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Abstract

Object-Z with history invariants can present precise and
abstract models for complex systems. The system behav-
ior patterns are often implicitly embedded within various
state/operational constraints and history invariants. With-
out explicit system behavior representations, it is difficult to
implement those abstract models. In this paper, we present a
sound and systematic approach to automatically extract ex-
plicit system behaviors (as FSMs) from the abstract Object-
Z specifications. Safety and liveness and additional crucial
requirements for open systems are ensured.
Keywords: Object-Z, FSMs, Software Specification

1 Introduction

The notion of separation of concerns is a common tech-
nique to fight complexity in system development. A prac-
tical approach is to focus on system functionalities in the
early stage of system design. An early stage abstract model
typically contains a set of objects/classes, data variables and
the associated abstract operations in each class. Those mod-
els can be perfectly documented as Object-Z [32, 28] spec-
ifications.

Object-Z with history invariants can present precise and
abstract models for complex systems. A system design in
Object-Z is relieved from behavioral aspects of the system
by implicitly embedding system behavior patterns within
state/operational constraints and, additionally, history in-
variants. However, without explicit system behavior rep-
resentations, it is difficult to implement such abstract mod-
els. In this paper, we present a sound and systematic ap-
proach to automatically extract explicit implementable sys-
tem behaviors as classic Finite State Machines (FSMs) from
abstract Object-Z specifications. The ultimate goal of our
work is to generate implementations from high-level de-
signs in Object-Z automatically and, moreover, guarantee
all critical requirements satisfied.

An Object-Z specification captures safety requirements
by specifying class invariants and pre/post-condition for
data operations. Liveness requirements are captured by
history invariants. We generate FSMs that are guaran-
teed to satisfy both sets of requirements. Additionally, be-
cause Object-Z distinguishes external variables (variables
attached with a question mark) from state variables, it can
be used to model open systems. Crucial requirements for
open systems are also to be ensured by the generated FSMs,
i.e. the FSMs should not introduce fresh deadlocks and
should work correctly in any environment. We call such
FSMs as realizations of the Object-Z specification.

To handle Object-Z specifications modelling systems
with infinite data space, we developed a predicate abstrac-
tion schema to build a raw FSM from an Object-Z specifi-
cation. The number of abstract states are bounded by the
number of predicates for abstraction. A weak abstract rela-
tion is used so that the abstraction is automated by general
theorem provers like PVS [22] paying a reasonable price.
The raw FSM is then refined to satisfy the additional re-
quirements. Finally, an Object-Z specification is realized as
an FSM with its transitions as guarded function calls. The
soundness is proved by showing that there is a fair simula-
tion relation from the realization to the specification. A tool
is implemented in JAVA to experiment our method.

The reason why our approach is beneficial is twofold.
Firstly, FSMs are more close to implementations than
Object-Z specifications, i.e. FSMs are implementable. In
our setting, a complete implementation of the system may
be generated if the implementation of each operation in iso-
lation (probably by other programmers) is supplied. This
conforms one of the principles of object-oriented analysis
and design, i.e. procedural thinking should be postponed as
long as possible. Secondly, our realization is “minimally”
restrictive so that further refinements are possible without
breaking any of the requirements.

The rest of the paper is organized as follows. Section 2
introduces the Object-Z specification language. Section 3
presents a systematic way of building a finite state model
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from an Object-Z specification using predicate abstraction.
Section 4 shows how to realize an Object-Z specification as
an FSM. Section 5 proves the soundness of the approach.
Section 6 briefly introduces a tool for experiments. Sec-
tion 7 addresses related works and issues.

2 Object-Z

Z [32] is a state-based formal specification language
based on the established mathematics of set theory and first-
order logic. It has been used to specify a wide range of sys-
tems including transaction processing systems and commu-
nication protocols. A specification in Z typically consists of
a number of state and operation schemas. A state schema
groups together variables and defines the relationship that
holds between their values. An operation schema defines
the relationship between the ‘before’ and ‘after’ valuations
of one or more state schemas. Object-Z [8] is an object-
oriented extension of the Z language. It improves the clarity
of large Z specifications through enhanced structuring. The
main Object-Z construct is class definitions, which captures
the object-oriented notion of a class by encapsulating a sin-
gle state schema with all the operations which may affect its
variables.

