
Model Checking Live Sequence Charts

Jun Sun and Jin Song Dong
School of Computing

National University of Singapore
{sunj, dongjs}@comp.nus.edu.sg

Abstract

Live Sequence Charts (LSCs) are a broad extension to
Message Sequence Charts (MSCs) to capture complex inter-
object communication rigorously. A tool support for LSCs,
named PlayEngine, is developed to interactively “play-
in” and “play-out” scenarios. However, PlayEngine can-
not automatically expose system design inconsistencies,
e.g. conflicts between universal charts and etc. CSP is a for-
mal language to specify sequential behaviors of a process
and communication between processes, which has power-
ful tool supports, e.g. FDR. Semantically, system behaviors
specified by LSCs correspond to CSP’s traces and failures.
This close semantic correspondence makes FDR a poten-
tial model checker for LSCs. The challenge is to discover
a systematic way of constructing semantic preserving CSP
models from LSCs. In this work, we investigate theoretical
relations between LSCs and CSP. LSCs are formalized using
trace and failure semantics so as to facilitate the semantic
transformation from LSCs to CSP. The practical implica-
tion is that mature tool supports for CSP can be reused to
validate LSCs. In particular, FDR is used to establish the
consistency of an LSC model and perform various verifica-
tion.
Keywords: LSCs, CSP, FDR, Verification

1 Introduction

Message Sequence Charts (MSCs) [14] are widely used
to describe scenarios that capture communication between
processes or objects. They are used in early stages of sys-
tem development. They have found their ways into many
methodologies [14, 2]. However, MSCs suffer from the
rather weak partial-order semantics that makes it incapable
of capturing many kinds of behavioral requirements. Live
Sequence Charts (LSCs) [7] are introduced by Damm and
Harel to overcome the shortcomings of MSCs by adding
liveness. LSCs extend MSCs with various constructs to dis-
tinguish scenarios that must happen from scenarios that may

happen, conditions that must be fulfilled from conditions
that may be fulfilled and etc. Together with symbolic ob-
jects and various high-level operators like bounded loop,
if-then-else, LSCs may well be used to specify compli-
cated inter-objects system requirements. A software pack-
age named PlayEngine is developed by Damm and Harel
to interactively “play-in” and “play-out” scenarios. How-
ever, PlayEngine does not support automatic verification
of LSCs. It is important to expose inconsistencies of sys-
tem requirements in the early stage of system development.
One effective approach to verify LSC models is to use
existing mature model checkers, i.e. FDR (Failure Diver-
gence Refinement[20]) of Communicating Sequential Pro-
cess (CSP) [13].

Semantically, system behaviors specified by LSCs cor-
respond to CSP’s traces and failures. This close semantic
correspondence makes FDR a potential model checker for
LSCs. The challenge is to construct semantic preserving
CSP models from LSCs systematically. In this work, we
firstly investigate theoretical relations between LSCs and
CSP and then develop semantic mappings from LSCs to
CSP. The investigation of semantic mappings from LSCs to
CSP is more than of theoretical interests. Its practical impli-
cation is that various tool supports for CSP can be reused to
validate LSCs. In this work, we are particularly interested
in using FDR, a well-known CSP model-checker, to verify
LSC models. Our approach is automated using JAVA and
XML technology.

The semantics of LSCs is briefly discussed in [7] using
skeleton automata and program-like pseudo-codes. Only
basic charts and pre-charts are covered. To develop a sound
transformation from LSCs to CSP, a more complete seman-
tics is needed. We start with formalizing LSCs by complet-
ing and extending the skeleton automata approach to give
precise semantics to universal charts. Important semantic
definitions like traces and failures are defined then. Con-
structing CSP processes from LSCs by mimicking the states
in the skeleton automata is not only impractically expen-
sive, but also results in an unreadable CSP model and cre-
ates barriers to relate verification results to original charts.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

We present a systematic way to construct CSP processes in-
stead. The soundness of the construction is shown using the
failure semantics. Finally, we show that FDR can be used
to verify the constructed CSP processes for various proper-
ties so as to establish the consistency and correctness of the
LSCs.

As for related works, there are attempts on formalizing
LSCs [15, 4]. Bontemps and Heymans [4] use Büchi au-
tomata to define the language expressed by a set of LSCs so
that standard algorithm for automata can be used to check
consistency and refinement and etc. However, as Büchi
automata are low-level and not structured, flattening high-
level LSCs to automata suffers from the state space explo-
sion problem. Our work preserves the structure of the LSCs
and avoids constructing the global state machine. The key
point is that our construction allows mature tool supports
for CSP readily to validate LSC specifications. Klose and
Wittke [15] derive a similar timed Büchi automaton to cap-
ture the semantics of an LSC chart in isolation. Our ap-
proach handles multiple LSCs and are extensible. Our work
is also loosely related to works on formalization and sim-
ulation and validation of MSCs/LSCs, e.g. the simulation
tool developed by Wang and etc. based on constraint logic
programming [21] and theoretical works on MSCs by Thi-
agarajan [16] and Mauw and Reniers [19].

The remaining of the paper is organized as follows. Sec-
tion 2 introduces CSP and LSCs. Section 3 presents the
semantics of LSC charts using a skeleton automaton and
shows how to construct CSP processes from an LSC chart
and a set of LSC charts. Section 4 presents an automatic
transformation tool and shows the verification of LSCs us-
ing examples. Section 5 concludes the paper.

