared in an early conference version
[MaD99]. The TCOZ semantics model is presented in a similar fashion to Smith’s abstract semantic model
for Object-Z [Smi95b], which ignores the Object-Z reference semantics (by Griffith [GrR95]).

The support of timing primitives in TCOZ is made possible through the adoption of Reed’s timed-failures
semantics for TCSP [ReR88, ScD95]. The timed-failures semantics model CSP processes in terms of timed-
event traces and timed-event failures. This semantic model allows CSP to be extended with time-related
primitives such as delays, timeouts, and clock-interrupts. In order to support objects with encapsulated state
this model is extended to include an initial state and state-update events. Object-Z operations are modelled
as terminating sequences of timed state-update events. State-update events are similar to signal events, as
described by Davies [Dav91], in that their occurrence is determined solely by the process; there is no
requirement to model state-failures. Since Z allows unbounded non-determinism, it is also necessary to adopt
the infinite trace variant of the timed failures model, as described by Mislove et al. [MRS95].

The outline of the paper is as follows. From the semantics point of view, Section 2 gives introductions
and discussions on Object-Z and TCSP. Section 3 presents the integration of Object-Z and Timed-CSP –
TCOZ. Section 4 presents the summary of the abstract syntax and the semantics. Section 4.3 presents the
semantic toolkit used to describe the semantics of TCOZ. Section 4.4 presents the TCOZ semantics. Section 5
concludes the paper.

2. Overview of Object-Z and TCSP

The TCOZ language is a blending of the Object-Z and TCSP languages, making use of the class structuring
and algorithmic and data design facilities of Object-Z and the process design facilities of TCSP. This section
introduces the basic TCOZ language by first considering the complementary strengths and weaknesses of the
Object-Z and TCSP languages. The simple example of a first-in-first-out (FIFO) queue is used as a pedagogical
device for demonstrating the features of each language. Particular attention is paid to the semantic issues
raised by language features discussed.

2.1. Object-Z and State Transition Model

Object-Z is an object-oriented extension of the Z formal specification language. It improves the clarity of
large specifications through enhanced structuring.

The main Object-Z construct is the class definition. A class is a template for objects of that class: for each
such object, its states are instances of the class’s state schema and its individual state transitions conform to
individual operations of the class. An object is said to be an instance of a class and to evolve according to
the definitions of its class.

Syntactically, a class definition is a named box, optionally with generic parameters. In this box the
constituents of the class are defined and related. The main constituents are: a state schema, an initial state
schema and a list of operation schemas.

144 B. Mahony and J. S. Dong

ClassName[generic parameters]

state schema

initial state schema

operation schemas

The class structure makes use of the Z schema box construct in a hierarchy. In the general case, a schema
box consists of a declaration part which describes the variables which the schema uses, called the signature of
the schema, and predicate parts which describe some relationship which must be attained between the values
of the signature variables. The interpretation of a Z schema is as a set of bindings of the signature variables
to values, the set of such bindings for which the values of the variables satisfy the relationship described by
the predicate part of the schema [Spi88]. Special syntactic conventions are used within the class schema to
abbreviate and simplify the schema definitions which describe the class.

2.1.1. A Generic Queue Example

Consider the Object-Z specification of a generic FIFO queue. The queue structure may be represented as a
class of objects, generic in the element type of the queue.

Queue[X]

items : seq X
∆
h : X

items 6= 〈 〉 ⇒ h = head (items)

Init
items = 〈 〉

Join
∆(items)
item? : X

items ′ = items _ 〈item?〉

Leave
∆(items)
item! : X

items 6= 〈 〉
item! = h
items ′ = tail items

The elements of the queue are modelled as a primary attribute (sequence of items), as described by the
anonymous state schema. The head of the sequence is modelled as a secondary attribute, which appears below
a ∆ separator placed in the declaration section of the state schema. The secondary attributes are subject to
change by every operation. The predicate below the line in the state schema is called the class invariant. It
describes the state properties that must be established initially and preserved by every operation.

The initialisation schema requires that the queue start operations with an empty list of items. The initiali-
sation schema requires no declaration part because the state schema declaration is included by convention.

The rest of the class consists of a list of operation schemas. Two operations may be performed on queue
objects: the Join operation adds an item to the back of the queue and the Leave operation removes an item
from the head of the queue. Operation schemas include special conventions so that they may be interpreted
as describing a relationship between the current and the next state of an object. Firstly, all the state variables
of the object are included in the schema signature by default in each operation schema. Secondly, the ∆-list
indicates the state variables for which a final value is calculated. Prime decorated variables with the identical
base names are included in the schema signature for each variable in the ∆-list. The undecorated and primed
state variables are used to describe properties of the current and next object states respectively. Finally, query
and shriek decorated variables may be included to represent the values of any inputs and outputs, respectively,
to the operation. Under all these conventions the schema may be seen to describe a relation between pairs of
variable bindings, the first representing the current state and the inputs and the second representing the next
state and the outputs.

In the general case an operation schema may not relate every possible current state to a next state
(partial definedness) or else may relate some current states to more than one next state (non-determinism). In

Deep Semantic Links of TCSP and Object-Z: TCOZ Approach 145

this sense the operation schema acts as a specification for a code routine which will be well-defined in the
sense of identifying one (total definedness) and only one (determinism) next state for every current state. The
process of transforming such a specification into a code routine is called algorithmic refinement and essentially
corresponds to making the specification more defined and more deterministic.

2.1.2. Object-Z Semantic Issues

The standard behavioural semantics of Object-Z classes is presented as transition systems [Smi95b]. The
transition system begins in a legal initial state and then evolves through a series of state transitions each
effected by one of the class operations. The standard semantic model of transition system behaviour is a pair
consisting of an initial state binding and a list of the operations invoked on the system in the order they
are invoked. For example, the Queue object starts with items empty then evolves by successively performing
either Join or Leave operations. A behaviour of this class may be modelled by a binding which gives items
the value 〈 〉 and a sequence recording the order in which the operations are performed.1 The class as a whole
may be modelled by the collection of behaviours allowed by the class.

If there is more than one possible behaviour for any given sequence of inputs, the class definition is said
to be non-deterministic and may be viewed as a specification for a final program which must be deterministic.
The process of transforming a class specification to a final program is again called refinement and in this case
consists entirely of removing non-determinism.

A crucial point is that the operations enabled at each point are those whose preconditions are satisfied
by the current state and the inputs. Thus if the items list is empty, the Leave operation may not occur.
This entwining of behavioural control matters with algorithmic matters creates unnecessary complexity in
the design process and fails to promote a clear separation of concerns. For example, in order to ensure that
operations occur in some desired order the designer must painstakingly craft the preconditions of all the
operations in a class so as to ensure the desired interactions and may even need to add unnecessary process
state in order to represent control state.

Of greater interest from the semantic view point is the fact that this use of preconditions to control
the sequencing of transitions is incompatible with standard algorithmic refinement. The process of removing
non-determinism from operation specifications corresponds closely to that of removing non-determinism from
the class specification, but the process of increasing the definedness of operation specifications will in the
general case actually increase process non-determinism rather that reduce it. Thus algorithmic refinement of
class operations can play havoc with the delicate interplay of preconditions in the original specification.