[Package]

Queue
�(INIT, Join, Leave)

expires : Package �→ Boolean

items : seq Package
INIT

items = 〈 〉

Join
∆(items)
item? : Package

expires(item?) ⇒ items′ = items

¬ expires(item?) ⇒ items′ = items � 〈item?〉

Leave
∆(items)
item! : Package

items = 〈item!〉 � items′

An Object-Z class is represented syntactically as a named
box with zero or more generic parameters. There may be lo-
cal types and constant definitions, at most one state schema
and associated initial state schema and zero or more oper-
ations. The declarations of the state schema are referred to
as the state variables and the predicate as the class invari-
ant. The class invariant restricts the possible valuations of

the state variables. An initial schema identifies the possible
initial valuations of the state schema. An operation is ei-
ther an operation schema or a schema expression involving
existing class operations and schema operators. The above
is an Object-Z specification of a queue class. A package is
modelled as a given type. The queue is modelled as a se-
quence of packages which is initially empty. Operations are
provided to allow items to join or leave the queue on a first-
in/first-out basis. This queue may be viewed as an incoming
channel of a network router. A total function expires is used
to tell whether a package is expired (by examining certain
flag bit in the package). A package is enqueued and later
forwarded if and only if it is not expired.

The various operations in a class are given a standard
Z semantics, which is used to develop a transition-system
semantics. The Z operation semantics is best viewed as de-
scribing a relation between initial and final states for each
operation. The Z precondition of an operation schema de-
scribes the initial states for which there exists some final
state satisfying the schema predicate. If the state schema of
the class is denoted as State, and inputs (outputs) is the list
of inputs (outputs) associated with the operation, then the
precondition is defined as:

pre Operation
=̂ ∃ State′; outputs • Operation \ outputs

Similarly, the postcondition of an operation at a state
(Statea) where the precondition is satisfied is defined as:

post(Operation, Statea)
=̂ ∃ State; inputs • Statea ∧ Operation \ outputs

The operations of a class thus form a named collection of
relations, which determines a transition system in which a
given operation may fire exactly when its Z precondition is
satisfied. The semantic model for the class consists of all
the sequences of operations/events which can be performed
by objects of the class. For instance, the class Queue effec-
tively defines the state transition system in Figure 1.

The properties represented by a state transition system
is referred as safety properties. They specify which state
changes may occur but do not require that any state changes
actually do occur. Properties which state that a state change,
or an operation, must occur are referred to as liveness prop-
erties. Object-Z allows the specification of liveness proper-
ties by associating with each class a history invariant as a
temporal logic formula1. The history invariant restricts the
set of histories derived from the state of the class. In this
work, we handle history invariants expressed in Linear-time

1History invariants are introduced in early versions of Object-Z lan-
guage [27, 9]. However, it is not included in the works of G. Smith [28]
for practical reasons. We believe that history invariants are an effective
method to strengthen the weak process control logic of Object-Z.
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Figure 1. A Transition System Interpretation of Queue

Temporal Logic (LTL [23]). The history invariants other
than standard LTL formulae appear in [27, 9] can be re-
framed in LTL by introducing auxiliary variables. The fol-
lowing class models a subclass of Queue where the queue is
guaranteed to be empty eventually and the number of items
in the queue is bounded by max. Informally, � can be in-
terpreted as ’always’ and � as ’eventually’.

FairBoundedQueue
Queue

max : N

��#items = 0
�#items ≤ max

3 Predicate Abstraction

The state space of an Object-Z class may be infinite. For
example, a Queue object may contain infinite number of
items. However, an implementable control structure may
only contain a finite number of control states. It restricts
the behaviors of an object (specified by an Object-Z class)
based abstract interpretations of the data variables. Figure 1
is an abstract interpretation of Queue objects as only the
number of items (not the actually content) in the queue is
concerned. We present a method to calculate an predicate
abstraction of an Object-Z class. A weak abstract relation
is used so that we may construct an abstract state graph au-
tomatically by paying a reasonable price. In the rest of the
paper, we use state and predicate interchangeably.

Let [Predicate] denote all possible predicates. Given a
finite set AP ⊂ Predicate for abstraction. We denote the set
of abstract states as Sa.