2 Background Review

2.1 CSP

Hoare’s CSP [13, 20] is a formal specification language
where processes proceed from one state to another by en-
gaging in events. A CSP process is defined by process ex-
pressions. The syntactic class of process expression is de-
fined as:

P ::= RUNΣ | STOP | SKIP | P1 <| b>| P2 | e → P |
P1 � P2 | P1 � P2 | P1; P2 | P1 |[Σ]|P2 |
‖n

k=1
(Pk, Σk) | P1 � P2 | · · ·

CSP defines a rich set of operators to create processes.
RUNΣ is a process always willing to engage any event in Σ.
STOP denotes a process that deadlocks and does nothing. A
process that terminates immediately is written as SKIP. A
process e → P is initially willing to engage in event e and
behaves as P afterward. CSP allows a hierarchical descrip-
tion of a system by offering various operators to compose

processes. The sequential composition, P1; P2, behaves as
P1 until it terminates and then behaves as P2. A choice be-
tween two processes is denoted as P1 | P2. The choice is
made either internally (P1 � P2) or externally (P1 � P2).
Often, choices are guarded by prefixing or conditionals. A
choice that depends on the truth value of a boolean expres-
sion b is written as P1 <| b>| P2. If b is true, this process pro-
ceeds as P1, otherwise P2. Parallel composition of two pro-
cesses is denoted as P1 |[Σ]|P2, where events in Σ are syn-
chronized. ‖n

k=1
(Pk, Σk) is a replicated alphabetized par-

allel denoting parallel composition of n processes, where
each process Pk synchronizes with the rest of the system on
events in Σk. P1 � P2 behaves as P1 until the initial event
of P2 engages and P2 takes control. If P1 can engage the
initial event of P2.

Three mathematical models for CSP are defined. In the
traces model: a process is represented by the set of finite
sequences of communications it can perform, denoted as
traces(P). In the stable failures model, a process is repre-
sented by its traces and also by its failures. A failure is a pair
(t, Σ), where t is a finite trace of the process and Σ is a set
of events it can refuse after t (refusal). The set of P’s fail-
ures is denoted as failures(P). In the failures/divergences
model [5], a process is represented by its failures, together
with its divergences. A divergence is a finite trace during or
after which the process can perform an infinite sequence of
consecutive internal actions. Failure/divergence model and
stable failure model make no difference for divergence-free
systems.

Three main forms of refinements are relevant, corre-
sponding to the three models [20]. Traces refinement
is used for proving safety properties. Failures refine-
ment is normally used to prove failures-divergence refine-
ment for divergence-free processes. Failures-divergence
refinement is used for proving safety, liveness and com-
bination properties, and also for establishing refinement
and equality relations between systems. Two processes
P1, P2 are equivalent, denoted as P1 =FD P2, if and
only if failures(P1) = failures(P2) and divergences(P1) =
divergences(P2). Equivalence of processes can be proved
or disproved by appeal to algebraic laws. For example,
some simple laws relevant to our work are:

[R1] P |[Σ]|RUNΣ =FD P
[R2] P ‖ STOP =FD STOP

[R3] P ‖ P =FD P

FDR, a commercial product of Formal Systems (Europe)
Ltd., is a model-checker for CSP. Its method of establish-
ing whether a property holds is to test for the refinement
of a CSP process capturing the property by the candidate
process. It can also check determinism, deadlock-freeness,
livelock-freeness of CSP processes.

2

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

2.2 LSCs

There are two kinds of charts in LSCs. Existential charts
are mainly used to describe possible scenarios of a system in
early stages of system development. In later stage, knowl-
edge becomes available about when a system run has pro-
gressed far enough for a specific usage of the system to be-
come relevant. Universal charts are then used to specify be-
haviors that should always be exhibited. A universal chart
may be preceded by a pre-chart, which serves as the acti-
vation conditions for executing the main chart. Whenever
a communication sequence matches a pre-chart, the system
must proceed as specified by the main chart. A universal
chart is pre-activated if its pre-chart is activated. A chart is
associated with a set of visible events. Only visible events
are constrained. A chart typically consists of multiple in-
stances, which is represented as vertical lines. Along with
each line, there are a finite number of locations. A loca-
tion carries the temperature annotation for progress within
an instance. A location may be labelled as either cold or
hot. A hot location means that the system has to move be-
yond. Similarly, messages and conditions are also labelled.
A hot message must be received and a hot condition must
be met.

Typically, a system is described by a set of LSCs, both
universal charts and existential charts. We assume that an
LSC model consists of a set of universal charts. Existential
charts are used to specify test cases. Due to pre-charts, a
system run may activate a universal chart more than once
and some of the activation might overlap [18]. LSCs sup-
port advanced MSC features like co-region, hierarchy and
etc. Symbolic instances and messages are adopted to group
scenarios effectively. For details on features of LSCs, refer
to [11]. LSCs are far more expressive than MSCs, which
makes them capable of expressing complicated inter-objects
system requirements.

Figure 1 shows an LSC universal chart with a nonempty
pre-chart taken from [6] as part of the model of a phone.
Four objects participate in this scenario, a user, the cover,
the display and the speaker. This scenario describes the be-
havior of the phone when the cover is closed. Once the
cover is closed by the user, the main chart is activated. The
display is set to the current time if it is not off. The speaker
is turned to silent mode. In this example, all vertical lines in
the main chart are dotted, which means that the system may
stay forever at some point along the vertical line. Symbolic
instances and messages are used in this example as both ob-
jects (Display) and messages (SetState) are parameterized.

3 LSCs as CSPs

In this section, we formalize LSCs by adopting and ex-
tending the skeleton automata approach [7]. In [7], the se-

Figure 1. Phone LSC Example: Close Cover

mantics of a basic chart or a pre-chart is explained infor-
mally using skeleton automata and program-like pseudo-
codes. No indication is given on what the system behaviors
specified a set of universal charts are. We present a detailed
definition of the skeleton automata for basic charts and pre-
charts. The behaviors of a chart is defined using traces, fail-
ures. Lastly, we show how to construct CSP processes to
capture the behaviors specified by a set of universal charts
systematically.