2.2. TCSP and Timed-Failures Model

TCSP [ScD95] extends the well-known CSP (Communicating Sequential Processes) notation of Hoare [Hoa85]
with timing primitives. CSP is an event-based notation primarily aimed at describing the sequencing of
behaviour within a process and the synchronisation of behaviour (or communication) between processes. TCSP
extends CSP by introducing a capability to consider temporal aspects of sequencing and synchronisation.

CSP adopts a symmetric view of process and environment. Events represent a cooperative synchronisation
between process and environment. Both process and environment may control the behaviour of the other
by enabling or refusing certain events or sequences of events. The standard CSP semantics reflects this by
modelling a process behaviour as a failure pair consisting of a sequence of events performed by the process
(the trace) and a set of events that were subsequently offered by the environment but refused by the process
(the refusal). A process is modelled by the collection of failures exhibited by the process.

The standard TCSP semantics enhances this failures semantics by recording the timing of each event in
the trace and also recording a refusal set for every point in time. This powerful modelling technique is able
to describe a range of real-time concepts such as delays, timeouts, and clock interrupts.

In the following, the core of the TCSP language is described informally in terms of this timed-failures
model.

1 Finer definition may be achieved by including information such as the inputs accepted, next state and outputs generated, and even the
operations refused or enabled at each step.

146 B. Mahony and J. S. Dong

2.2.1. Process Primitives

In TCSP, a distinguished event X is used to represent and detect process termination.
A (timed prefix sequencing) process which may participate in event a at time t then wait for δ time

followed by process P is written

a@t
δ→ P (t). or a@t →Wait δ; P (t)

The event a is initially enabled and occurs as soon as it is also enabled by its environment; that is, it may
not appear in the refusal set until it appears in the event trace, in which it must be the first event. The event
a is sometimes referred to as the guard of the process. The (optional) timing parameter, t , records the time
(relative to the start of the process) at which the event a occurs. This is the time at which a occurs as recorded
in the event trace. Subsequent behaviour, described by P (t), may depend on the value of t . The second
(optional) timing parameter, δ, is the stabilisation time. It delays the commencement of P (t) for at least time
δ after the occurrence of the a event; that is, P (t) commences at relative time t + δ. During stabilisation
the process must refuse all events and may not perform any. That is, in terms of Wait t , a failure of Wait t
refuses all events until time t and must then not refuse a X event until it has performed a X. If omitted the
event stabilisation time is 0 s by convention.

The process sequencing, sequential composition of P and Q , written P ; Q , acts as P until P terminates
by communicating X and then proceeds to act as Q; the termination signal is hidden from the process
environment. This is modelled by cutting each P failure at the first occurrence of X, removing the X, and
concatenating a Q failure appropriately shifted in time. The process which may only terminate is written Skip.

The parallel evolution of processes P and Q , synchronised on event set X , is written

P |[X]|Q
No event from X is enabled in P |[X]|Q unless enabled jointly by both P and Q . Other events occur in
either P or Q separately. Thus a failure of P |[X]|Q is a superposition of failures, from P and Q respectively,
which agrees exactly when restricted to X . Synchronisation on the empty event set is usually written P ||| Q .

Diversity of behaviour is introduced through two choice operators. The external choice operator allows a
process a choice of behaviour according to what events are enabled by its environment. The process

a → P 2 b → Q

begins with both a and b enabled and performs the first to be enabled by its environment. Subsequent
behaviour is determined by the event which actually occurred, P after a and Q after b respectively. A failure
of P 2 Q is a failure of either P or Q such that there is failure in the other process with the same refusal set
whose first event occurs no earlier. Whilst there is considerable scope for the introduction of nondeterminism
with external choice, for example where both processes want to perform their first event simultaneously, the
actual mechanism of external choice can be regarded as deterministic because the refusal set determines the
event trace of the process. External choice may also be written in an intentional form,

2 a : A • P (a)

Internal choice represents variation in behaviour determined by the internal state of the process. The
process

a → P u b → Q

may initially enable either a , or b, or both, as it wishes, but must act subsequently according to which event
actually occurred. The failures of P u Q consist of the combination of the failures of the individual processes.
Internal choices are non-deterministic because the refusal set does not determine the behaviour of the process.
Again an intentional form is allowed.

An important derived concept in CSP is the notion of channel. A channel is a collection of events of the
form c.n: the prefix c is called the channel name and the collection of suffixes the allowed values of the channel.
When an event c.n occurs it is said that the value n is communicated on channel c. By convention, when the
value of a communication on a channel is determined by the environment (external choice) it is called an
input and when it is determined by the internal state of the process (internal choice) it is called an output. It
is convenient to write c?n : N → P (n) to describe behaviour over a range of allowed inputs instead of the
longer 2 n : N • c.n → P (n). Similarly the notation c!n : N → P (n) is used instead of u n : N • c.n → P (n)

Deep Semantic Links of TCSP and Object-Z: TCOZ Approach 147

to represent a range of outputs. Expressions of the form c?n and c!n do not represent events; the actual
event is c.n in both cases.

2.2.2. The Queue Example

In general, the behaviour of a process at any point in time may be dependent on its internal state and this
may conceivably take an infinite range of values. It is often not possible to provide a finite representation of a
process without introducing some notation for representing this internal process state. The approach adopted
by CSP is to allow a process definition to be intentionally parameterised by state variables. Thus a definition
of the form

Pn:N =̂ Q(n)

represents a (possibly infinite) family of definitions, one for each possible value of n . It is important to note
that there is no inherent notion of process state in CSP; the failures model has no way of representing internal
state. Rather this intentional form of expression is a convenient way to provide a finite representation of an
infinite family of process descriptions.

An example of the use of this convention is the definition of the FIFO queue in TCSP. The activities of
joining and leaving the queue are represented by communications of the left and right respectively. Clearly
any value output on the right must have first been received on the left channel and moreover they must be
output in the order they were received, but this is a very hard condition to describe without making use of
internal state. Consider the simple case where only one value is permitted in the queue. The initial queue is

P = left?a → Q

after which either a new item may be added or the current one removed,

Q = left?a → R 2 right!a → P

and so on. Since there is no limit on the number of items that may be in the queue at one time, even this
simple case has no finite representation without a convention for describing internal state.

The method used is to define a family of process names which consist of a base name decorated with an
expression representing the current value of the internal state. Initially the queue is empty.

Queue =̂ Q〈 〉
At any stage a new element may enter the queue or the head of the queue (if any) may leave.

