
Semantic Web for Extending and Linking
Formalisms

Jin Song Dong, Jing Sun, and Hai Wang

School of Computing,
National University of Singapore,

dongjs,sunjing,wangh@comp.nus.edu.sg

Abstract. The diversity of various formal specification techniques and
the need for their effective combinations requires an extensible and
integrated supporting environment. The Web provides infrastructure
for such an environment for formal specification and design because it
allows sharing of various design models and provides hyper textual links
among the models. Recently the Semantic Web Activity proposed the
idea of having data on the web defined and linked in a way that it can
be used for automation, extension and integration. The success of the
Semantic Web may have profound impact on the web environment for
formal specifications, especially for extending and integrating different
formalisms. This paper demonstrates how RDF and DAML can be used
to build a Semantic Web environment for supporting, extending and
integrating various formal specification languages. Furthermore, the
paper illustrates how RDF query techniques can facilitate specification
comprehension.

Keywords: specification environment, Semantic Web

1 Introduction

Many formal specification techniques exist for modeling different aspects of soft-
ware systems and it’s difficult to find a single notation that can model all func-
tionalities of a complex system [21,34]. For instance, B/VDM/Z are designed
for modeling system data and states, while CSP/CCS/π-calculus are designed
for modeling system behaviour and interactions. Various formal notations are
often extended and combined for modeling large and complex systems. In recent
years, formal methods integration has been a popular research topic [1,13]. In
the context of combining state-based and event-based formalisms, a number of
proposals have been presented [8,11,12,19,26,28,29,32]. Our general observations
on these works are that

Various formal notations can be used in an effective combination if the
semantic links between those notations can be clearly established. The
semantic/syntax integration of those languages would be a consequence
when the semantic links are precisely defined. Due to different motiva-
tions, there are possible different semantic links between two formalisms,
which lead to different integrations between the two.

L.-H. Eriksson and P. Lindsay (Eds.): FME 2002, LNCS 2391, pp. 587–606, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

588 J.S. Dong, J. Sun, and H. Wang

Unlike UML,an industrial effort for standardising diagrammatic notations, a
single dominating integrated formal method may not exist in the near future.
The reason may be partially due to the fact that there are many different well
established individual schools, e.g., VDM forum, Z/B users, CSP group, CCS/π-
calculus family and etc. Another reason may be due to the open nature of the
research community, i.e. FME (www.fmeurope.org), which is different from the
industrial ‘globalisation’ community, i.e. OMG (www.omg.org).

Regardless of whether there will be or there should be an ultimate integrated
formal method (like UML), diversity seems to be the current reality for formal
methods and their integrations. Such a diversity may have an advantage, that is,
different formal methods and their combinations may be effective for developing
various kinds of complex systems1. The best way to support and popularise
formal methods and their effective combinations is to build a widely accessible,
extensible and integrated environment.

The World Wide Web provides an important infrastructure for a promising
environment for various formal specification and design activities because it al-
lows sharing of various design models and provides hyper textual links among
the models. Recently the Semantic Web Activity [2] proposed the idea of having
data on the web defined and linked in a way that it can be used for automation
and integration. The success of the Semantic Web may have profound impact
on the web environment for formal specifications, especially for extending and
integrating different formal notations. This paper demonstrates an approach on
how RDF [18] and DAML [30] can be used to build a Semantic Web environment
for supporting, checking, extending and integrating various formal specification
languages. Furthermore, based on this Semantic Web environment, specification
comprehension (queries for review/understanding purpose) can be supported.

The reminder of the paper is organised as follows. Section 2 firstly introduces
RDF/DAML and demonstrates how DAML environment can be built for formal
specification languages such as Z and CSP2. Then it illustrates how the DAML
environments for Z and CSP can be extended for Object-Z and TCSP. Sec-
tion 3 demonstrates how various integration approaches for combining Object-Z
and (T)CSP can be supported by the Semantic Web environment. Section 4
illustrates how specification comprehension can be supported by RDF queries.
Section 5 discusses related work and concludes the paper.

2 Semantic Web for Formal Specifications

Following the success of XML [31], W3C’s primary focus is on Semantic Web.
Currently, one of the major Semantic Web activities at W3C is the work on

1 In fact, one of the difficult tasks of OMG is to resist many good new proposals for
extending UML — a clear consequence and drawback of pushing a single language
for modeling all software systems.

2 Specific formal notations used in this paper are mainly for demonstrating the ideas,
other formalisms can also be supported.

Semantic Web for Extending and Linking Formalisms 589

Resource Description Framework (RDF) [18] and the DARPA Agent Markup
Language (DAML) [30].