3.1 Semantics of LSCs

In this section, we focus on semantic models of the
main features of LSCs in order to demonstrate the essen-
tial idea of our approach. For example, in the following
semantic model, we assume that all message passings are
synchronized and conditions or actions are not shared be-
tween instances. It should be clear that other features can
be incorporated in our semantic model and proper CSP pro-
cesses can be constructed systematically. For example, in
our transformation tool, asynchronous message passings are
handled by explicitly modelling the behavior of the buffer
(i.e. FIFO), shared conditions are expressed as two separate
conditions on the instances with proper synchronization be-
fore and after the conditions. We assume that all locations
are cold as CSP only specifies prefix-close languages. The-
oretically, communications labelled with hot locations can
be captured by the notion of signals in Davies’s Work on
CSP [8], where singals are defined as events that must be
observed in the future state. Timing events in LSCs are
treated as abstract CSP events in the way similar to the treat-
ment of Timed CSP in FDR.

3.1.1 Semantics of Basic Charts

A basic chart is a simplest universal chart that has no hi-
erarchy and preceded by no pre-charts. The semantics of

3

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

a basic chart m is defined to consist of all runs compatible
with the partial order induced by m and its annotations. Let
Σm represent the set of events visible to m. We assume that
there are n instances in the chart. For each instance, there
are a finite number of locations. A location is labelled with
a finite number of events1 and at most one condition. The
events and condition associated with a location are simulta-
neously evaluated. We first give a set of axiom definitions
to ease the definition of the skeleton automata.

Let Chart, Instance denote the set of all charts and in-
stances, we define function inst : Chart → P Instance
to return the set of instances in a chart. A location of
an instance is uniquely identified by its location index,
Location == Instance×N. A location indexed with 0 is the
starting point of the instance in the chart. We define func-
tion max : Instance → N to return the maximum location
index, i.e. the ending point of the instance. Given a location
in the chart, we define function next : Location → Location
to compute the next location along the vertical line repre-
senting an instance.

∀(i, l) : Location • l < max(i) ⇒ next(i, l) = (i, l + 1)

An LSC event is either a local actionA or a message passing
M. Local actions are mainly assignments or invocations of
external functions, which we abstract away here. A message
is attached with a flag to indicate sending or receiving.

Event == M⋃A
M == M ID ×M Flag
M Flag ::= SND | RCV

Function label : Location → P Event labels a location with
a finite number of messages and local actions. Function
cond : Location → Condition labels a location with a con-
dition. If there is no condition associated with the location,
it returns true. Each condition can be evaluated to either
true or false, eval : Condition → (true | false). Each con-
dition is either labelled as cold or hot, label : Condition →
(cold | hot).

An LSC chart induces a partial order over the events.
The partial order is defined as the smallest binary relation
R : Location ↔ Location satisfying the following axioms
and closed under transitivity and reflexivity.

• ∀ l : Location • l R next(l)

• ∀ l1, l2 : Location | l1 �= l2 •
(∃m : M ID • (m, SND) ∈ label(l1) ∧
(m, RCV) ∈ label(l2)) ⇒ l1 R l2

• ∀ l1, l2 : Location | l1 �= l2 •
(∃m : M ID • (m, SND) ∈ label(l1) ∧
(m, RCV) ∈ label(l2)) ⇒ l2 R next(l1)

1More than one if it is a co-region.

Basically, the first axiom says that time progresses from top
to bottom along each vertical line. The second axiom says
message input event must precede the corresponding mes-
sage output event. The third axiom handles synchronous
message passing. An LSC chart m is well-formed if the re-
lation R is acyclic. In the sequel, we assume that all charts
are well-formed.

We define function preset : Location → P Location to
return the set of locations that precede a given location in
the relation R.

∀ l : Location • preset(l) = {x : Location | x R l}
One of the basic concepts used for defining the semantics of
LSCs is the notion of a cut. A cut through the chart repre-
sents the progress each instances has made in the scenario.
Let cut denote the set of all possible cuts, a cut is a set
of locations, one for each instance, satisfying the following
condition:

∀ x : cut(m) • #(x) = n ∧
∀ l : x •� ∃ l′ : x • l′ ∈ preset(l)

In case of co-regions, a cut is not sufficient to represent
the progress of each instance in a chart. Thus, we define
the notion of a state. A state of the chart is defined as a
set of pairs of location and set of events, one pair for each
instance, satisfying the following condition:

∀ s : state(m) • #(s) = n ∧
∀(l, A) : s • A ⊆ label(l) ∧
∀(l1, A1), (l2, A2) : s • l1 �= l2 ∧
∃(l1, · · · , ln) : cut; A1, · · · , An : P Event |

{(ll, A1), · · · , (ln, An)} = s

For an instance at location lk, given a set of events Ak al-
ready engaged at the location, we define the set of enabled
events as: enabled(lk, Ak) = label(lk) \ Ak. For a state dur-
ing the progress of a chart, we compute the set of events that
are ready to be engaged as Enabled.

∀ s : state • s =
⋃

k∈inst(m){(lk, Ak)} ⇒
Enabled(s) =

⋃
k∈inst(m)(label(lk) \ Ak)

We are now ready to define the semantics of a basic chart
using a skeleton automaton.

Definition 3.1 A basic chart m is associated with a skeleton
automata Am =̂ (Sm, S0

m, Σm ∪ {τ}, Tm) where:

• Sm =̂ {Aborted, Terminated}∪Active, where Active =̂
state(m). A basic chart is either active or aborted or
terminated.

• S0
m =̂

⋃
k∈inst(m){(0, ∅)}. Initially, a chart is active

and all instances are at their first location with no
events engaged.

4

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

• Σm is the set of visible events to the chart. A special
event τ is added to denote temporal progress along a
vertical line.