Q〈 〉 =̂ left?a : X
tj→ Q〈a〉

Q〈h〉_tl =̂ left?a : X
tj→ Q〈h〉_tl_〈a〉 2

right!h
tl→ Qtl

where tj and tl represent the time delay (duration) for the join and leave operations. Even for such a simple
example TCSP has advantages over Object-Z as a means of describing process control. The allowed sequences
of events are clearly and concisely determined by the CSP code there is no need to calculate preconditions nor
is any other form of deep reasoning required to understand the ways in which the queue may evolve. On the
other hand the state annotations are quite cumbersome, even in this example. There is no standard support
for state modelling in the form of mathematical toolkits and libraries nor modular techniques for constructing
and reasoning about complex internal state. For example, the CSP queue is not truly generic. Queues with
various base types can only be specified by repeating the queue definition with a new type constant in place
of X .

2.2.3. Timeout and Clock Interrupt

The timeout construct passes control to an exception handler if no event has occurred in the primary process
by some deadline. The process

a → P .{t} Q

148 B. Mahony and J. S. Dong

will pass control to Q if the a event has not occurred by time t , as measured from the invocation of the
process. A failure of P .{t} Q is a failure of P whose first event occurs before t or else consists of a failure
for Wait t; Q .

The clock interrupt passes control from one process to another at a specified time. A failure of P ↙{t} Q
consists of a failure of P up to time t followed by a delayed failure of Q .

2.2.4. The Queue with Timeouts

Suppose that a queue process has the timing property that each element of the queue becomes stale if it is not
passed on within C time units of being added to the queue and that stale elements should never be passed
on. This timeouts queue can be described using delays and timeouts.

Once again the initial state is represented by the empty sequence:

TimedQueue =̂ TQ〈 〉
When the first element joins the queue it is stamped with a timeout and the time taken to update the process
state is represented by a delay:

TQ〈 〉 =̂ left?a : X →Wait tj ; TQ〈(a ,C)〉
When the queue is non-empty the process is ready to accept left or right events as per the untimed queue,
with the exception that staleness stamps are updated with each communication and state update delays are
introduced. In the event of no communication occurring before the head of the queue becomes stale, the stale
element is dropped:

TQ〈(h ,t)〉_tl =̂
(left?a : X@ti →Wait tj ;

TQds(t1+tj ,〈(h ,t)〉_tl)_〈(a ,C)〉 2
right!h@ti →Wait tl ; TQds(t1+tl ,tl))

.{t}Wait td ; TQds(t+td ,tl)

where td represents the time delay (duration) of the timeout drop operation. and the generic function ds
(drop stale) is defined as

[X]
ds : (T× seq(X × T))→ seq(X × T)

∀ t : T; s : seq(X × T) •
ds(t , s) = squash{(i , (e, to)) : s | to > t • (i , (e, to − t))}

The advantages and disadvantages of TCSP are thrown into even sharper focus by this example. TCSP
handles the issues of delays and timeouts simply and elegantly. It is difficult to see how the timeout issue
could be treated at all in the standard Object-Z, because the process control logic is nothing at all like the
simple transition system interpretation. Note that this example does not even make use of the multi-threading
and synchronisation capabilities of TCSP, which are clearly well beyond the scope of Object-Z’s atomic state
transition semantics. On the other hand, the treatment of internal state in the above has become intolerably
complex, distracting strongly from the elegant treatment of the delay and timeout issues. Although, for
example, Roscoe’s CSPM language [Ros97] includes some powerful data modelling primitives, CSP still has
no standard support for state modelling in the form of mathematical toolkits and libraries nor are there
modular techniques for constructing and reasoning about complex internal state.

3. Integrating TCSP and Object-Z: TCOZ

TCSP and Object-Z complement each other in their expressiveness. Object-Z has strong data and algorithm
modelling capabilities. The Z mathematical toolkit is extended with object-oriented structuring techniques.
TCSP has strong process control modelling capabilities. The multi-threading and synchronisation primitives
of CSP are extended with timing primitives. Moreover, both formalisms are already strongly influenced by the
other in their areas of weakness. Object-Z supports a number of primitives which have been inspired by CSP

Deep Semantic Links of TCSP and Object-Z: TCOZ Approach 149

notions such as external choice and synchronisation. CSP practitioners tend to make use of notation inspired
by the Z mathematical toolkit in the specification of processes with internal state. This is not surprising
given their joint associations in the Programming Research Group, Oxford. Another important connection
is the well-known duality between the state transition behavioural model and the event-based behavioural
model [He89], which makes it a simple matter to develop complementary semantics for the two languages.

Given these factors it is natural to consider the possibility of blending the two notations into a more
complete approach to modelling real-time and/or concurrent systems. Fischer [Fis00] and Smith [SmD01]
have independently suggested CSP-style semantics for Object-Z classes in which operation calls become CSP
events. Operation names take on the role of CSP channels, with input and output parameters being passed
down the operation channel as values. This view fits nicely with the Object-Z interpretation of operations
being atomic, but is not well suited to considering multi-threading and real time. Restricting operations to
atomic events collapses the spatial and temporal aspects of operations; everything happens at a single point
and instantaneously. Identifying channel names with operation names creates unnecessary tensions between
the data and process views of objects and considerably reduces the potential for reuse of operation definitions.
Another approach is that taken by Galloway in his CCZ language [Gal96], based on Z and (value-passing)
CCS. Their Z operation schemas do not appear as events, but instead appear as prefixes to parameterised CCS
output processes. The effect of the operation schema is to restrict the allowed output values in the associated
process and to update the values of the process state parameters. Whilst this approach effectively disentangles
the communication interface from the operational structure, the need to associate every occurrence of an
operation with a following output process is a major syntactic inconvenience.

The approach taken in the TCOZ notation is to identify operation schemas (both syntactically and
semantically) with (terminating) CSP processes that perform only state-update events; to identify (active)
classes with non-terminating CSP processes; and to allow arbitrary (channel-based) communications interfaces
between objects.

The syntactic implication of this approach is that the basic structure of a TCOZ document is the same
as for Object-Z. A document consists of a sequence of definitions, including type and constant definitions in
the usual Z style. TCOZ varies from Object-Z in the structure of class definitions, which may include CSP
channel and processes definitions. All operation definitions in TCOZ are considered to define CSP processes.
The CSP view of an operation schema is that it describes all the sequences of update events which change
the system state as required by the schema predicate. The exact nature and granularity of these update events
is left undetermined in TCOZ (at least at the syntactic level), but by allowing an operation to consist of a
number of events it becomes feasible to specify its temporal properties when describing the operation. Since
operation schemas take on the syntactic role of CSP processes, they may be combined with other schemas
and even CSP processes using the standard CSP process operators. Thus it becomes possible to represent true
multi-threaded computation even at the operation level, something that would not be possible with the CCZ
approach. The Fischer/Smith approach of identifying operation names with CSP channels is not followed:
channels are given an independent, first-class role. This allows the communications and control topology of
a network of objects to be designed orthogonally to their class structure. The CSP channel mechanism is the
only (dynamic) way to pass information between objects as the state of objects is encapsulated by hiding all
update events.

3.1. Operations

The operation schema is the basic tool for describing state change in TCOZ. In order to allow treatment of
timing issues in schema definitions, a distinguished identifier δ is introduced to represent the duration of the
state calculations performed by the operation. When δ does not appear in the definition of an operation, the
default interpretation is that there be no constraint on the duration of the operation, although individual
specification documents may choose to adopt a different convention.