RDF is a foundation for processing metadata; it provides interoperability
between applications that exchange machine-understandable information on the
Web. RDF uses XML to exchange descriptions of Web resources and emphasises
facilities to enable automated processing. In fact, the RDF descriptions provide
a simple ontology system to support the exchange of knowledge and semantic in-
formation on the Web. RDF Schema [7] provide the basic vocabulary to describe
RDF vocabularies. RDF Schema can be used to define properties and types of
the web resources. Similar to XML Schema which give specific constraints on
the structure of an XML document, RDF Schema provide information about the
interpretation of the RDF statements. DAML is a semantic markup language
based on RDF and XML for Web resources. DAML currently combines Ontology
Interchange Language (OIL) and features from other ontology systems.

In this section we use Z [33] and CSP [15] as examples to demonstrate how a
Semantic Web environment for formal specification languages can be developed.
These environments can be further extended and integrated.

2.1 Semantic Web Environment — RDFS/DAML for Z

Firstly, a customised RDFS/DAML definition for Z language is developed ac-
cording to its syntax and static semantics. This definition (a DAML ontology
itself) provides information about the interpretation of the statements given in
a Z-RDF instant data model. Part of the RDFS definitions (for constructing a
Z schema) is as follows:

<rdf:RDF
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema#"
xmlns:daml = "http://www.daml.org/2001/03/daml+oil#"
xmlns:z = "http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#">

<!-- some definition omitted -->

<rdfs:Class rdf:ID="Schemadef">
<rdfs:label>Schemadef</rdfs:label>
</rdfs:Class>
<rdfs:Class rdf:ID="Schemabox">
<rdfs:label>Schemabox</rdfs:label>
<rdfs:subClassOf rdf:resource="#Schemadef"/>
<rdfs:subClassOf>
<daml:Restriction daml:cardinalityQ="1">
<daml:onProperty rdf:resource="#name"/>

</daml:Restriction> </rdfs:subClassOf>
<rdfs:subClassOf>

590 J.S. Dong, J. Sun, and H. Wang

<daml:Restriction daml:minCardinality="0">
<daml:onProperty rdf:resource="#del"/>
<daml:toClass rdf:resource="#Schemadef"/>

</daml:Restriction> </rdfs:subClassOf>

<!-- some definition omitted -->
<rdfs:subClassOf>
<daml:Restriction daml:minCardinality="0">
<daml:onProperty rdf:resource="#decl"/>

</daml:Restriction> </rdfs:subClassOf>
<rdfs:subClassOf>
<daml:Restriction daml:minCardinality="0">
<daml:onProperty rdf:resource="#predicate"/>

</daml:Restriction>
</rdfs:subClassOf>

</rdfs:Class>

(note that xmlns stands for XML name space)
The DAML class Schemadef represents the Z schemas. The class Schemabox,

a subclasses of Schemadef, represents the Z schemas defined in schema box
form. The class Schemabox models a type whose instance may consist of a name,
a number of declarations decl and some predicate definitions. In addition, a
Schemabox instance may also have zero or more properties del whose value must
be another Schemadef instance (for capturing the Z ∆-convention). As the paper
focuses on demonstrating the approach, other Semantic Web environments for
Z constructs are left out but can be found at:

http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z.daml

Under the Semantic Web environment for the Z language, Z specifications as
RDF instant files can be edited (by any XML editing tool).

The Z notation contains a rich set of mathematical symbols. Those symbols
can be presented directly in Unicode which is supported by RDF (XML). A
set of entity declarations is defined to map those Z symbols to their Unicode
correspondents (with a Z LATEX compatible name) as follows.

<!ENTITY cat "⁀">
<!ENTITY mem "∈">
<!ENTITY uni "∪">

One benefit of using Unicode is for visualisation purposes, for example, we
have developed an XSLT program (http://nt-appn.comp.nus.edu.sg/fm/zdaml/
rdf2zml.xsl) to transform the RDF environment into ZML [27]3, an XML envi-
ronment for display/browsing Z on the web directly (using the IE web browser).
3 Our previous work, ZML, was developed mainly for visualising Z on the web and
tranforming Object-Z to UML(XMI) [27].

Semantic Web for Extending and Linking Formalisms 591

The following is a simple Buffer schema and a Join operation.

[MSG]

Buffer
max : Z

items : seqMSG

#items ≤ max

Join
∆Buffer
i? : MSG

#items < max ∧
items ′ = 〈i?〉 � items ∧
max ′ = max

The corresponding RDF definition is as following.

<z:Type rdf:ID="msg">
<z:type>MSG</z:type>

</z:Type>
<z:Schemabox rdf:ID="buffer">
<z:name>Buffer</z:name>
<z:decl> <z:Decl z:name="max" z:dtype="&integer;"/> </z:decl>
<z:decl> <z:Decl z:name="items" z:dtype="&seq; MSG"/> </z:decl>
<z:predicate> #items ≤ max </z:predicate>

</z:Schemabox>
<z:Schemabox rdf:ID="join">
<z:name>Join</z:name>
<z:del rdf:resource="#buffer"/>
<z:decl> <z:Decl z:name="i?" z:dtype="MSG"/> </z:decl>
<z:predicate>#items < max &land;
items’= {i?} &cat; items &land; max’ = max </z:predicate>

</z:Schemabox>

Note that the RDF file is in XML format which can be edited by XML editing
tools, i.e. XMLSpy. Alternatively, this RDF specification can be treated as an
interchange format which can be generated from ZML via our XSL tool or from
Latex (a tool is in the development stage).