• Tm : Sm × Σm ∪ {τ} → Sm is the smallest transition
relation satisfying the following conditions2:
T1: ∀ e : Σm • (Terminated, e, Terminated) ∈ Tm

T2: (
⋃

k{(max(k), label(max(k)))}, τ, Terminated) ∈ Tm

T3: s ∈ Active ∧ (l, A) ∈ s ∧ e ∈ A ∧
e ∈ enabled(l, A) ⇒ (s, e, s ⊕ {l, A ∪ {e}}) ∈ Tm

T4: s ∈ Active ∧ {(l1, A1), (l2, A2)} ⊆ s ∧
e ∈ M ID ∧ (e, SND) ∈ enabled(l1, A1) ∧
(e, RCV) ∈ enabled(l2, A2) ⇒
(s, e, s ⊕ {(l1, A1 ∪ {e}), (l2, A2 ∪ {e})}) ∈ Tm

T5: s ∈ Active ∧ (lk, label(lk)) ∈ s ∧
l < max(k) ∧ eval(cond(next(lk))) = true ∧
s \ {(lk, label(lk))} ∪ {(next(lk), ∅)} ∈ state(m) ⇒
(s, τ, s \ {(lk, label(lk))} ∪ {(next(lk), ∅)}) ∈ Tm

T6: s ∈ Active ∧ (lk, label(lk)) ∈ s ∧ l < max(k) ∧
eval(cond(next(lk))) = false ∧
label(cond(next(lk))) = cold
⇒ (s, τ, Terminated) ∈ Tm

T7: s ∈ Active ∧ (lk, label(lk)) ∈ s ∧ l < max(k) ∧
eval(cond(next(lk))) = false ∧
label(cond(next(lk))) = hot ⇒ (s, τ, Aborted) ∈ Tm

Basically, T1 says that all behaviors are allowed after a chart
is terminated. T2 states that a chart is terminated only af-
ter all instances have reached their ending points. T3 and
T4 state that a local action or a message passing is always
ready to be engaged without breaking the partial ordering.
T5 states if all events at a location are engaged and the in-
stance hasn’t reached its end, the instance proceeds to the
next location by taking an internal τ action if the condition
labelled with the next location is true. Otherwise, if the
condition is labelled hot, the chart aborts so that no further
behavior is allowed. Whereas if the condition is cold, the
chart terminates immediately.

LSCs provide operators to compose basic charts hierar-
chically in various ways. For a chart with hierarchy, we can
easily flatten the sub-charts by adding transitions connect-
ing the initial state and Terminated state of the sub-chart to
the automaton of the upper-level chart. For instance, the
if-then-else operator can be flattened by connecting the last
state of the upper-level chart to both of the initial states of
the two branches. As the flattening is pretty standard, we
omit the detail here.

3.1.2 Semantics of Pre-chart

We associate a pre-chart with a skeleton automaton as
above. However, due to the nature of pre-chart, the skeleton
automaton is defined differently from [7], i.e. unexpected
events lead the pre-chart to the Exited state, where all be-
haviors are allowed.

2⊕ is the standard function override operator.

Definition 3.2 A pre-chart p is associated with a skeleton
automaton Ap =̂ (Sp, S0

p , Σp ∪ {τ}, Tp) where:

• Active =̂ state(p)
Sp =̂ {Exited, Finished} ∪ Active

• S0
p =̂

⋃
k∈inst(m){(0, ∅)}

• Tp : Sp × Σp → Sp is the smallest transition relation
satisfying the following conditions in addition to T3,
T4, T5:

– ∀ e : Σm • (Exited, e, Exited) ∈ Tp

– (
⋃

k{(max(k), label(max(k))}, τ, Finished) ∈ Tp

– s ∈ Active ∧ (lk, label(lk)) ∈ s ∧ l < max(k) ∧
eval(cond(next(lk))) = false ⇒ (s, τ, Exited) ∈ Tp

– s ∈ Active ∧ e ∈ Event ∧ e �∈ Enabled(s) ⇒
(s, e, Exited) ∈ Tp

A pre-chart is Finished if all its sequence of events are
matched. A false condition, either labelled as hot or cold,
leads the chart to the Exited state. If some events con-
strained by this chart appear out of order, the pre-chart ex-
its. A universal chart preceded by a pre-chart is defined by
connecting the automaton for pre-chart with the one for the
main chart.

Definition 3.3 For a chart preceded by a pre-chart, let
Ap =̂ (Sp, S0

p , Σp, Tp) and Am =̂ (Sm, S0
m, Σm, Tm) denote the

skeleton automata associated with the pre-chart and main
chart respectively. The automaton associated with the chart
is defined as A =̂ (S, S0, Σ, T) where S =̂ Sp ∪ Sm and S0 =̂
S0

p and Σ =̂ Σm∪Σp and T =̂ Tp∪Tm∪{(Finished, τ, S0
m)}.

The automaton of a universal chart accepts message
sequences that satisfy the constraint for the first pre-
activation3 of the chart. After the first pre-activation, the
automaton is expired and all behaviors are allowed. In gen-
eral, a chart may be pre-activated more than once (in gen-
eral, may be infinite number of times) during a system run
and activation of the same chart may overlap as well. A
universal chart should constrain all behaviors of a system at
all time. Our solution is to use multiple copies of the CSP
process (if necessary) corresponding to the same automaton
to constrain the system properly.

Important definitions like traces, failures, can be defined
for the skeleton automaton in the standard way [12]. For an
automaton A =̂ (S, S0, Σ, T), we define4:

traces(A) = {t : seq Σ | ∃ s1, · · · , sk, · · · , sn : S •
s1 = S0 ∧ ∀ k : 1 . . n • (sk, t(k), sk+1) ∈ T)}

failures(A) = {(t, Σ) | ∃ s1, · · · , sk, · · · , sn : S •
s1 = S0 ∧ ∀ k : 1 . . n • (sk, t(k), sk+1) ∈ T ∧
∀ e : Σ •� ∃ s′ : S • (sn, e, s′) ∈ T}

3The main chart may not get activated
4The failure definition is only for universal chart. For existential chart,

the failures are {(s, ∅) | s ∈ traces(A)}.