Although the schema is the basic tool, the true power of TCOZ comes from the ability to make use
of TCSP primitives in describing the process aspects of an operation’s behaviour. All operation definitions
in TCOZ are in fact TCSP process definitions, with operation schemas being given the syntactic status of
terminating Timed CSP processes.

As an example, consider the specification of the Join operation in the timed-queue example, assuming the

150 B. Mahony and J. S. Dong

state of the object is modelled as

items : seq(X × T)
(h , t) == head (items)

The timing characteristics of the Join operation are expressed by the condition δ = tj in the state-update Add
operation.

Add
∆(items)
item? : X
ti? : T

δ = tj ∧ items ′ = ds(ti? + tj , items) _ 〈(item?,C)〉
Since TCOZ operations are identified with terminating CSP processes, it is natural to allow their definition

in terms of CSP primitives, such as event sequencing, as well as through the schema calculus. The novelty
of the full TCOZ version of Join lies in the adoption of CSP primitives in its definition. Item inputs are
communicated to the Join operation along a channel left .

Join =̂ [item : X ; ti : T] • left?item@ti → Add

This definition of Join says that after the parameter item has been input on channel left at time ti , the
state-calculation Add is performed.

The local name space may be changed either by a local block definition as above or else by the occurrence
of an operation schema. An operation schema removes all its input parameters from scope and replaces
them with its output parameters. The output parameters then become available for use in subsequent
communication events or as inputs to subsequent operation schemas.

In the case of the Leave operation, the communication of the deleting element must precede the updating
of the queue object state and in fact is the enabling event for the operation. Since the name convention is
that outputs are only available to the right of a schema, this behaviour cannot be described using an output
parameter. Instead, the update operation is described as a simple state update which removes the head item
(and any others that become stale).

Delete
∆(items)
ti? : T

items 6= 〈 〉 ∧ δ = td ∧ items ′ = ds(ti? + td , tails(items))

The overall leave operation consists of this schema guarded by a communication on the right channel.

Leave =̂ [ti : T | items 6= 〈 〉] • right!h@ti → Delete

The first part of the definition of Delete is a (novel) process control primitive known as a state guard. Although
if-then style commands appear in several dialects of CSP, for example CSPM [Ros97], we believe that TCOZ
is unique in adopting the state guard as a separate primitive in the style of Morgan’s version of the guarded
command language [Mor94].

The adoption of a state guard mechanism allows TCOZ to have a clear separation between algorithm and
process design issues. The sequencing of activities in an object is controlled explicitly through state guards
rather than implicitly through the operation preconditions. In this way it becomes possible to reclaim the
Z-style operation design and decomposition techniques abandoned by standard Object-Z.

Every process definition has (at least) an initial state which may be addressed using schema notation. This
is the function of the first part of the expression defining Delete. It is a schema-based method of restricting
the action of the process to initial states for which the queue is non-empty. For other states this process will
deadlock or block, refusing any communication.

Note that the precondition requirement in the Delete schema, though identical, could not achieve the
desired restriction on the behaviour of Leave. Failure to satisfy a precondition when control is passed to
an operation instead results in divergence, which leads to unspecified subsequent behaviour. Delete places
no restrictions at all on its behaviour when the initial queue is empty. The precondition is the state-based
equivalent of process divergence and the guard is the state-based equivalent of process deadlock.

Deep Semantic Links of TCSP and Object-Z: TCOZ Approach 151

For every operation P (even those constructed using the process calculus) the collection of initial states
for which the process will not diverge is called its precondition (written pre P) and the collection of states for
which it will not deadlock is called its guard (written grd P).

3.2. Processes

A schema expression describes a relationship on or between process state(s), whilst a process expression
describes the overall behaviour or evolution of a process. The Z semantic model for operation schemas
consists of sets of variable bindings, mappings from variable names to values. An important point is that
these sets may be infinite when the operation allows unbounded non-determinism. TCSP has a number of
semantic models, but the most common consists of sets of tuples consisting of a timed trace (a sequence of
time-stamped events) and a refusal (a record of when events are refused by the process). The trace/refusal
pair is called a failure, and the model the timed-failures model. The approach taken in the TCOZ semantics is
to adopt the timed-failures semantic model and to provide an interpretation of the Z semantic model in terms
of failures and divergences, though some variations are required to make this possible. Firstly, a variable
binding is added to represent the initial values of all the process attributes. Secondly, a new kind of event,
referred to as an update event, is introduced to represent changes to the process attributes. The resulting
model is called the state/failures/divergences model. The state of the process at any given time is the initial
state updated by all of the updates that have occurred up to that time. If an event trace terminates (that
is, if a X event occurs), then the state at the time of termination is called the final state. Finally, since the
unbounded non-determinism potentially present in Z schemas cannot be treated properly using finite traces,
an infinite-trace variation of the timed-failures model, due to Mislove et al. [MRS95], is adopted.

The process model of an operation schema consists of all initial states and update traces (terminated with
a X) such that the initial state and the final state satisfy the relation described by the schema. If no legal
final state exists for a given initial state, the operation diverges immediately. In the timed-failures model,
divergence is represented by allowing arbitrary behaviour from the time of divergence.

The process model for the state guard consists of replacing the trace part of every behaviour of the
guarded process whose initial state does not satisfy the state guard with the empty trace. The empty event
trace describes the process being blocked by the failure of the state guard. In addition, divergence cannot
occur if the state guard is not satisfied.

Some existing Object-Z schema calculus operators, such as 2 , ‖ , and ; , have namesakes with
similar semantics in the CSP process calculus. The convention adopted in TCOZ is that the CSP operator is
intended, only ‘pure logic’ schema calculus operators are allowed in TCOZ. This is justified by the superior
algebraic properties of the CSP operators.

When operations are combined using the concurrency primitives ‖ and ||| , the designer is exposed
to all the usual dangers of shared variable concurrency. The operation OS1 ‖ OS2, where OS1 and OS2

are operation schema, will synchronise on all state-update events on variables in the respective delta-lists.
Thus OS1 ‖ OS2 will have much the same process properties as OS1

∧
OS2, with the exception that when

the operations are inconsistent for a given initial state, the concurrent composition will deadlock while the
logical composition will diverge. We recommend that concurrent composition of operations be used sparingly,
preferably only in cases where the operations have disjoint delta-lists. Shared data structures should only be
utilised when properly protected by the object encapsulation mechanism.

3.3. Active Behaviour

The distinguished process name Main in a class indicates that the objects of the class have active behaviour
after the initialisation. Initialisation is treated in the usual way through the Init schema. Active objects have
their own thread of control and their mutable state attributes and operation definitions are fully encapsulated
(update events are hidden). Distinct objects, even of the same class, share no data and can experience no
shared variable interference. Other objects can neither reference an active object’s state attributes nor invoke
any of its local operations. All dynamic interactions with an active object must take place through the CSP
channel communication mechanism. Active objects are considered to have the syntactic properties of process
identifiers and may be composed using CSP operators.