2.2 Semantic Web Environment — RDFS/DAML for CSP

Similarly a Semantic Web environment for CSP can be constructed based on its
definition. Part of the RDFS/DAML definitions (for constructing a CSP process)
is as follows:

<!-- some definition omitted -->
<rdfs:Class rdf:ID="Event">

<rdfs:label>Event</rdfs:label> </rdfs:Class>
<rdfs:Class rdf:ID="Process">

<rdfs:label>Process</rdfs:label> </rdfs:Class>

592 J.S. Dong, J. Sun, and H. Wang

<rdfs:Class rdf:ID="Simevent">
<rdfs:label>SimpleEvent</rdfs:label>
<!-- some definition omitted -->

</rdfs:Class>

<rdfs:Class rdf:ID="Communication">
<rdfs:label>Communication</rdfs:label>
<rdfs:subClassOf rdf:resource="#Event"/>
<!-- some definition omitted -->

</rdfs:Class>

<!--STOP process-->
<rdfs:Class rdf:ID="Stop">

<rdfs:label>STOP</rdfs:label>
<rdfs:subClassOf rdf:resource="#Process"/>

</rdfs:Class>
<!--prefix process-->
<rdfs:Class rdf:ID="PrefixPro">

<rdfs:label>prefixPro</rdfs:label>
<rdfs:subClassOf rdf:resource="#Process"/>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#prefix"/>
<daml:toClass rdf:resource="#Event"/>

</daml:Restriction> </rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#toProc"/>
<daml:toClass rdf:resource="#Process"/>

</daml:Restriction> </rdfs:subClassOf>
</rdfs:Class>

It states that there are two major kinds of constructs in CSP, events and pro-
cesses. Events can be classified into simple ones and communications containing
channels and messages. Processes can be classified into various forms including
a special event STOP, prefix, sequential etc.

The main contribution of these Semantic Web environments is that they pro-
vide formal specifications on the web together with additional semantic infor-
mation. Furthermore, they facilitate web browsing, collaborative formal design
and some static semantics checking. For instance, given two CSP processes P1
and P2, the following incorrect CSP expression

P1 → P2

will be detected by the CSP Semantic Web environment via RDF validator.
In this paper we will focus on how these environments can be easily extended
and integrated to form new environments for the extension and combination of
formalisms.

Semantic Web for Extending and Linking Formalisms 593

2.3 Extending Z to Object-Z

Object-Z [10,25] is an object-oriented extension to Z. A Z specification defines a
number of state and operation schemas. In contrast, Object-Z associates individ-
ual operations with one state schema. The collective definition of a state schema
with its associated operations constitutes the definition of a class. Each class has
one state schema, at most one initial schema and number of operation schema.
The state schema can be viewed as a nameless Z schema. The initial schema can
be viewed as a Z schema which only contains some predicate properties. The
following demonstrates parts of the Semantic Web environment for Object-Z. It
extends the Z’s environment.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:oz="http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#"
xmlns:z="http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#"
xmlns="http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#">

<daml:Ontology rdf:about="">
<daml:imports rdf:resource=

"http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z"/>
</daml:Ontology>
<rdfs:Class rdf:ID="State">

<rdfs:label>State</rdfs:label>
<rdfs:subClassOf rdf:resource="z:Schemabox"/>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="z:name"/>
<daml:hasValue>

<xsd:string rdf:value=""/> </daml:hasValue>
</daml:Restriction> </rdfs:subClassOf>

</rdfs:Class>
<rdfs:Class rdf:ID="Init">

<rdfs:label>INIT</rdfs:label>
<!-- some definition omitted -->

</rdfs:Class>
<rdfs:Class rdf:ID="OP">

<rdfs:label>OP</rdfs:label>
<!-- some definition omitted -->

</rdfs:Class>

<rdfs:Class rdf:ID="Message">
<rdfs:label>Message</rdfs:label>

594 J.S. Dong, J. Sun, and H. Wang

<rdfs:subClassOf rdf:resource="#OP"/>
<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="oz:receiver"/>

</daml:Restriction> </rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="#method"/>
<daml:toClass rdf:resource="#OP"/>

</daml:Restriction> </rdfs:subClassOf>
</rdfs:Class>

<!-- some definition omitted -->
<rdfs:Class rdf:ID="Classdef"/>

<rdfs:Class rdf:ID="Classdef1">
<rdfs:label>Classdef1</rdfs:label>
<rdfs:subClassOf rdf:resource="#Classdef"/>
<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="z:name"/>