Sa =̂ {z : Predicate | ∃X : P AP |
z =

∧
(X ∪ {¬ e : Predicate | e ∈ AP \ X})}

Informally, an abstract state is a state where a subset of AP
and the negation of the rest are true. We define a function
W to calculate the weakest formula over AP that implies

a predicate e, i.e. W(e) is the disjunction of all formulae
p ∈ AP where p ⇒ e.

W : Predicate → Predicate

∀ e : Predicate • W(e) =
∨{x ∈ Sa | x ⇒ e}

Informally, function W calculates the set of abstract states
where a certain predicate is true. However, such a function
in our context is undecidable. i.e. we may not be able to
tell if a predicate is true at a state due to limited power of
proving. Therefore, we define a function S to calculate all
states where a certain predicate might be true.

S : Predicate → Predicate

∀ e : Predicate • S(e) =
∨

(Sa \W(¬ e))

Function S works by pruning all states where the predicate
is proved to be false. Thus, all states where the predicate is
true are present in the result (probably with states where we
are uncertain if the predicate is true). Function S is used to
automatically construct an abstraction of an Object-Z spec-
ification.

Let AP =̂ {#items = 0, #items ≤ max}. The set of
abstract states is (assuming max > 0):

Sa =̂ {#items = 0, max ≥ #items > 0, #items > max}

The abstract initial state of Queue class is S(INIT) =̂
#items = 0. We calculate an abstraction of an operation
by abstracting the precondition and postcondition. The pre-
condition is replaced by S(pre Operation), i.e. all abstract
states where the operation might be applied. For instance,
the abstract precondition of operation Leave is:

S(pre Leave)
=̂ S((∃ items′ : seq Package; item! : Package •

items = 〈item!〉 � items′) \ {item!}) [def. of pre]
=̂

∨
(Sa \W((∀ items′ : seq Package; item! : Package •
items �= 〈item!〉 � items′) \ {item!})) [def. of S]

=̂
∨

(Sa \ {#items = 0}) [def. of W]
=̂ #items > 0
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Figure 2. An Abstract Transition System Interpretation of Queue

Therefore, operation Leave is applicable only at the two ab-
stract states where #items > 0. For each abstract state
sa : Sa satisfying the abstract precondition, we calculate the
abstract postcondition as S(post(Operation, Sa)). For ex-
ample, the postcondition of operation Leave at the abstract
state where max ≥ #items > 0 is:

post(Leave, max ≥ #items > 0)
=̂ S((∃ items : seq Package •

#items ≤ max ∧ #items > 0 ∧
items = 〈item!〉 � items′) \ {item!}) [def. of post]

=̂
∨

Sa \W((∀ items : seq Package •
#items > max ∨ #items ≤ 0 ∨
items �= 〈item!〉 � items′) \ {item!}) [def. of S]

=̂
∨

Sa \ {#items′ > max} [def. of W]
=̂ max ≥ #items′ ≥ 0

We abstract every operation in the class. The abstraction of
the Queue class defines the state transition system in Fig-
ure 2. Note that abstraction introduces non-determinism
and spurious sequence of operations. For example, a Join
operation at the state in the middle may result in a state
where the number of items in the queue is larger than max
or no larger than max. The abstraction can be automated
with the help of PVS [22]. Despite the prove power, an ab-
stract state transition system covers all possible sequences
of operations of the concrete one.

4 Generating Finite State Machines

An FSM is an abstract machine that has only a finite con-
stant amount of memory. It can be viewed as a flattened
UML State Diagram. There are finite many states and each
state has transitions to states. Transitions are triggered by
observable events. Additionally, there are one or more ini-
tial states and final states.

Definition 4.1 An FSM is a 6-tuple (S, T, I, F, Σ,L) where
S is a finite set of states, T : S × Σ × S is a labelled tran-
sition relation, I : P S is a set of initial states, F : P S is a

set of final states, Σ is the alphabet and L : S → P S is a
labelling function which labels a state with a set of obser-
vations (predicates).

The language accepted by an FSM contains all traces of the
state machine which end up with a final state. An FSM
is a realization of an Object-Z specification if the initial
schema is satisfied, every operation is engaged with its pre-
condition/postcondition fulfilled and the history invariants
are satisfied. For open systems, two additional requirements
are crucial.