The Main operation is optional in a class definition. If a class is defined without a Main process it

152 B. Mahony and J. S. Dong

is called a passive class. Passive objects are controlled by other objects in a system and their state and
operations are fully available to the controlling object (unless explicitly hidden). The appearance of Main
clearly distinguishes the definition of active objects and passive objects in a system.

Returning to the timed-queue example, the existence of environmental obligations and the need to drop
stale elements means that the timed-queue class must have its own thread of control. Assuming that the class
operations are defined as in Section 3.1, the timed-queue behaviour can be defined by a Main process similar
to the TCSP version presented in Section 2.2.4. We will see this Main process defined below in the full class
definition.

3.4. Channels Together

The class state-schema convention is extended to allow the declaration of communication channels. If c is to
be used as a communication channel by any of the operations of a class, then it must be declared in the state
schema to be of type chan. Channels are type heterogeneous and may carry communications of any type.
Contrary to the conventions adopted for internal state variables, channels are viewed as shared rather than
as encapsulated entities. This is an essential consequence of their role as communications interfaces between
objects. The introduction of channels to TCOZ reduces the need to reference other classes in class definitions,
thereby further enhancing the modularity of system specifications.

Consider once again the timed-queue example: in addition to the list of items , the state schema must
declare channels left and right , and the entire class definition of the timed-queue can be presented as:

TimedQ[X]

items : seq(X × T)
left , right : chan
∆
(h , t) : X × T
items 6= 〈 〉 ⇒ (h , t) = head (items)

Init
items = 〈 〉

Add
∆(items)
item? : X
ti? : T

δ = tj ∧ items ′ = ds(ti? + tj , items) _ 〈(item?,C)〉
Delete
∆(items)
ti? : T

items 6= 〈 〉 ∧ δ = td ∧ items ′ = ds(ti? + td , tails(items))

Join =̂ [item : X ; ti : T] • left?item@ti → Add
Leave =̂ [ti : T | items 6= 〈 〉] • right!h@ti → Delete
Drop =̂ [∆(items) | δ = td ∧ items ′ = ds(t + td , items)]
Main =̂ µTQ • [items = 〈 〉] • Join; TQ 2

[items 6= 〈 〉] •((Join 2 Leave) .{t} Drop); TQ

This model represents a more concise, flexible, and scalable treatment of both process and state than is
possible in either Object-Z or TCSP. Process’s internal state and communications interfaces are tightly coupled
with the behaviour part of the model in a single class construct. The structured schema-based approach to
describing state transitions, supported as it is by the full power of the Z toolkit and the schema calculus, is
better able to handle large and complex process state than the essentially ad hoc state annotation conventions
of CSP. Making use of the TCSP process definition conventions removes the need to consider process control

Deep Semantic Links of TCSP and Object-Z: TCOZ Approach 153

matters in operation schemas. There is a clear separation of process control and algorithmic matters which
simplifies the description of both.

4. Summary of TCOZ Abstract Syntax and Semantics

This section summarises the abstract syntax and semantics of TCOZ (for detailed discussion/explanation, see
[MaD99]).

4.1. Abstract Syntax

Firstly, the abstract syntax of Z schemas and expressions is presented by the given sets [ZS ,ZE].
The abstract syntax of TCOZ process expressions is given in the form of a free type definition, in a style

similar to that adopted by Schneider and Davies [ScD95] with extra state-related primitives.
In the following let [Σ] represent the set of all possible communications channels:

TZE ::= ref 〈〈NAME 〉〉 | Stop | Chaos | Skip |Wait 〈〈ZE 〉〉 |
op〈〈ZS 〉〉 | (•)〈〈ZS × TZE 〉〉 |
(→)〈〈Σ× TZE 〉〉 | (. →)〈〈Σ× ZE × TZE 〉〉 |
(u)〈〈TZE × TZE 〉〉 | (2)〈〈TZE × TZE 〉〉 |
(‖)〈〈TZE × TZE 〉〉 | (|[]|)〈〈TZE × PΣ× TZE 〉〉 |
(|||)〈〈TZE × TZE 〉〉 | (;)〈〈TZE × TZE 〉〉 |
([/])〈〈TZE × Σ× Σ〉〉 | (\)〈〈TZE × PΣ |
(µ •)〈〈NAME × TZE 〉〉

where [ZS ,ZE] represents the abstract syntax of Z schemas and expressions and [Σ] represents the set of all
possible communications channels.

The body of a TCOZ class is essentially a system of simultaneous equations defining (possibly recursively)
a collection of (stateful) operations and processes. Each equation consists of a name [NAME] and a TCOZ
expression. The collection of names referenced in an expression, tze, is called the process signature of tze
and written sig tze. The process signature of an expression may be determined by a straightforward recursive
search of the expression structure:

TZB ==
{C : NAME→ TZE |

∀ tze : ranC; N : NAME •
N ∈ sig tze ⇒ N ∈ domC}

In TCOZ, classes fall into two categories: passive and active. A passive class consists of an initialisation and
a class body, while an active TCOZ class definition contains an additional main process expression, which
determines the overall behaviour of the class.

TZCp

init : ZS
C : TZB

TZCa

TZCp

main : TZE

sig main ⊆ domC

4.2. TCOZ Semantic Models Overview

The state of an active TCOZ object is fully encapsulated; the only way to interact with an active object is
via its communications interface. Active objects are modelled as pure (non-terminating) CSP processes, using
the basic infinite timed-failures semantics.

Passive classes are treated essentially as specification libraries. They have no process semantics and all
of their internal components (attributes and operations) may be accessed directly. The operations defined in
classes (both active and passive) have explicit state. This is modelled by extending the infinite timed-failures
model with an initial state component and by introducing a special class of events which update system state.

154 B. Mahony and J. S. Dong

Thus we utilise two semantic models: the basic infinite timed-failures model and the novel infinite
timed-states model.

4.3. Semantic Toolkit

In this section the mathematical models used in describing the TCOZ semantics are developed. The data-
related aspects of the language are modelled using state bindings and the process-related aspects of the
language are modelled using event traces and refusals.

The notation of the basic Z mathematical toolkit [Spi88] is used to develop the various models, with
the exception that an enhanced convention for treating schemas and schema bindings as first-class objects is
adopted. This builds on the enhancements to the Z toolkit suggested by Valentine [Val95]. This convention
explicitly recognises schema types, such as [a , b : N], as sets of variable bindings.

4.3.1. Schemas and State Bindings

In this section, the notions of state variables, bindings, and schemas are modelled and the interpretation of
schemas as state guards, initialisations, and operations briefly described. These notions have been treated in
considerable detail by the Z community so the development presented here is deliberately abstract, describing
only the facets of Z’s state semantics which are of direct relevance to the novel aspects of the semantics of
TCOZ.

Variables are modelled as

VAR ::= ()〈〈Π〉〉 | (′)〈〈Π〉〉 | (?)〈〈Π〉〉 | (!)〈〈Π〉〉 | δ
where [Π] denotes the collection of all legal Object-Z state attribute (pre, post, input and output) base names
and a distinguished variable δ used to describe operation timing.