</daml:Restriction> </rdfs:subClassOf>
<!-- some definition omitted -->

<rdfs:subClassOf>
<daml:Restriction>

<daml:maxCardinality>1</daml:maxCardinality>
<daml:onProperty rdf:resource="#state"/>
<daml:toClass rdf:resource="#State"/>

</daml:Restriction> </rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#op"/>
<daml:toClass rdf:resource="#OP"/>

</daml:Restriction> </rdfs:subClassOf>
</rdfs:Class>
<daml:DatatypeProperty rdf:ID="delObj">

<rdfs:range rdf:resource=
"http://www.w3.org/2000/10/XMLSchema#string"/>

</daml:DatatypeProperty>
</rdf:RDF>

This Object-Z Semantic Web environment imports the definition of Z. Note
that Message class is used to define message passing. It consists of a receiver
property (object reference) and a method property (the operation of the declared
class of the receiver).

Semantic Web for Extending and Linking Formalisms 595

A Classdef1 class (an Object-Z class defined by a class box) was defined to
have the following properties.

– a name property,
– a state property whose value must be a State class object,
– some op properties which value must be OP class object etc.

The State class is a subclass of Schemabox (class for a Z schema defined in
schema box form). That is a State object is a special Schemadef object satisfying
the restriction that the name property has no value. The OP class is the same as
class Schemadef (for Z schema) except a new property delObj was added to it.
This is due to the difference between the semantic requirements of ∆ list in Z
and Object-Z. In Z the entity following ∆ is the name of state schema name, and
in Object-Z the entity following the ∆ are variables defined in the class state
schema.

Consider the buffer example in Object-Z:

Buffer

max : N

items : seqMSG

#items ≤ max

INIT
items = 〈 〉

Join
∆(items)
i? : MSG

#items < max
items ′ = 〈i?〉 � items

Leave
∆(items)
i ! : MSG

#items �= 0
items = items ′ � 〈i !〉

under the Semantic Web environment this Buffer class can be edited as the
following RDF file.

<oz:Classdef1 rdf:ID="buffer">
<z:name>Buffer</z:name>
<oz:state>
<oz:State>
<z:decl> <z:Decl z:name="max" z:dtype="&integer;"/> </z:decl>
<z:decl> <z:Decl z:name="items" z:dtype="&seq; MSG"/> </z:decl>
<z:predicate>#items ≤ max</z:predicate>

</oz:State>
</oz:state>
<!-- some definition omitted -->

<oz:op><oz:OP rdf:ID="join">
<z:name>Join</z:name>
<oz:delObj> items</oz:delObj>
<z:decl> <z:Decl z:name="i?" z:dtype="MSG"/> </z:decl>

596 J.S. Dong, J. Sun, and H. Wang

<z:predicate>#items < max &land;
items’= {i?} &cat; items </z:predicate>

</oz:OP></oz:op>
</oz:Classdef1>

2.4 Extending CSP to TCSP

The extension from CSP to TCSP can be achieved in a similar way. The following
is part of the Semantic Web environment for TCSP.

<?xml version="1.0" encoding="UTF-8"?> <rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:tcsp="http://nt-appn.comp.nus.edu.sg/fm/zdaml/TCSP#"
xmlns:csp="http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP#"
xmlns="http://nt-appn.comp.nus.edu.sg/fm/zdaml/TCSP#">

<daml:Ontology rdf:about="">
<daml:imports rdf:resource=
"http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP"/>

</daml:Ontology>
<!--timed event-->
<rdfs:Class rdf:about="csp:Event">

<rdfs:subClassOf>
<daml:Restriction daml:minCardinality="0">

<daml:onProperty rdf:resource="#etime"/>
</daml:Restriction> </rdfs:subClassOf>

</rdfs:Class>
<daml:DatatypeProperty rdf:ID="etime">

<rdfs:range rdf:resource=
"http://www.w3.org/2000/10/XMLSchema#string"/>

</daml:DatatypeProperty>
<!--Wait process-->
<rdfs:Class rdf:ID="Wait">

<rdfs:label>WAIT</rdfs:label>
<rdfs:subClassOf rdf:resource="#process"/>
<daml:Restriction daml:minCardinality="0">

<daml:onProperty rdf:resource="#etime"/>
</daml:Restriction> </rdfs:Class>

<!-- some definition omitted -->

This TCSP environment is derived by first importing the definition of CSP, and
then defining a new property etime for the events in CSP. The property etime
shows the time of occurrence of events. Several new types of process are also
defined. For example, the WAIT process is just a subclass of a general process.

Semantic Web for Extending and Linking Formalisms 597

One interesting point is that the physical size or number of ‘subclass’ clauses
in the DAML file (above) may provide an indication of the degree of extension
(how much modification and extension has been developed in the new language).
Such a concrete number or ratio may give us some quantitive comparison, per-
haps indicating how new (or faithful) is Object-Z relative to Z, TCSP to CSP
or VDM++ to VDM.