5

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

In LSC, a divergence occurs if an empty sub-chart is in-
finitely looping (or the subchart contains some trivially true
conditions, so the trace is an infinite sequences of τ .). In this
work, we assume that a chart is divergence-free by requir-
ing that a chart must contain non-empty set of locations and
each location (except the starting point and ending point)
must contain non-empty set of events. Thus, a universal
chart is equivalent to a CSP process if and only if their fail-
ures are same.

3.2 LSC Charts as CSP Processes

A CSP process P can be constructed from a skeleton au-
tomaton A to capture its behavior by mimicking the states
in the skeleton automata (A.S). Initially, P begins in the
initial state S0. Upon entering a new state s ∈ S, the pro-
cess is ready to engage events that label one of the outgoing
transitions. However, the number of states in the skeleton
automaton could be huge due to the weak partial ordering.
Mimicking the states is impractically expensive as well as it
destroys the structure information of the charts. The latter
problem is essential in our case as it may create barriers to
expose the source of inconsistencies using verification re-
sults on constructed CSP processes. The basic idea of our
approach is to model LSC instances as CSP processes.

For a basic chart m, we define two processes Terminated
and Aborted to mimic the respective states in the skeleton
automaton. At Terminated state, all behaviors are allowed.
The system halts at Aborted state.

Terminated =̂ RUNΣm

Aborted =̂ STOPΣm

Pl
i =̂




pl
i <| cond(i, l)>| (α → SKIP)

if label(cond(i, l)) = cold;
pl

i <| cond(i, l)>| Aborted
if label(cond(i, l)) = hot.

pl
i =̂




(|||
e∈label(i,l)

(e → SKIP)); Pl+1
i

if l ≤ max(i);
SKIP

if l > max(i).
Pi =̂ P0

i � (α → SKIP)
P =̂ ((|[M]| i∈inst(m)Pi); Terminated) \ {α}

Each instance in the chart is modelled as a CSP process.
The CSP process modelling the chart P is composed by
processes modelling the instances Pi where i ∈ inst(m).
For an instance i in the chart, each location (i, l) is mod-
elled as a process Pl

i. Pl
i is defined as a choice depending

on the condition labelled with the location. If the condi-
tion is true, the process proceeds as pl

i to engage all events
labelled with the location and then proceed as the process
modelling the next location. Otherwise, if the condition is
cold and false, event α is engaged so that all processes mod-
elling the instances are interrupted and the system proceeds

as Terminated. If the condition is hot and false, the system
deadlocks. The process modelling an instance is defined as
the process modelling the first location of the instance. Pro-
cess P is defined as the parallel composition of processes
modelling the instances. Message passings are synchro-
nized. From the above construction, we claim that there
is an equivalent CSP process for a basic chart. Formally,

Lemma 3.4 Given a basic chart m associated with skele-
ton automaton Am, there exists a CSP process P such that
P =FD Am.

We remark that LSC hierarchical operators have their ex-
act images in CSP. For instance, the if-then-else construct
in LSCs can be easily modelled as an external choice of
two guarded processes, the unbounded loop construct can
be modelled as an unguarded recursion and etc.

For a universal chart m preceded by a pre-chart, we
model the main chart as above. We denote the pre-chart
and the chart as CSP processes Pre and P respectively:

Exited =̂ RUNΣ

prel
i =̂




(|||
e
(e → SKIP)); Prel+1

i

if e ∈ label(i, l) ∧ l ≤ max(i);
e → ε → SKIP

if e �∈ ⋃
i label(i, l) ∧ l ≤ max(i);

β → P0
i

if l > max(i).
Prel

i =̂ prel
i <| cond(i, l)>| (ε → SKIP)

Prei =̂ Pre0
i � (ε → Exited)

Pre =̂ |[M∪ {β}]| i∈inst(m)Prei

P =̂ ((Pre \ {ε}); Terminated) \ {α, β}

When a condition (cold or hot) is violated, the pre-chart ex-
its and puts no further constraints on the system by issuing
event ε. Moreover, an unexpected events cause the process
to behave as Exited immediately. Event β is used to syn-
chronize the entering or exiting from a chart (sub-chart).
After the pre-chart finishes, the system proceed as the main
chart.

Lemma 3.5 Given a chart m associated with skeleton au-
tomaton Am, there exists a process P such that P =FD Am.

A system is typically described by a set of LSC charts, each
of which may have its pre-chart. A valid implementation of
the system should consist of behaviors that satisfies all the
universal chart at all time. A universal chart with no pre-
chart specifies constraints that must be met all the time. For
a universal chart preceded by a pre-chart, multiple activa-
tion of the same chart may overlap. Thus, multiple copies
of the process modelling the same chart is needed to con-
strain the system properly. However, if we assume that ac-
tivation of the same chart never overlaps, as assumed by

6

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

Damm and Harel in [10], the CSP model constructed from
an LSC model is simply the parallel composition the con-
structed processes for each chart, with Exited replaced by P
so that non-overlap multiple activation of the same chart is
properly constrained.

Without the assumption, we have to construct the CSP
processes carefully so that no violation of any chart at any
time is possible. Let mcut = {(i1, l1), · · · , (in, ln)} denote
the minimum cut satisfying the following conditions:

∃ k : 1 . . n • lk > 0 ∧
∀ c : cut | c �= ⋃

k{(ik, 0)} •
∀ k : 1 . . n • (ik, l′k) ∈ c ⇒ l′k ≥ lk

Basically, mcut is the first cut where some events are ready
to be engaged. Correspondingly, we define mstate as⋃

k{((ik, lk), Ak)} where
⋃

k{(ik, lk)} = mcut. The basic
idea is to fork a new process to monitor the behavior of the
system whenever a universal chart is pre-activated.