A1: The FSM should not introduce any fresh deadlocks.

A2: The FSM is not allowed to restrict the actions of the
environment.

Both requirements have been discussed in various works of
control theory [26, 17]. The first requirement is commonly
referred as nonblocking. The second requirement is essen-
tial for systems constantly interacting with its environment.
Informally, it requires that the state machine should be able
to function correctly regardless of the environment. In this
section, we present a systematic way of generating FSMs
that satisfy both the Object-Z specification and the two ad-
ditional requirements.

4.1 Generating Raw State Machines

Our method begins with constructing a finite Büchi au-
tomaton from the history invariant2. An efficient tool to
convert LTL formulae into optimized Büchi automata is
Somenzi and Bloem’s Wring [30]. For example, Figure 3
shows the Büchi Automata constructed from the LTL for-
mulae in the FairBoundedQueue class. Both states are ini-
tial states. The state labelled with #items = 0 is a final
state. Note that transitions are not labelled.

2In general, our implementation allows terminating behaviors. This is
different from the languages accepted by Büchi automata. We keep the
name Büchi Automata so as to honor works on generating finite state real-
ization from temporal logic formulae. However, we treat it as finite state
machines with no label on the transitions.
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#items=0#items<=max

Figure 3. A Büchi Automata Example

Definition 4.2 A Büchi automata is a 5-tuple (S, T, I, F,L)
where S is a finite set of states, T : S × S is a transition
relation, I : P S is a set of initial states, F : P S is a set of
final states and L : S → P S is a labelling function which
labels a state with a set of predicates.

Meanwhile, a raw FSM is constructed from an Object-Z
specification as discussed in section 3. We require that the
predicates for abstraction include propositions in the history
invariants and the initial schema. Every state in the raw state
machines is a final state3. The product of the state machine
and the Büchi automata is then constructed.

Definition 4.3 A state machine (S, T, I, F, Σ,L) is a prod-
uct of a state machine (Ss, Ts, Is, Fs, Σs,Ls) and a Büchi au-
tomata (Sb, Tb, Ib, Fb,Lb) if it satisfies the following condi-
tion:

• S =̂ {(ss, sb) : Ss × Sb | ∧Ls(ss) ⇒
∧Lb(sb)}

• T =̂ {((s1s , s1b), e, (s2s , s2b)) : S × Σ × S |
(s1s , e, s2s ) ∈ Ts ∧ (s1b , s2b) ∈ Tb}

• I =̂ {(is, ib) : Is × Ib | ∧Ls(is) ⇒
∧Lb(ib)}

• F =̂ {(fs, fb) : Is × Ib | ∧Ls(fs) ⇒
∧Lb(fb)}

• Σ =̂ Σs

• L =̂ Ls

Informally, a state in the Büchi automata is unified with
a state in the state machine if their labelling is consistent.
Note that because all predicates in the history invariant
are used for abstraction, the consistency of two states is a
straightforward existence check, i.e. whether the set of pred-
icates labelled with a state is a subset of those of the other
state. A state of the product is an initial state if and only
if it is unified by two initial states. A labelled transition in
the raw state machine is allowed in the product if and only
if there is a transition between the same starting state and
ending state in the Büchi Automata. For instance, Figure 4
is the product of the state machine in Figure 2 and the Büchi
automata in Figure 3.

3In Object-Z semantics, an object may wait infinitely long before en-
gaging an enabled operation.

Join

Leave
Leave

JoinJoin

max >=#items>0#items=0

Figure 4. Product of the FSM and Automata

4.2 Pruning Raw State Machines

The product of the raw state machine and the Büchi au-
tomata satisfies the Object-Z specification with the history
invariant. However, it may not be a valid realization of the
Object-Z specification. There are two sources of possible
errors. Firstly, because of requirement A2, any realization
satisfies the specification by assuming behaviors of the en-
vironment is not valid. For example, a possible realization
of FairBoundedQueue is the state machine in Figure 5. By
requiring that all item? from the environment are expired,
the queue remains empty all the time and, therefore, satis-
fies the history invariant. We prune such realizations from
our state machine by pruning states and transitions violating
requirement A1 and A2. Secondly, abstraction introduces
spurious sequences of events/operations, e.g. an operation
may be engaged at states where its precondition is not sat-
isfied or an invocation of the operation may lead to differ-
ent states nondeterministically. To solve the problem, each
transition is equipped with a guard condition (if necessary)
in the last step.