In the next section, we will focus on the essential part of this paper – the use
of the Semantic Web for linking formalisms.

3 Semantic Web for Linking Formalisms

Various modeling methods can be used in an effective combination for designing
complex systems if the semantic links between those methods can be clearly
established and defined. Given two sets of formalisms, say state-based ones and
event-based ones, it’s not too surprising to see that different possible integrations
are more than the cross-product of the two sets. This is simply because the
different semantic links between the two formalisms lead to different integrations.
Furthermore, the semantic links can be directional and bi-directional.

Let’s consider the case of linking Object-Z and CSP. Smith and Derrick’s
approach [26] is to identify Object-Z operations with CSP channel/events and
Object-Z classes with CSP processes. The CSP-OZ approach taken by Fischer
and Wehrheim [11] is similar to Smith and Derrick’s approach except that it
divides each Object-Z operation into two separate operations (enable and ef-
fect events). The TCOZ approach [19] identifies Object-Z operations with CSP
processes4.

Despite the differences, all those integrations are useful for modeling different
kinds of complex systems. For example, Smith and Derrick’s approach is good
at modeling a system with a group of simple passive components and complex
concurrent interactions (at a system level) between those components. On the
other hand, TCOZ is good at modeling system with complex components which
may have their own thread of control and support multi-layer compositions and
concurrency.

In this paper, we will demonstrate how the Object-Z and (T)CSP Seman-
tic Web environments can be linked to support Smith/Derrick and TCOZ ap-
proaches.

3.1 Class =⇒ Process

In Smith/Derrick’s approach [26], Object-Z classes are modeled as CSP processes
and the Object-Z operations are modeled as CSP events. The event correspond-
ing to an operation is a communication event with the operation name as the
channel and the mapping from its parameters to their values as the value passed
on that channel. In this approach any two operations with the same name and
4 TCOZ is an integration of Object-Z and TCSP[24].

598 J.S. Dong, J. Sun, and H. Wang

parameters will be modelled by identical events when their parameters have
same values and hence will be able to synchronize. There are two main phases
in specifying a concurrent system.

– The first phase is to decompose the complex system into components and
specify each of these components using Object-Z.

– The second phase involves the specification of the system using CSP opera-
tors.

Consider the specification of two communicating buffers, the following model
demonstrates this approach:

Buffer1 =̂ Buffer [Transfer/Leave]
Buffer2 =̂ Buffer [Transfer/Join]
System =̂ Buffer1 ‖ [Transfer]Buffer2

where the two buffers (Buffer1 and Buffer2) communicate through channel
Transfer .

The semantic environment for this approach can be achieved in the following
way:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:oz="http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#"
xmlns:csp="http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP#"
xmlns:app1="http://nt-appn.comp.nus.edu.sg/fm/zdaml/APP1#">

<daml:Ontology rdf:about="">
<daml:imports rdf:resource=
"http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ"/>
<daml:imports rdf:resource=
"http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP"/>

</daml:Ontology>
<rdfs:Class rdf:about="oz:Classdef">

<rdfs:subClassOf rdf:resource="csp:Pro"/> </rdfs:Class>
<rdfs:Class rdf:about="oz:OP">

<rdfs:subClassOf rdf:resource="csp:Event"/> </rdfs:Class>
<!--operation is one kind of process-->

</rdf:RDF>

It firstly imports the definition of CSP and Object-Z. The Object-Z class is de-
clared as a subclass of the CSP process and the Object-Z operation (extended
from Z operation schema) is declared as a subclass of the CSP event. The above
two buffers example can be encoded in the Semantic Web environment as fol-
lowing.

Semantic Web for Extending and Linking Formalisms 599

<oz:Classdef2 rdf:ID="buffer1">
<z:name>Buffer1</z:name>
<oz:rename> Transfer/Leave</oz:rename>
<oz:eqclass rdf:resource="#buffer"/> </oz:Classdef2>

<oz:Classdef2 rdf:ID="buffer2">
<z:name>Buffer2</z:name>
<oz:rename> Transfer/Join</oz:rename>
<oz:eqclass rdf:resource="#buffer"/> </oz:Classdef2>

<oz:Classdef2 rdf:ID="system">
<z:name>System</z:name>
<oz:eqclass>

<csp:ParallelPro>
<csp:subprocess rdf:resource="buffer1"/>
<csp:subprocess rdf:resource="buffer2"/>
<csp:ParaSync>Transfer</csp:ParaSync>

</csp:ParallelPro> </oz:eqclass> </oz:Classdef2>

3.2 Operation ⇐⇒ Process

TCOZ approach is to identify Object-Z operations as CSP processes and all the
communication must go through the explicitely declared channels. The behaviour
of an active object is explicitely captured by a CSP process. To achieve this
approach several new elements are introduced. They are:

Chan. A channel is declared in an object’s state.
Main. This process defines the dynamic control behaviour of an active object.