The notational convenience of writing, V for ()(V), V ′ for (′)(V), etc., is adopted throughout this paper.
A collection of variables is called a signature.

The collection of value constants is represented by the abstract set [VAL]. The syntax of Z (and hence
of TCOZ) is designed so as to ensure that VAL may always be represented by a proper set [Spi88], built up
inductively from the given sets of a Z document.

A state binding is a partial function from variables to values:

Bind =̂ VAR→ VAL

The domain of a binding is called its signature.
The semantics of Z expressions is modelled using a record consisting of a signature and a binding from

states to values:

Exp
Γ : PVAR
ν : Bind→ VAL

dom ν = {γ : Bind | dom γ ⊇ Γ}

The semantic function on Z expressions is represented by FZ [[]]; that is, the meaning of the expression ze
is FZ [[ze]].

The semantic space for Z schemas consists of a signature Γ and a collection of states φ, each with signature
Γ:

Schema
Γ : PVAR
φ : PBind

∀ γ : φ • dom γ = Γ

The semantic mapping on Z schemas is represented by FZ [[]].

Deep Semantic Links of TCSP and Object-Z: TCOZ Approach 155

4.3.2. Operations

An operation is represented by an initial-state signature Γi , a final-state signature Γf , and a collection of
transitions (known as the transition relation, which consists of a pair of Γ states, the initial state and the final
state, and a duration):

Opr
Γi : PΠ
Γf : PΠ
X : PAct

∀ χ : X •
dom χ.i = Γi ∧
dom χ.f = Γf

Act
i : Π→ VAL
f : Π→ VAL
d : Time

The precondition of the operation is the collection of initial states which are associated with a final state:

pre == λO : Opr • i (O .X)

An operation is said to be non-deterministic when there is some initial state which is related to more than one
final state. An operation O2 is said to be a refinement of another operation O1, written O1 v O2, when they
have the same signature but O2 has a weaker precondition and is less non-deterministic than O1:

(v) ==
{O1,O2 : Opr |

O1.Γi = O2.Γi ∧ O1.Γf = O2.Γf ∧ pre O1 ⊆ pre O2 ∧∀ χ : O2.X • χ.i ∈ pre O1 ⇒ χ ∈ O1.X }
A state guard is essentially a predicate on the state variables. It consists of a signature and a collection of

states.

Grd
Γ : PΠ
φ : PBind

∀ γ : φ • dom γ = Γ

Again a state guard is expressed using a schema. The semantic function on guards, mk Grd , is a simple
injection.

mk Grd == {Schema; Grd • θSchema 7→ θGrd}
A state initialisation Init is similarly defined.

4.3.3. Events, Traces and Refusals

In this section a toolkit for describing infinite timed failures is developed. The general notational approach
of Mislove et al. [MRS95] is followed fairly closely, though the Z syntactic conventions are exploited fully.

A TCOZ event may be either an update event, a simple synchronisation, a channel communication, or a
termination event.

U == [v : Π; d : VAL]
S == [c : Σ]
C == [c : Σ; d : VAL]
Event == update〈〈U 〉〉 | sync〈〈S 〉〉 | com〈〈C 〉〉 | X

Updates record the variable changed and the new value. Synchronisations simply record the channel used,
while channel communications also record a data value:

U == update(U)
S == syn(S)
C == com(C)

156 B. Mahony and J. S. Dong

The update events are distinguished from the other events in that they do not require the cooperation of the
environment. The events which do require the cooperation of the environment are called environment events:

E == S ∪C ∪ {X}
Finally we overload the field selectors of the schema types U , S , C to act on events in the obvious way. For
example, update(〈v =̂ ν, d =̂ α〉).v = ν.

A timed trace is a (possibly infinite) sequence of time stamped events. The time stamps on the records in
a timed trace must be non-decreasing:

Stamp == [τ : Time; σ : Event]
Trace == {t : seq∞ Stamp |

∀ n ,m : dom t • n 6 m ⇒ t(n).τ 6 t(m).τ}
A finite trace is a trace with finite elements:

Fin Trace == {t : Trace | ∃ n : N • dom t = 0 . . n}
The begin time of a (non-empty) trace is the time stamp of its first element:

begin == λ t : Trace • (head t).τ

The end time of a (non-empty) finite trace is the time stamp of its last element:

end == λ t : Fin Trace • (last t).τ

A trace may be delayed in time using the delay operator:

del == λ t : Trace; δ : R • λ i : dom(t) • 〈τ =̂ t(i).τ+ δ, σ =̂ t(i).σ〉
A trace may be shifted forward in time by composing it with a negative delay and restricting it to positive
times:

(.−) == λ t : Trace; D : Time • del (t ,−D) �τ Time

where the traces filtering function is defined as

[Y]
� : Trace × (Stamp→ Y)× PY → Trace

∀ t : Trace; π : Stamp→ Y ; F : PY •
t �π F = squash{n : N ; s : Stamp | s ∈ π−1(F)}

The final state constructed by a finite trace is the final value assigned to each of the variables updated by
the trace:

final == λ t : Fin Trace •
{v : Π; d : VAL |

∃ n : dom t • t(n).σ = update(θU) ∧
∀m : dom t | m > n • t(m).σ.v 6= v}

Refusals represent the failure of a process to engage in events offered by the environment. We define
them in the usual way [ScD95, MRS95]. The basic timed refusal set or refusal token (RTOK) consists of a
collection of (environment) events refused for some (half-open) interval of time (RINT). Update events do
not appear in refusals, since they do not require the cooperation of the environment. A finite refusal (RSET)
consists of a finite number of refusal tokens. An infinite refusal (IRSET) consists of any collection of refusal
tokens which is finite up to any finite time:

RINT == {α, ω : Time • [τ : Time | τ ∈ [- α ... ω)-]}
RTOK == {I : RINT • I × [σ : E]}
RSET == {R : FRTOK • ⋃R}
IRSET == {R : PRTOK | (∀D : Time • (

⋃
R �τ [- 0 ...D)-) ∈ RSET) • ⋃R}

Deep Semantic Links of TCSP and Object-Z: TCOZ Approach 157

4.3.4. The Infinite Timed-States Model for TCOZ

TCOZ operations and processes are interpreted in the infinite timed-states model. This model extends the
infinite timed-failures model for TCSP [MRS95], to allow treatment of local state. On the other hand, since
the local state of active objects is encapsulated, they are interpreted in the basic infinite timed-failures model.
The use of an infinite trace model is mandated by the presence of unbounded non-determinism in Z schemas,
but it does introduce some complications in the treatment of recursion which have been discussed in detail in
[MaD99] (and omitted in this paper).