The operations enabled at a state are partitioned into two
sets, controllable operations and uncontrollable operations.
An operation is uncontrollable at a state if its postcondition
depends on environmental inputs. For example, the Join
operation at the initial state of the state machine in Figure 4
is uncontrollable. An operation at a state is controllable if it
is not uncontrollable. Formally, A1 and A2 are:

A1 : ∀ s1s , s2s : Ss; s1b , s2b : Sb; e : Σ •
(s1s , e, s2s ) ∈ Ts ⇒

(∃ e′ : Σ; (s3s , s3b) : S •
((s1s , s1b), e′, (s3s , s3b)) ∈ T)

A2 : ∀ s1s , s2s , s3s : Ss; s1b , s2b : Sb; e : Σ •
((s1s , s1b), e, (s2s , s2b)) ∈ T ∧ (s1s , e, s3s ) ∈ Ts ∧

e is uncontrollable at the state ⇒
(∃ s3b : Sb • ((s1s , s1b), e, (s3s , s3b)) ∈ T)

We use a polynomial time algorithm to prune states and
transitions violating either of the requirements from the
product. A state is pruned if and only if it is a fresh deadlock
state. Transitions at a state labelled with the same operation
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Join#items=0

Figure 5. An Invalid Realization

are pruned at once if the operation is uncontrollable and A2

is violated. Let Current be a set of immediate successor
states of a state, Path be the set of states in the path from an
initial state to the state (inclusive). Path is used to guarantee
convergence of the procedure. Let Product, Raw be the two
state machines respectively. Additional, Done holds states
that are not to be pruned.

procedure Prune (Current, Path, Product, Raw)
1: if Current is empty
2: return true [Case 1]
3: else
4: if all states in Current are in either Path or Done
5: return true [Case 2]
6: else
7: pick a state s from Current and not in Path or Done
8: for all uncontrollable events e at s
9: if e at s satisfies A2

10: continue with line 8
11: else
12: prune all transitions labelled with e
13: endif
14: endfor
15: if s satisfies A1

16: continue with line 21
17: else
18: prune s from Product
19: return false [Case 3]
20: endif
21: let Children be the immediate successors of s
22: Add s to Path
23: if Prune (Children, Path, Product, Raw) is true
24: add s to Done and continue with line 4 [Case 4]
25: else
26: continue with line 8 [Case 5]
27: endif
28: endif
29: endif

Our algorithm takes a Depth-First-Search strategy. Ini-
tially, Current is the set of initial states, Path is an empty
set. There is a realization of the Object-Z specification if
and only if the pruned state machine has at least one initial
state and one reachable final state. The correctness of the al-
gorithm is an immediate consequence of the fact that a state
is not pruned if it satisfies both requirements and all reach-
able states from it are not pruned. The algorithm converges
because the states and transitions are finite and the size of
Done is monotonically increasing.

If we specify the history invariant for Queue as
�(#items = 0), the product of the raw state machine and
the Büchi automata is the FSM in Figure 5. After the prun-
ing there is no initial and final state left (the transition is
pruned because of violation of A2 and the state is pruned
because of violation of A1). Therefore, we conclude that
there is no realization for such a specification.

4.3 Calculating Guard Condition

The last step is to calculate a proper guard condition for
each transition. A guarded transition can be engaged only
when its guard condition is satisfied. A guard condition
guarantees that an operation is applied only when its pre-
condition is satisfied. Moreover, part of a nondeterministic
choice may get pruned in the pruning process. The remain-
ing transitions are, therefore, constrained by restricting its
postcondition. This is not directly implementable. Thus, a
state guard is use to make sure that a transition is engaged
only when it will reach the desired postcondition.