The environment for this approach can be achieved in the following way:

<?xml version="1.0" encoding="UTF-8"?> <rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:tcoz="http://nt-appn.comp.nus.edu.sg/fm/zdaml/TCOZ#"
xmlns:oz="http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#"
xmlns:csp="http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP#"
xmlns="http://nt-appn.comp.nus.edu.sg/fm/zdaml/TCOZ#">

<daml:Ontology rdf:about="">
<daml:imports rdf:resource=
"http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ"/>

<daml:imports rdf:resource=
"http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP"/>

</daml:Ontology>
<rdfs:Class rdf:about="oz:State">

<rdfs:subClassOf>
<daml:Restriction daml:minCardinality="0">

600 J.S. Dong, J. Sun, and H. Wang

<daml:onProperty rdf:resource="csp:chan"/>
</daml:Restriction> </rdfs:subClassOf>

<!-- the channel can be declared in sate schema-->
</rdfs:Class>
<daml:ObjectProperty rdf:ID="MAIN">

<rdfs:range rdf:resource="csp:Process"/>
<rdfs:domain rdf:resource="#Classdef"/>

</daml:ObjectProperty>
<rdfs:Class rdf:about="oz:OP">

<rdfs:subClassOf rdf:resource="csp:Process"/>
</rdfs:Class>
<rdfs:Class rdf:about="csp:Process">

<rdfs:subClassOf rdf:resource="oz:OP"/>
</rdfs:Class>
<!--operation is one kind of process-->

</rdf:RDF>

Note that the DAML allows the subclass-relation between classes to be cyclic,
since a cycle of subclass relationships provides a useful way to assert equality
between classes. In TCOZ, the two communicating buffer system (with timing
constraints on input and output operations) can be modelled as:

In the Semantic Web environment, the class TSystem can be encoded as
follows.

<oz:Classdef1 rdf:ID="tsystem">
<z:name>TSystem</z:name>
<oz:state> <oz:State>

<z:decl>
<z:Decl z:name="l" z:dtype="TBuffer[middle/right]"/></z:decl>

<z:decl>

Semantic Web for Extending and Linking Formalisms 601

<z:Decl z:name="r" z:dtype="TBuffer[middle/left]"/></z:decl>
</oz:State> </oz:state>
<oz:MAIN>

<csp:parallelPro>
<csp:subprocess> <oz:Message oz:receiver="l"
oz:method="#TBMAIN"></oz:Message> </csp:subprocess>

<csp:subprocess> <oz:Message oz:receiver="r"
oz:method="#TBMAIN"></oz:Message> </csp:subprocess>

<csp:ParaSync>middle</csp:ParaSync>
</csp:parallelPro> </oz:MAIN>

</oz:Classdef1>

Clearly, unlike Smith and Derrick’s approach, TCOZ is not a simple integra-
tion of Object-Z and TCSP, like CSP-OZ, TCOZ extends the two base notations
with some new language constructs. Another distinct difference is that the se-
mantic link between operation vs process in TCOZ is bi-directional (⇐⇒), while
in Smith and Derrick’s approach, the semantic link between class and process
has a single direction (=⇒). By building the Semantic Web environments for
the two approaches, one can improve the understanding of the difference. Such a
Semantic Web environment is applicable for many other integrated formalisms.

4 Specifiation Comprehension

One of the major contributions of the RDF model introduced by the Semantic
Web community, is that it allows us to do more accurate and more meaningful
searching. This strength of RDF can be applied in the specification context
leading to the notion of specification comprehension. Useful RDF queries can
be formulated for comprehending specification models particularly when models
are large and complex.

There are many RDF query systems available or under development. In this
paper the RDFQL [16], a RDF query language developed by Intellidimension, is
used to demonstrate some queries which can be achieved in the environment.

Based on our simple Buffer and TBuffer examples, the following demon-
strates various queries expressed in RDFQL.

4.1 Inter-class Queries

Two typical queries can be formulated for search/understanding class relation-
ships, such as inheritance hierarchy and composition structure.

(Inheritance) Find all the sub-classes derived from the class Buffer (Figure 1)

602 J.S. Dong, J. Sun, and H. Wang

Fig. 1. Find all the sub-classes

Query:
select ?c_name using buffer where

{[http://www.w3.org/1999/02/22-rdf-syntax-ns#type]
?c [http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#Classdef1]}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?c ’Buffer’}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#inherit] ?derivedc ?c}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?derivedc ?c_name}
Result: TBuffer

(Composition:) Find all classes containing Buffer instances (as attributes)

Query:
select ?c_name using buffer where

{[http://www.w3.org/1999/02/22-rdf-syntax-ns#type]
?c [http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#Classdef1]}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?c ?c_name}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#state] ?c ?s}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#decl] ?s ?d}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#dtype] ?d ?dt}
and (INSTR(?dt, ’Buffer’) = 1)

Result: TSystem

4.2 Intro-class Queries

A number of queries can be built for search/understanding class content (this
is useful particularly when a class is large and has many operations).