Let event e be an event that is enabled at the mstate,
i.e. e ∈ label((ik, lk)) ∧ (ik, lk) ∈ mcut. Let P denote the
CSP process for the chart and

⋃
k{((ik, l′k), s′k)} be the tar-

get state of the skeleton automaton after performing e from
mstate:

Pe =̂ (P′ ‖ P) <| cond((ik, lk))>| P

where P′ =̂ (|[M]| i∈inst(m)pre
l′k
i)

P =̂ (� e :
⋃

k label((ik, lk)) → Pe) �

(� e : Σ \ ⋃
k label((ik, lk)) → P)

Whenever a chart is pre-activated by an event, a new copy
of the process is forked to monitor subsequent behaviors. If
an activation of the pre-chart results in process Exited, ei-
ther due to a false condition or an unexpected event in the
pre-chart, the process modelling the activation can be safely
ignored due to R1 in section 2.1. If a violation is found, the
process would result as process Aborted, the system dead-
locks due to law R2.

Now, we are ready to construct the CSP process that sat-
isfies an LSC model. Assume that an LSC model contains n
charts ranging from m1 to mn, let Pk denote the CSP process
modelling mk, the CSP process is defined as:

M =̂ (‖n

k=1
(Pk, Σmk)) ‖ RUN

Processes modelling different charts synchronize on events
visible to the chart with the rest processes. Thus, only vis-
ible events are constrained by a chart. The parallel compo-
sition of all processes modelling all charts are further com-
posed with a RUN process so that system may behave freely
on events not constrained by any chart. RUN can be re-
placed by processes that models assumptions on input pat-
terns from the environment, which is discussed in the next
section. It is clear that such a CSP process satisfies all uni-
versal charts. Moreover, an inconsistency in the LSC model

would result in a deadlock. Thus, if we prove the CSP pro-
cess is deadlock-free, the LSC model is consistent. Based
the above discussion, we claim that5:

Theorem 3.6 For an LSC model consisting a set of univer-
sal charts, there is an equivalent CSP process.

4 Verification

In this section, we show how machine readable CSP pro-
cesses are constructed automatically from LSCs and feed
into FDR for various checking. Using FDR, safety, live-
ness and combination properties can be verified by show-
ing that there is a refinement relation from the constructed
CSP model to the CSP process capturing the properties. As
this is the standard usages of FDR, we discuss here check-
ing that are closely coupled with our construction. The
construction ensures that inconsistencies between universal
charts in an LSC model result in deadlocks. FDR is capable
of telling whether a CSP program is deadlock-free. A coun-
terexample is presented if the validation is failed, which
gives important clues to refine the system. There are ba-
sically two sources of deadlocks, one due to inconsistencies
between universal charts and the other due to violation of
hot conditions. The former requires re-investigation of the
system requirements. The latter may suggest either there
is some inconsistency or more system requirements are re-
quired so that state variables are sufficiently constrained to
satisfy the hot conditions. An existential chart can be val-
idated by constructing the corresponding CSP process and
check whether it trace-refines the CSP model constructed
from the set of universal charts. Moreover, manual proof
on the CSP specification may establish properties of the
LSC model expressed with logical expressions over traces
or trace-refusal pairs. However, this paper focuses on prop-
erties can be verified by FDR.

4.1 Automation

The construction is automated using XML and JAVA
technology. There is not yet a standard interchange for-
mat for LSCs6. Therefore, we start with defining the syn-
tax of LSCs both using BNF grammar and XML schema.
The BNF grammar is presented in Appendix A. The XML
schema and XML representation of the charts appeared in
this paper can be found on the web7. The BNF grammar and
XML schema are defined to express any LSCs in a struc-
tured text document. Together with the XML schema, a

5The proof is carried out by showing there is a failure-divergence equiv-
alence between an LSC model and the constructed CSP specification. We
skip the proof due to the limit of space.

6The XML format used in PlayEngine is not intended to communicate
LSCs. No schema or DTD definition is developed.

7http://www.comp.nus.edu.sg/˜sunj/LSC2CSP.html

7

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

engage

started

start

departAck

departReq

setDest

carHandlercarcruiser

engage

departAck

started

start

carHandlercarcruiser

Figure 2. LSC Example: Inconsistency

parser and a transformation module is built using JAVA and
existing XML parser [1] to parse XML representations of
LSCs and construct CSPs automatically. The output of the
program is a machine readable CSP program with a set of
assertions, which is readily to be employed and verified in
FDR.

4.2 Consistency Check

Due to space limitation, a simple example is presented to
demonstrate the construction and verification of CSP mod-
els. More complicated examples can be found at above
mentioned web page. Figure 2 is presented in [10] as a typi-
cal example of inconsistency between universal charts. It is
a part of the LSC model for an automatic railway system. A
detail description of the system appears in [7]. The objects
participating in this scenario are cruiser, car and carHandler.
In the upper chart, the message setDest sent from the envi-
ronment to the car activates the chart, which requires that
following the departReq message, departAck is sent from
the car handler to the car. This message in turn activates the
lower chart, which requires the sending of engage from the
car to the cruiser before the start and started messages are
sent, while the upper chart requires the opposite ordering.
The following program8 is constructed by feeding the XML
representation of both charts to our program.

transparent diamond, normalise
channel car_env_setDest
channel car_carHandler_departReq
channel car_carHandler_departAck
channel car_cruiser_start
channel car_cruiser_started
channel car_cruiser_engage
SetDestSigma(0) = {|...|}
SetDestSigma(1) = {|...|}

8Manually simplified so to save space.