The denotation of each TCOZ process BTIS consists of a collection of behaviours. Each such behaviour
consists of an initial state, an event trace, and a timed refusal. A basic infinite timed failure BTIF does not
contain an initial state and restricts the trace to environment events:

BTIS

ι : Π→ VAL
s : Trace
ℵ : RSET

BTIF

s : Trace
ℵ : RSET

s = s �σ E

The infinite timed-failures model consists of a collection of infinite timed-failures behaviours which satisfy
the five healthiness criteria, H, described by Mislove et al [MRS95]:

MTIF == {S : PBTIF |H(S) [Healthiness criteria]
}

Processes in the infinite timed-states model consist of BTIS behaviours which satisfy the MTIF healthiness
criteria for each possible initial state:

MTIS == {S : PBTIS | ∀ i : Π→ VAL • H({BTIS | ι = i • θBTIF })}
The filter operator is extended to act on MTIF and MTIS in the obvious way.

We define refinement in the infinite-timed states model to be reverse subset inclusion on processes.

4.4. The Infinite Timed-States Semantics for TCOZ

In this section a semantics is presented for the TCOZ abstract syntax presented in Section 4.1. The semantic
operator for the infinite timed-states model is represented by FTIS [[]].

4.4.1. The Semantics of Ground Terms

The first step in developing the semantics is to give a meaning to each of the ground constructors of the
TCOZ abstract syntax.

The Stop process deadlocks immediately:

FTIS [[Stop]] == {BTIS | s = 〈 〉 • θBTIS }
The Wait process terminates after a set time. For t : Time,

FTIS [[Wait]](t) ==

{BTIS | s = 〈 〉 ∧ X 6∈ σ(ℵ �τ [- t ...∞)-) • θBTIS } ∪
{BTIS ; t ′ : Time | t ′ > t ∧ s = 〈〈τ =̂ t ′, σ =̂ X〉〉∧

X 6∈ σ(ℵ �τ [- t ... t ′)-) • θBTIS }
An operation performs a sequence of state updates so as to ensure a desired relationship between initial

and final states, then terminates. If the initial state does not satisfy the precondition, the process diverges. For
O : Opr ,

FTIS [[op]](O) ==

{BTIS ; Act | θAct ∈ O .X ∧

158 B. Mahony and J. S. Dong

O .Γi / ι ∈ pre O ∧ s = s �σ; v O .Γf ∧ endℵ 6 d ∧ end s 6 d

• θBTIS } ∪
{BTIS ; Act | θAct ∈ O .X ∧

O .Γi / ι ∈ pre O ∧ s = s �σ; v O .Γf ∧ endℵ > d ∧ end s = d ∧
f = final (s) ∧ X 6∈ σ(ℵ �τ [- d ...∞)-) • θBTIS } ∪

{BTIS ; su : Trace; t : Time; Act | θAct ∈ O .X ∧
Γi / ι ∈ pre O ∧ f = final (su) ∧ su = su �σ; v O .Γf ∧
end su = d ∧ t > d ∧
s = su

_ 〈〈τ =̂ t , σ =̂ X〉〉∧ X 6∈ σ(ℵ �τ [- d ... t)-)

• θBTIS } ∪
{BTIS | Γi / ι 6∈ pre O • θBTIS }

Theorem 4.1 The Z operation O1 : Opr is refined by O2 : Opr if and only if FTIS [[op]](O1) is refined by
FTIS [[op]](O2).

Proof. Assume that O1 v O2 and let b : BTIS be such that b ∈ FTIS [[op]](O2) and let i == O2.Γi / b.ι. If
i 6∈ pre O2, then also i 6∈ pre O1 and hence b ∈ FTIS [[op]](O1). If i ∈ pre O2 \ pre O1, then b ∈ FTIS [[op]](O1)
trivially.

Now suppose that i ∈ pre O1. If b.s is non-terminating and there exists χ : O2.X such that end b.ℵ 6 χ.d ,
then since χ.d is also an execution time allowed by O1, b ∈ FTIS [[op]](O1).

Finally, suppose there exists χ : O2.X such that end b.ℵ > χ.d , χ.i = O2.Γi / ι, and final b.s = χ.f . If b.s is
non-terminating and X is not refused in b.ℵ from time χ.d , then b ∈ FTIS [[op]](O1). If b.s is terminating and
X is not refused in b.ℵ from time χ.d before it occurs, then again b ∈ FTIS [[op]](O1).

The reverse implication is similar. q

State guarding causes a process to deadlock if its initial state fails the guard. For G : Grd , P :MTIS ,

FTIS [[(•)]](G ,P) =

{BTIS | G .Γ / ι ∈ G .φθBTIS ∈ P • θBTIS } ∪
{BTIS | G .Γ / ι 6∈ G .φ ∧ s = 〈 〉 • θBTIS }

The details of the semantics of other ground terms can be found in [MaD99].

4.4.2. The Semantics of Passive Classes

The semantics of a passive class is modelled as a binding from names to infinite timed-state processes,
referred to as process bindings. Where only ground terms appear in defining equations, this binding could be
determined directly from the ground term semantics. However, if name references are to appear, it is necessary
to adopt a fixed point approach to determining the semantics.

The first step in this process is to interpret a TCOZ expression relative to a given binding of its signature.
That is, expressions are modelled as mappings from process bindings to processes. Suppose that tze : TZE
is a TCOZ expression and that β : NAME→MTIS is a process binding such that dom tze ⊆ sig β. The
semantics of tze relative to β, written FTIS [[tze]]β , is defined by recursion on the structure of tze:

FTIS [[ref (N)]]β = β(N)

FTIS [[Stop]]β =FTIS [[Stop]]

FTIS [[Wait te]]β =FTIS [[Wait]](FZ [[te]])

FTIS [[op(OS)]]β =FTIS [[op]](mk Opr(FZ [[OS]]))

FTIS [[GS • P]]β =FTIS [[•]](mk Grd (FZ [[GS]]),FTIS [[P]]β)

... others omitted

FTIS [[µN • P]]β = fix (λQ :MTIS • FTIS [[P]]β⊕{N 7→Q})

The semantics of a collection of process definitions is then the fixed point of the corresponding mapping

Deep Semantic Links of TCSP and Object-Z: TCOZ Approach 159

from process bindings to process bindings:

FTIS [[C]] = fix (DTISB , λ β : sigC →MTIS • λN : sigC • FTIS [[C(N)]]β)

4.4.3. The Semantics of Active Classes

The state initialisation operator converts a stateful process into a pure process by hiding the initial state
and the state update events. The stateful process is also restricted to those behaviours with initial states that
satisfy the initialisation predicate:

For I : Init and P :MTIS ,

FTIS [[init]](I ,P) ==

{BTIF ; (BTIS)P |
θ(BTIS)P ∈ P ∧ I .Γ / ιP ∈ I .φ ∧ s = sP �σ E ∧ ℵ = ℵP

• θBTIF }
The semantics of an active class is the main process evaluated in the binding defined by the class definitions,

with the local state initialised by the class initialisation:

FTIF [[C]] =FTIS [[mk Init(Fz [[C .init]])]](FTIS [[C .main]]FTIS [[C .C]])

5. Conclusion

In TCOZ, the key semantic links between Object-Z and TCSP are the identifications between operation
schemas with terminating CSP processes and active objects with non-terminating CSP processes. This leads
to the flexible use of CSP process expressions deep in Object-Z class constructs.