Semantic Web for Extending and Linking Formalisms 603

Find all the operations which may change the attribute items:

Query:
select ?op_name using buffer where

{[http://www.w3.org/1999/02/22-rdf-syntax-ns#type]
?c [http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#Classdef1]}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?c ’Buffer’}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#op] ?c ?op}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#delObj] ?op ’items’}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?op ?op_name}

Result: Join, Leave

Find all the constant attributes in a class:

Query:
select ?att using buffer where

{[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#state] ?c ?sta}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#decl] ?sta ?decl}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?decl ?att}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#delObj] ?op ?att1}
and (?att <> ?att1)

Result: max

Find all the operations which have the same interface (with common base
names for output and input):

Query:
select ?op_name1 ?op_name2 using buffer where

{[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#op] ?c1 ?op1}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#op] ?c2 ?op2}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?op1 ?op_name1}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?op2 ?op_name2}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#decl] ?op1 ?d1}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?d1 ?n1}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#decl] ?op2 ?d2}
and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?d2 ?n2}
and (?op1 <> ?op2) and (STRCMP(regexp(?n1,’*!’), regexp(?n2,’*?’))= 0)

Result: ’Join’ ’Leave’

5 Related Work, Conclusion, and Further Work

One of the early work by Bicarregui and Matthews [4] has proposed ideas to in-
tegrate SGML (earlier version of XML) and EXPRESS for documenting control
systems design. Z notation on the web based on HTML and Java applets has
been investigated by Bowen and Chippington [5] and Cinancarini, Mascolo and
Vitali [9]. HTML has been successful in presenting information on the Internet,
however the lack of content information has made the retrieval and exchange

604 J.S. Dong, J. Sun, and H. Wang

of resource more difficult to perform. Our previous work was to improve on
those issues by taking an XML approach [27]. Recently, the Community Z Tools
Initiative [20] has stated to consider to build a XML interchange format for Z
according to Z standards. However, the focus of all those approaches (based on
HTML and XML) was mainly for displaying and browsing Z/Object-Z speci-
fications on the web without concern for semantic issues and integration with
other formalisms. The aim of this paper is different, it focuses on building a
Semantic Web (RDF/DAML) environment for supporting, extending and inte-
grating many different formalisms. Such a meta integrator may bring together
the strengths of various formal methods communities in a flexible and widely
accessible fashion. The Semantic Web environment for formal specifications may
lead to many benefits. One novel application which has been demonstrated in
this paper is the notion of specification comprehension based RDF query tech-
niques. The review process of a large specification can be facilitated by various
RDF queries.

Using the terminology from Jackson and Wing [17], this paper has demon-
strated the potential for constructing a lightweight supporting environment and
tools for all formal specification languages and their various (existing or even pos-
sible future) integrations. Recent efforts and success in formal methods have been
focused on building ‘heavy’ tools for formal specifications, such as proof tools
(e.g. Mural[3] for VDM, EVE[23] for Z etc) and model checkers (e.g. FDR [22]
for CSP). Although those tools are essential and important for applications of
formal methods, in order to achieve wider acceptance, the development of light
weight tools such as the Semantic Web environment for formal specifications is
also important. Interfacing such a web environment with proof tools and model
checkers would be an interesting future work. Another interesting different re-
search direction will be to investigate how formal specification techniques can
facilitate web-based ontology design such that formal methods not only can ben-
efit from web technologies but also can contribute to the web applications.

Acknowledgements. We would like to thank Hugh Anderson, DSTA staffs and
anonymous referees for many helpful comments. This work is supported by the
Academic Research grant Integrated Formal Methods from National University
of Singapore and Defence Innovative Research grant Formal Design Methods and
DAML from Defence Science & Technology Agency (DSTA) Singapore.

References

1. K. Araki, A. Galloway, and K. Taguchi, editors. IFM’99: Integrated Formal Meth-
ods, York, UK. Springer-Verlag, June 1999.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

3. J.C. Bicarregui, J.S. FitzGerald, P.A. Lindsay, R. Moore, and B. Ritchie. Proof in
VDM: A practioners Guide. Springer Verlag, 1994.

4. J.C. Bicarregui and B. M. Matthews. Integrating EXPRESS and SGML for Doc-
ument Modelling in Control Systems Design. In EUG’95, 5th Annual EXPRESS
User Group International Conference, 1995.

Semantic Web for Extending and Linking Formalisms 605

5. J. P. Bowen and D. Chippington. Z on the Web using Java. In Bowen et al. [6],
pages 66–80.

6. J. P. Bowen, A. Fett, and M. G. Hinchey, editors. ZUM’98: The Z Formal Specifica-
tion Notation, 11th International Conference of Z Users, Berlin, Germany, 24–26
September 1998, volume 1493 of Lect. Notes in Comput. Sci. Springer-Verlag, 1998.