SetDestSigma(2) = {|...|}
SetDestcar(0) = car_carHandler_departReq ->

car_carHandler_departAck ->
car_cruiser_start ->
car_cruiser_started ->
car_cruiser_engage -> SKIP

SetDestcruiser(0) = car_cruiser_start ->
car_cruiser_started ->
car_cruiser_engage -> SKIP

SetDestcarHandler(0) = car_carHandler_departReq ->
car_carHandler_departAck -> SKIP

SetDestInst(0) = SetDestcar(0)
SetDestInst(1) = SetDestcruiser(0)
SetDestInst(2) = SetDestcarHandler(0)
Main_SetDest = || x: {0..2}@

[SetDestSigma(x)] SetDestInst(x)
Prechart_SetDestSigma(0) = {|car_env_setDest|}
Prechart_SetDestcar(0) = car_env_setDest -> SKIP
Prechart_SetDestInst(0) = Prechart_SetDestcar(0)
SetDest = ((Prechart_SetDestInst(0)) ; Main_SetDest)

[] (car_carHandler_departReq -> SetDest)
[] (car_carHandler_departAck -> SetDest)
[] (car_cruiser_start -> SetDest)
[] (car_cruiser_started -> SetDest)
[] (car_cruiser_engage -> SetDest)

... Similar for the lower chart ...
Sigma(0) = {|...|}
Sigma(1) = {|...|}
Figure(0) = SetDest
Figure(1) = Depart
SYSTEM = || x: {0..1} @ [Sigma(x)] Figure(x)
assert SYSTEM :[deadlock free [FD]]

The first part of the program consists of channel definitions
for all message passings in the charts. We record the set
of events visible of a chart as the set of events that ap-
pears in the chart together with the set of forbidden events.
The construction follows exactly the discussion in the last
section. In this example, we assume that no activation
of the same chart overlaps so as to speed up the verifica-
tion. FDR instantly reports that SYSTEM is not dead-lock
free. A counter example is found: car handler departAck,
car env setDest, car carHandler departReq. The lower
chart is firstly activated. Right after that, the upper chart
is activated. This is possible as setDest is not constrained

8

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

Figure 3. LSC Example: Existential Chart

by the lower chart. After departReq, the system dead-
locks. However, this deadlock is not what in our mind.
An implicit assumption is that departAck is engaged only
if setDest and departReq is engaged. We can easily in-
corporate this assumption using an extra LSC which trans-
forms to the following process ENV =̂ car env setDest →
car carHandler departAck → ENV .

Process SYSTEM is refined as the parallel composi-
tion of the original SYSTEM and ENV . FDR reports
the expected deadlock this time using the following coun-
terexample: car env setDest, car carHandler departReq,
car carHandler departAck.

To handle large systems, CSP algebraic laws are used
to simplify the constructed processes before feeding them
into FDR. Various compression methods in FDR can also
be applies, as in the above example (the first line). Our
construction is extended to handle symbolic instances and
messages, i.e. symbolic instances are modelled as processes
with parameters and local definitions, symbolic messages
are modelled as typed channels. For instance, the CSP pro-
cess modelling the symbolic object Display in Figure 1 is:

datatype DisplayState = On | Off | Time
channel DisplayStatechange: DisplayState
channel DisplayStatequery: DisplayState
DISPLAY(State) = let

Display(State) =
DisplayStatequery!State->Display(State) []
DisplayStatechange?x->Display(x)

within Display(State)

4.3 Existential Charts

A CSP process is constructed from an existential chart in
the same way as for a universal chart except that instead of
allowing all behaviors after a chart reaches its end, the chart
deadlocks. An existential chart is consistent with an LSC
model if and only if the existential chart specifies behaviors
that are allowed by the set of universal charts. We use FDR
to validate an existential chart by checking whether the con-
structed CSP process is a trace-refinement of the CSP pro-
cesses constructed for the LSC model. We present here a

slightly trivial example. In the phone example, we would
like to verify that it is possible that when the cover is close,
the display is set to be the current time and the speaker shuts
off. This simple scenario is modelled as an existential chart
in Figure 3. The CSP process constructed for this chart is:

TestInst(0) = User_Cover_Close ->
User_Display_SetState_Time ->
User_Speaker_Sound_Silent -> SKIP

TestInst(1) = User_Cover_Close -> SKIP
TestInst(2) = DISPLAYStatechange.Time ->

User_Display_SetState_Time -> SKIP
TestInst(3) = SPEAKERStatechange.Silent ->

User_Speaker_Sound_Silent -> SKIP
Test = || x: {0..3}@ TestInst(x)

Given SYSTEM as the process constructed from the
LSCs of the phone system, including the CLOSECOVER
chart, FDR verifies that SYSTEM is trace-refined by Test.
FDR can also be used to verify whether a property holds
by testing for the refinement of a CSP process capturing the
property by the candidate process. We can ensure safety re-
quirement by trace refinement and liveness requirement by
failure/divergence refinement. Safety and liveness proper-
ties may expressed as LSC charts or CSP processes intu-
itively. For example, we may express a safety property as
a universal chart (without pre-chart) containing only a hot
condition capturing the property. However, formal deriva-
tion of CSP processes or LSCs from temporal specifications
is a non-trivial research topic. The former was discussed
and evidenced in [3, 17]. The latter is discussed in [9].

5 Conclusion and Future Works

In this work, we study semantic transformations from
LSCs to CSP. We formalize main features of LSCs and show
that corresponding CSP processes can be constructed effec-
tively and systematically. An automatic tool is developed to
automate the transformation. We use FDR to perform vari-
ous verification on LSC models. Consistency between LSC
universal charts is established by proving the constructed
CSP processes are deadlock-free. Consistency between ex-
istential charts and a set of universal charts is verified by
establishing a trace-refinement relation between the con-
structed processes. One interesting extension to our work
is to automatically feed back the verification result from
FDR to PlayEngine so as to guide the refinement of the LSC
model. Once this is done, the PlayEngine users with little
or no knowledge on CSP and FDR may be benefited.