Let WP denote the weakest precondition operator intro-
duced in [6]. Given an operation Operation and a source
state sa and a state sb that can be reached from sa by engag-
ing Operation, the weakest precondition is defined as4:

WP(Operation, sa, sb)
=̂ (∃ State′; outputs • Operation) ∧

(∀ State′; outputs • (Operation ∧ sa) ⇒ sb)

The first part of the condition guarantees the termination of
the operation. The second part guarantees the postcondi-
tion. For example, the guard condition for Join operation at
the initial state of the state machine in Figure 4 to remain at
the same state is:

WP(Join, #items = 0, #items = 0)
=̂(∃ items′ : seq Package •

(expires(item?) ⇒ items′ = items) ∧
(¬ expires(item?) ⇒ items′ = items � 〈item?〉)) ∧

(∀ items′ : seq Package • (#items = 0 ∧
(expires(item?) ⇒ items′ = items) ∧
(¬ expires(item?) ⇒ items′ = items � 〈item?〉)) ⇒

#items′ = 0) [def. of WP]
=̂ ∀ items′ : seq Package •

((expires(item?) ∧ items′ = 〈 〉) ∨
(¬ expires(item?) ∧ items′ = 〈item?〉)) ⇒

#items′ = 0 [one-point rule]
=̂ ∀ items′ : seq Package • #items′ = 0 ∨

expires(item?) ∨ items′ = 〈item?〉
=̂ expires(item?)

4A similar problem on the weakest precondition semantics of Z is ad-
dressed in [3]
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[#items>1]
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[−expires(item?)]
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Join

Join
Join

Leave
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NonemptyEmpty

Figure 6. A Realization of FairBoundedQueue

Thus, the transition is guarded with expires(item?). If the
weakest precondition turns out to be false, it means that
there is no way that we can guarantee that the transition
ends up with the desired state. This is normally due to inter-
nal nondeterminism, i.e. some information is not present at
the abstract level. Such transitions are pruned. The pruned
state machine for FairBoundedQueue is in Figure 6. Note
that states are labelled with names to improve readability.

4.4 A Case Study

We use a multiplexer example to show how our method
works for composed classes. A multiplexer is made up of
three bounded queues, two as incoming channels and one
as outgoing channel. It can be viewed as a network router
which gets packages from different sources and forwards
those that are not yet expired. All packages in the incoming
channels are eventually forwarded to the outgoing channel.

Multiplexer
�(INIT, Join1, Join2, Transfer1, Transfer2, Leave)

input1, input2 : FairBoundedQueue
output : Queue

INIT

input1.INIT ∧ input2.INIT ∧ output.INIT

Join1 =̂ input1.Join
Join2 =̂ input2.Join
Transfer1 =̂ input1.Leave ‖ output.Join
Transfer2 =̂ input2.Leave ‖ output.Join
Leave =̂ output.Leave

�#output.items ≤ output.max

The history invariants include those inherited from the
FairBoundedQueue. The predicates for abstraction include
those in the history invariant and initial schema. It is:

AP =̂ {#input1.items = 0, #input2.items = 0,
#input1.items ≤ input1.max,
#input2.items ≤ input2.max}

Only operations defined or promoted in this class are con-
cerned. For operations composed using operation opera-
tors, the process of calculating preconditions and postcon-
dition can be simplified by considering the structure of an
operation (refer to chapter 14 in [32]). Note that an un-
controllable operation may become controllable when the
object composes with other objects. For example, operation
output.Join is initially uncontrollable (at all states) when we
consider Queue class along. It becomes controllable as in
operation Transfer because all packages from either of the
incoming channels are not expired. The final FSM realized
from Multiplexer is in Figure 7. The step-by-step construc-
tion is omitted due to the limit of space.

5 Soundness

A state machine is a realization of an Object-Z specifica-
tion if and only if it satisfies the following condition:

• All operations are engaged when its precondition and
postcondition are satisfied. [A3]

• All possible sequence of operations satisfies the his-
tory invariant. [A4]

• A1 and A2.

A3 is guaranteed by guarding each transition with a con-
dition stronger than its precondition (the weakest precon-
dition). In the process of pruning the product, all fresh
deadlock states and transitions violating A2 are pruned. It
is straightforward to verify that both A1 and A2 are satis-
fied. To prove A4, we show that there is a fair simulation
relation from our realization to the product of the state tran-
sition system defined by an Object-Z specification and the
Büchi automata representing its history invariant (the spec-
ification).