7. D. Brickley and R.V. Guha (editors). Resource description framework (rdf) schema
specification 1.0.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/, March, 2000.

8. M. Butler. csp2B: A Practical Approach To Combining CSP and B. In J. Wing,
J. Woodcock, and J. Davies, editors, FM’99: World Congress on Formal Methods,
Lect. Notes in Comput. Sci., Toulouse, France, September 1999. Springer-Verlag.

9. P. Ciancarini, C. Mascolo, and F. Vitali. Visualizing Z notation in HTML docu-
ments. In Bowen et al. [6], pages 81–95.

10. R. Duke and G. Rose. Formal Object Oriented Specification Using Object-Z. Cor-
nerstones of Computing. Macmillan, March 2000.

11. C. Fischer and H. Wehrheim. Model-Checking CSP-OZ Specifications with FDR.
In Araki et al. [1].

12. A. J. Galloway and W. J. Stoddart. An operational semantics for ZCCS. In
Hinchey and Liu [14], pages 272–282.

13. W. Grieskamp, T. Santen, and B. Stoddart, editors. IFM’00: Integrated Formal
Methods,, Lect. Notes in Comput. Sci. Springer-Verlag, October 2000.

14. M. Hinchey and S. Liu, editors. the IEEE International Conference on Formal En-
gineering Methods (ICFEM’97), Hiroshima, Japan, November 1997. IEEE Com-
puter Society Press.

15. C.A.R. Hoare. Communicating Sequential Processes. International Series in Com-
puter Science. Prentice-Hall, 1985.

16. Intellidimension Inc. Rdfql reference manual.
http://www.intellidimension.com/RDFGateway/Docs/rdfqlmanual.asp, 2001.

17. D. Jackson and J. Wing. Lightweight formal methods. IEEE Computer, April
1996.

18. O. Lassila and R. R. Swick (editors). Resource description framework (rdf)
model and syntax specification. http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/, Feb, 1999.

19. B. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Transactions
on Software Engineering, 26(2):150–177, February 2000.

20. Andrew P. Martin. Community z tools initiative.
http://web.comlab.ox.ac.uk/oucl/work/andrew.martin/CZT/, 2001.

21. R. Paige. Formal method integration via heterogeneous notations. PhD Disserta-
tion, University of Toronto, 1997.

22. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
23. M. Saaltink. Z and EVES. In Proceedings of Sixth Annual Z-User Meeting, Uni-

versity of York, Dec 1991.
24. S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W. Roscoe.

Timed CSP: Theory and practice. In J. W. de Bakker, C. Huizing, W. P. de Roever,
and G. Rozenberg, editors, Real-Time: Theory in Practice, volume 600 of Lect.
Notes in Comput. Sci., pages 640–675. Springer-Verlag, 1992.

25. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

26. G. Smith and J. Derrick. Specification, refinement and verification of concurrent
systems - an integration of Object-Z and CSP. Formal Methods in System Design,
18:249–284, 2001.

606 J.S. Dong, J. Sun, and H. Wang

27. J. Sun, J. S. Dong, J. Liu, and H. Wang. Object-Z Web Environment and Pro-
jections to UML. In WWW-10: 10th International World Wide Web Conference,
pages 725–734. ACM Press, May 2001.

28. K. Taguchi and K. Araki. The State-Based CCS Semantics for Concurrent Z
Specification. In Hinchey and Liu [14], pages 283–292.

29. H. Treharne and S. Schneider. Using a Process Algebra to control B OPERA-
TIONS. In Araki et al. [1].

30. F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks (editors). Reference de-
scription of the daml+oil ontology markup language. Contributors: T. Berners-Lee,
D. Brickley, D. Connolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, O.
Lassila, D. McGuinness, L. A. Stein, ..., March, 2001.

31. World Wide Web Consortium (W3C). Extensible markup language (xml).
http://www.w3.org/XML.

32. J. Woodcock and A. Cavalcanti. The steam boiler in a unified theory of Z and
CSP. In The 8th Asia-Pacific Software Engineering Conference (APSEC’01), pages
291–298. IEEE Press, 2001.

33. J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall International, 1996.

34. P. Zave and M. Jackson. Where do operations come from?: A multiparadigm
specification technique. IEEE Transactions on Software Engineering, 22(7):508–
528, July 1996.

	Introduction
	Semantic Web for Formal Specifications
	Semantic Web Environment --- RDFS/DAML for Z
	Semantic Web Environment --- RDFS/DAML for CSP
	Extending Z to Object-Z
	Extending CSP to TCSP

	Semantic Web for Linking Formalisms
	$Class mathrel =mathrel {mkern -3mu}Rightarrow Process$
	$Operation Leftarrow mathrel {mkern -3mu}Rightarrow Process$

	Specifiation Comprehension
	Inter-class Queries
	Intro-class Queries

	Related Work, Conclusion, and Further Work
	References