Acknowledgements

We thank Dines Bjørner for his comments on early ver-
sions of this paper. We also thank David Harel and Rami
Marelly for providing PlayEngine and extra documents.

9

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

References

[1] XERCES Java Parser v1.4.4. http://xml.apache.org/xerces-j/.

[2] OMG UML v1.3. http://www.uml.org/, June 1999.

[3] R. Berghammer and B. v. Karger. Formal Derivation of CSP
Programs From Temporal Specifications. In Math. of Prog.
Cons., pages 181–196, 1995.

[4] Y. Bontemps and P. Heymans. Turning High-Level Live Se-
quence Charts into Automata. In ”Workshop: Scenarios and
State-Machines, ICSE’02”, 2002.

[5] S.D. Brookes and A.W. Roscoe. An Improved Failures
Model for Communicating Processes. In Proceedings of the
Pittsburgh seminar on concurrency LNCS 197, pages 281–
305, 1985.

[6] D. Harel and R. Marelly. Play-Engine User’s Guide, 2003.

[7] W. Damm and D. Harel. LSCs: Breathing Life into Mes-
sage Sequence Charts. Formal Methods in System Design,
19(1):45–80, 2001.

[8] J. Davies. Specification and Proof in Real-Time CSP. Cam-
bridge University Press, 1993.

[9] A. Pnueli Y. Lu H. Kugler, D. Harel and Y. Bontemps. Tem-
poral Logic for Live Sequence Charts. Technical report, The
Weizmann Institute of Science Rehovot, Israel, 2000.

[10] D. Harel and H. Kugler. Synthesizing State-Based Object
Systems from LSC Specifications. Lecture Notes in Com-
puter Science, 2088:1–26, 2001.

[11] D. Harel and R. Marelly. Specifying and Executing Behav-
ioral Requirements: The Play-In/Play-Out Approach. Tech-
nical Report MCS01-15, The Weizmann Institute of Science
Rehovot, Israel, 2002.

[12] J. F. He. Process Simulation and Refinement. Formal Aspect
of Computing, 1(3):229–241, 1989.

[13] C.A.R. Hoare. Communicating Sequential Processes. Inter-
national Series in Computer Science. Prentice-Hall, 1985.

[14] ITU. Message Sequence Chart(MSC), Nov 1999. Series Z:
Languages and general software aspects for telecommunica-
tion systems.

[15] J. Klose and H. Wittke. An Automata Based Interpretation
of Live Sequence Charts. In TACAS, pages 512–527, 2001.

[16] L. Lavagno, G. Martin, and B. Selic. UML for Real: Design
of Embedded Real-Time Systems. Kluwer Academic Pub-
lishers, 2003.

[17] Z. Manna and P. Wolper. Synthesis of Communicating Pro-
cesses from Temporal Logic Specifications. ACM Trans.
Program. Lang. Syst., 6(1):68–93, 1984.

[18] R. Marelly and H. Kugler. Multiple Instances and Symbolic
variables in Executable Sequence Charts. In Proc. OOP-
SLA’02, pages 83–100, 2002.

[19] S. Mauw and M. A. Reniers. An Algebraic Semantics of
Basic Message Sequence Charts. The Computer Journal,
37(4):269–277, 1994.

[20] A.W. Roscoe. The Theory and Practice of Concurrency.
Prentice-Hall, 1997.

[21] T. Wang, A. Roychoudhury, R. H.C. Yap, and S.C. Choud-
hary. Symbolic Execution of Behavioural Requirements. In
”Proceedings of PADL 2004”, 2004.

Appendix: An BNF Grammar for LSCs

< LSCSpec >::=

lscspec < ChartDefList >< InstVariList > end lscspec

< ChartDefList >::=< ChartDef >; < ChartDefList >|
< ChartDef >::=< ExtChartDef >|< UnvChartDef >

< ExtChartDef >::=

extchart < LSCName >< InstDefList > end extchart

< UnvChartDef >::= unvchart < LSCName >< PrechartDef >

< InstDefList > end unvchart

< PrechartDef >::= prechart < InstDefList > end prechart

< InstDefList >::=< InstDef >; < InstDefList >|
< InstDef >::= inst < InstName >< LocationDefList > end inst

< LocationDefList >::=< LocationDef >; < LocationDefList >|
< LocationDef >::=

hotlocation < LocationDef > end hotlocation |
coldlocation < LocationDef > end coldlocation |
subchart < SubchartDef > end subchart

< LocationDef >::= event < EventDef > end event |
coregion < CoregionDef > end coregion |
hotcondition < ConditionDef > end hotcondition |
coldcondition < ConditionDef > end coldcondition

< SubchartDef >::=< SubchartID >< LocationDefList >

< CoregionDef >::=< EventDefList >

< EventDefList >::=< EventDef >; < EventDefList >|
< ConditionDef >::=< ConditionID >< Condition >

< EventDef >::= action < Action > end action |
hotmessage < MessageDef > end hotmessage |
coldmessage < MessageDef > end coldmessage |
timerevent < TimerEventDef > end timerevent

< MessageDef >::= input < InputDef > end input |
output < OutputDef > end output

< TimerEventDef >::= set < SetTimerDef > end set |
timeout < TimeOutDef > end timeout |
reset < ResetTimerDef > end reset

< SetTimerDef >::=< Clock >< Duration >

< TimeOutDef >::=< Clock >

< ResetTimerDef >::=< Clock >

< InputDef >::=< Message >< InstID >

< OutputDef >::=< Message >< InstID >

< InstID >::=< InstName >| env

< InstVarList >::=< InstVarDef >; < InstVarList >|
< InstVarDef >::=< InstName >< VarDefList >

< VarDefList >::=< VarDef >; < VarDefList >|
< VarDef >::=< Variable >< TypeDef >

10

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