This paper presents detailed discussions of the semantic links between Object-Z and TCSP. The paper also
summarises the essential process semantics aspects of TCOZ which appeared in an early version [MaD99].
Other aspects of the TCOZ semantics, such as the object-reference semantics and data refinement, are not
discussed and are the subject of further work.

The process model used by TCOZ consists of sets of tuples consisting of: an initial state; a (possibly
infinite) trace (a sequence of time-stamped events, including update-events), and a (possibly infinite) refusal
(a record of what and when events are refused by the process). This represents a conservative extension to the
basic infinite timed-failures model of Mislove et al. [MRS95] which allows us to retain the same basic model
of recursion. An infinite trace model has been used so as to ensure proper account is taken of the potentially
unbounded non-determinism allowed by Z schemas.

TCOZ differs from other approaches to blending Object-Z with a process algebra in that it does
not identify operations with events. Instead a fine-grained collection of (abstract) state-update events is
hypothesised. Operation schemas are modelled by the collection of those sequences of update events that
achieve the state change described by the schema. This means that there is no semantic difference between a
Z operation schema and a (terminating) CSP process. It therefore makes sense also to identify their syntactic
classes. TCOZ allows operations to be defined either using the schema calculus or the process calculus and it
allows operation schemas to appear as processes in CSP expressions.

Finally we note that Theorem 4.1 means that the TCOZ semantics of operations ensures TCSP process
refinement agrees with Z operation refinement. This means that the operation refinement and structured
specification techniques of standard Z are more applicable to TCOZ than to either Object-Z or any blended
notation of which we are aware. A subject of further work is the investigation of data refinement in the
TCOZ setting. Since the TCOZ model hides all update events, we expect it to be straightforward to apply
data-refinement techniques in the TCOZ setting. Another interesting further research work perhaps would be
to develop proof rules for reasoning about TCOZ based on the Object-Z’s logic [Smi95a].

Acknowledgements

We would like to thank Hugh Anderson for his helpful comments on this work. This work is supported in
part by the DSTO/CSIRO Fellowship programme from Australia and the research grant (Integrated Formal
Methods, RP3991615) from the National University of Singapore.

160 B. Mahony and J. S. Dong

References

[AGT99] Araki, K., Galloway, A. and Taguchi, K. editors: IFM’99: Integrated Formal Methods, York, UK. Springer-Verlag, June
1999.

[Dav91] Davies, J.: Specification and Proof in Real-Time Systems. PhD thesis, Oxford University Computing Laboratory, Program-
ming Research Group, 1991.

[DuR00] Duke, R. and Rose, G.: Formal Object Oriented Specification Using Object-Z. Cornerstones of Computing. Macmillan,
March 2000.

[Fis00] Fischer, C.: Combination and Implementation of Processes and Data: From CSP-OZ to Java. PhD thesis, University of
Oldenburg, Gemany, January 2000.

[FiW99] Fischer, C. and Wehrheim, H.: Model-checking CSP-OZ specifications with FDR. In Araki et al. [AGT99].
[Gal96] Galloway, A. J.: Integrated Formal Methods with Richer Methodological Profiles for the Development of Multi-Perspective

Systems. PhD thesis, University of Teesside, School of Computing and Mathematics, August 1996.
[GrR95] Griffiths, A. and Rose, G.: A semantic foundation for object identity in formal specification. Object-Oriented Systems,

2:195–215, 1995.
[GaS97] Galloway, A. J. and Stoddart, W. J.: An operational semantics for ZCCS. In Hinchey and Liu [HiL97], pages 272–282.
[He89] He, J.: Process simulation and refinement. Formal Aspects of Computing, 1(3):229–241, 1989.
[HiL97] Hinchey, M. and Liu, S. editors: In IEEE International Conference on Formal Engineering Methods (ICFEM’97), Hiroshima,

Japan, November 1997. IEEE Computer Society Press.
[Hoa85] Hoare, C. A. R.: Communicating Sequential Processes. Prentice-Hall International, 1985.
[Hoa99] Hoare, C. A. R.: Formal methods observations. Conference overview. In World Congress on Formal Methods, FM’99,

http://www.cert.fr/fm99/conferen.htm, 1999.
[MaD98] Mahony, B. P. and Dong, J. S.: Blending Object-Z and Timed CSP: an introduction to TCOZ. In K. Futatsugi, R. Kemmerer,

and K. Torii, editors, 20th International Conference on Software Engineering (ICSE’98), pages 95–104, Kyoto, Japan, April
1998. IEEE Press.

[MaD99] Mahony, B. P. and Dong, J. S.: Overview of the semantics of TCOZ. In Araki et al. [AGT99], pages 66–85.
[Mor94] Morgan, C. C.: Programming from Specifications, second edition. Prentice-Hall, 1994.
[MRS95] Mislove, M., Roscoe, A. and Schneider, S.: Fixed points without completeness. Theoretical Computer Science, 138:273–314,

1995.
[Ros97] Roscoe, A. W.: Theory and Practice of Concurrency. International Series in Computer Science. Prentice-Hall, 1997.
[ReR88] Reed, G. and Roscoe, A.: A timed model for communicating sequential processes. Theoretical Computer Science, 58:249–261,

1988.
[ScD95] Schneider, S. and Davies, J.: A brief history of Timed CSP. Theoretical Computer Science, 138, 1995.
[SmD01] Smith, G. and Derrick, J.: Specification, refinement and verification of current systems: an integration of Object-Z and

CSP. Formal Methods in System Design, 18:249–284, 2001.
[Smi95a] Smith, G.: Extending W for Object-Z. In J. P. Bowen and M. G. Hinchey, editors, Proceedings of the 9th Annual Z-User

Meeting, pages 276–295. Springer-Verlag, September 1995.
[Smi95b] Smith, G.: A fully abstract semantics of classes for Object-Z. Formal Aspects of Computing, 7(3):289–313, 1995.
[Smi97] Smith, G.: A semantic integration of Object-Z and CSP for the specification of concurrent systems. In J. Fitzgerald,

C. Jones, and P. Lucas, editors, Proceedings of FME’97: Industrial Benefit of Formal Methods, Graz, Austria, September
1997. Springer-Verlag.

[Smi00] Smith, G.: The Object-Z Specification Language. Advances in Formal Methods. Kluwer Academic Publishers, 2000.
[Spi88] Spivey, J. M.: Understanding Z: A Specification Language and its Formal Semantics, volume 3 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, UK, 1988.
[Suh99] Suhl, C.: RT-Z: an integration of Z and timed CSP. In Araki et al. [AGT99].
[TaA97] Taguchi, K. and Araki, K.: The state-based CCS semantics for concurrent Z specification. In Hinchey and Liu [HiL97],

pages 283–292.
[Val95] Valentine, S. H.: Equal rights for schemas in Z. In J. P. Bowen and M. G. Hinchey, editors, ZUM’95: The Z Formal

Specification Notation, number 967 in Lecture Notes in Computer Science, pages 203–223, Limerick, Ireland, September
1995. Springer-Verlag.

Received September 2000

Accepted in revised form June 2001