Definition 5.1 Let Mi =̂ (Si, Ti, Ii, Fi, Σi,Li) where i ∈
{1, 2} be two state machines. A total relation R : S1 → S2

is a fair simulation from M1 to M2 if it satisfies the following
condition:
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Join1 2
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[#output.items<output.max]

[#output.items<output.max]

[−expires(item?)]
Join2

[−expires(item?)]

[−expires(item?)]

[#output.items<output.max]

[#output.items<output.max]

[−expires(item?)]

Transfer2
Transfer1

Join1

Transfer2

Join2
Transfer1

3:

Join1

[#output.items>0] Leave
[expires(item?)] Join2
[expires(item?)] Join1

[#output.items>0] Leave
[expires(item?)] Join2
[expires(item?)] Join1

[#output.items>0] Leave
[expires(item?)] Join2
[expires(item?)] Join1

[expires(item?)]

1:

#output.items<output.max
input2.max>=#input2.items>0
#input1.items=0

#output.items<output.max
#input2.items=0
#input1.items=0

4:

2:

#output.items<output.max
input2.max>=#input2.items>0
input1.max>=#input1.items>0

input1.max>=#input1.items>0
#output.items<output.max

#input2.item=0

[#output.items>0] Leave
[expires(item?)] Join2

Figure 7. A Realization of Multiplexer

D1: ∀ s : I1 • R(s) ∈ I2
D2: ∀(s1, e, s2) ∈ T1; s′1 : S2 | R(s1) = s′1 •

∃ s′2 : S2 • (s′1, e, s′2) ∈ T2 ∧ R(s2) = s′2
D3: ∀ s : F1 • R(s) ∈ F2

Informally, D1 states that there is an initial state in M2 for
every initial state in M1. D2 states if the FSM can engage
an event at a state in M1, M2 should be able to simulate the
transition at the corresponding state. D3 guarantees that all
final states in M1 are simulated in M2. A similar definition
appears in [7] and later development can be found in [12].
If there is a fair simulation relation from M1 to M2, then
M2 fair trace-contains M1, i.e. it is possible to generate by
M2 every fair sequence of operations that can be generated
by M1. The notion of fair trace-containment is robust with
respect to LTL. Therefore, we may conclude that A4 is sat-
isfied.

Theorem 5.2 Let Mc =̂ (Sc, Tc, Ic, Fc, Σc,Lc) be the prod-
uct of the (concrete) transition system determined by the
transition system semantics of Object-Z specification and
the Büchi automata representing the history invariant. Let
Ma =̂ (Sa, Ta, Ia, Fa, Σa,La) be a realization constructed
using our method. Mc fairly simulates Ma.

Proof. We claim that the following total relation is a fair
simulation relation from Ma to Mc.

R =̂ {(a, c) : Sa × Sc | c is a state where L(a) is true}
D1 is an immediate consequence of the fact that the initial
condition is included in the predicates for abstraction. In

the abstraction process, an abstract state is identified as an
initial state if and only if the initial condition is satisfied.
Because the weakest condition calculated in the last step is
stronger than the precondition, an operation is engaged only
when its predication is satisfied. An operation may reach a
successor state only if the postcondition is satisfied at the
successor state (e ⇒ S(e) for all e : Predicate), i.e. there
is a corresponding transition in Mc. Thus, D2 is true. An
state in Ma is a final state if it satisfies the fair constraint.
All simulating states of the state satisfies the fair constraint
(definition of R). Thus, D3 is true. Therefore, we conclude
that Mc fairly simulates Ma.�

6 Automaton

Our method is automated by building an experiment tool
in JAVA. The inputs are an Object-Z class specification in
its XML representation [31], along with an optional set of
predicates for abstraction. By default, the predicates include
those in the history invariant and initial schema. The pred-
icate abstraction is automated with the help of Prototype
Verification System (PVS [22]). Lemmas are generated au-
tomatically from the Object-Z specification for calculating
the abstract initial schema, precondition and postcondition
of each operation. In general, the number of lemmas are
exponential to the number of predicates for abstraction. A
number of tricks are used to reduce the number of abstract
state, e.g. removing false state by considering co-relation
between the predicates. Therefore, the number of lemmas
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are reduced. PVS is invoked in batch mode to prove the
lemmas automatically without user interaction because it is
unlikely that a user would like to prove the lemmas inter-
actively for complex systems. To further speed up the ab-
striction so as to handle complex systems, a more loop-free
proving strategy than grind (the highest-level command in
PVS) is used to prove each lemmas in a limited amount of
time.

A raw state machine is constructed from the proving re-
sult. It is then composed with the Büchi automata generated
from Wring [30]. The product is pruned using our pruning
algorithm. If there is at least one initial state and at least
one reachable final state left, the pruned state machine is
equipped with guard conditions and presented to users as a
realization. However, computing the weakest precondition
involves eliminating dashed variables. Variable elimination
in our context is in general undecidable. Yet an interesting
enough subset is decidable where there is no nonlinear in-
teger arithmetic and no shielded variables occurring inside
uninterpreted terms. PVS is currently lack of such a proce-
dure. However, we can always use PVS to prove-check a
manually constructed stronger guard.

More features on connecting our tool to existing tool
supports for FSM-like structures will be offered. For ex-
ample, we plan to generate XMI [10] representation of our
state machines so that they can be exchanged and visualized
using tools like Rational Rose [16]. We may also generate
codes for Rhapsody [11] so that we may simulate the model
and synthesize working code from the Object-Z specifica-
tion if the implementation of each operation is supplied (and
tested by checking the precondition and postcondition) by
the user.

7 Discussion

The contribution of our work are twofold. Firstly, we de-
veloped a systematic method to abstract an Object-Z spec-
ification on a class base. Such a method is useful for ver-
ification of Object-Z specification as well. Secondly, we
developed an effective way of realizing an Object-Z speci-
fication as FSMs. By treating each transition as a function
call and implementing each operation in isolation, we may
generate executable code from the specification. Moreover,
an experimental tool is developed to realize the method.

A less restrictive state machines would allow more possi-
ble further refinement of the model. Our method works by
pruning those sequences of operations that fails the spec-
ification and the additional requirements. Therefore, it is
naturally ‘minimally’ restrictive. However, a minimum re-
strictive state machine may not exist. An example can be
found in [17].

Our work contributes to the transformation from formal
specifications to programs [14]. It is related to works on ab-

straction and controller synthesis. Abstraction techniques
are now widely considered useful and even necessary for
a successful verification. It has been discussed in various
works on model-checking softwares, e.g. Graf’s work on
property preserving abstractions for transition systems [15]
and Ball’s work on abstraction of C programs[1]. Though
partially inspired by Graf’s work, our abstraction schema is
highly coupled with Object-Z semantics. The abstraction
schema is closely related to the work in [29], where Smith
and Winter proposed a similar predicate abstraction for to-
talized Z specifications. Their aim is to verify safety tem-
poral properties of Z specification. The difference between
their abstraction and ours is that our predicate abstraction
applies to Object-Z specification (therefore, do not have to
assume operations to be totalized) and, more importantly, is
automated by PVS. The latter is essential for complex sys-
tems.

Our work is also related to works on deriving an au-
tomata representation from Z/Object-Z for specification-
based testing [5, 19, 13, 20, 21]. Dick and Faivre in [5]
derives an automata representation from a Z specification
for generating test cases. Murray in [19] formally derives
an FSM of an Object-Z specification for the same purpose.
However, their works focus on extract a finite set of behav-
iors for testing (partial coverage) and therefore, are more
straightforward. Our work focuses on extracting imple-
mentable FSMs from Object-Z specification. On the con-
trary, we guarantee all behaviors are properly constrained.
Also, our abstraction is to facilitate the extraction of the be-
havior patterns.

Our work is also inspired by works on controller synthe-
sis both from computer science and control-theoretic per-
spective. The problem of synthesizing controllers is to find
a controller that restricts the behavior of a given process in
order to satisfy given constraints on sequences of actions ex-
ecuted by the process. The line of work goes back to the re-
alization problem formulated by Church [4] and later solved
by Büchi and Landweber [2]. During the past decade, there
has been a vigorous revival of this area both from computer
science and control-theoretic perspectives. Various prob-
lems associated with partial observability, controllability
and hierarchical control have been addressed as evidenced
in [24, 25, 18]. However, previous works on controller syn-
thesis are all based on automata-like structures with no or
trivial data states. Our work applies to applications with
complicated data structures and functional requirements.
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