
Integrating Object-Z with Timed Automata

J.S. Dong1 R. Duke2 P. Hao1

1National University of Singapore
2University of Queensland, Australia

Abstract

When designing a complex system, Object-Z is a powerful
logic-based language for modeling the system state aspects,
and Timed Automata is an excellent graph-based notation
for capturing timed control behaviour of the system. This
paper presents an effective combination of the two tech-
niques with novel composition and communication mecha-
nisms. The combined notation enhances Object-Z with real-
time modeling capability and also extends Timed Automata
with enhanced structure and state modeling features.
Keywords: Specification, Object-Z, Timed Automata

1 Introduction

Software system specification is an important activity in
software engineering. Formalisms for specifying com-
puter systems have been well researched. Logic-based for-
malisms, e.g. Z, have been popular in Europe. Graph-based
formalisms, e.g. Automata, have been prevalent in North
America. The design of complex systems requires tech-
niques for capturing system functionalities and control be-
haviours. The system functionalities can be best captured
in terms of operations and constraints — the ideal applica-
tion for Z. The system control behaviours can be best cap-
tured in terms of visual flows between system functional-
ities — the ideal application for Automata. Furthermore,
complex systems often have intricate system structures and
real-time requirements. Object-Z [11, 26] is a structured ex-
tension to Z and can be supported by verification tools (e.g.
[24, 20, 29, 34]). Timed Automata (TA) [1, 36] is a real-
time extension to Automata and can be effectively verified
by model checkers (e.g. [3, 7, 30, 33]).
In our previous work [10], we investigated the projection
techniques from the TCOZ [22] (extension to Object-Z) to
TA and discussed the notion of timed patterns. In this paper,
rather than taking the transformation point of view we pro-
pose to develop a novel integrated formal language which
combines Object-Z with TA. An effective combination of
Object-Z and TA can not only help Object-Z with real-time

modeling capability but also help TA with enhanced struc-
ture and state modeling features. The result of such a com-
bination can be a powerful unified method for designing
complex computer systems. The challenge of achieving an
effective combination of Object-Z and TA is to

• semantically and syntactically link the key language
constructs so that the two notations can be used in a
cohesive way;

• clearly separate system functionality aspects from time
control behaviour patterns so that separate tools can
later be applied to check the related system properties;

• consistently unify the composition techniques from
both Object-Z (class instantiation) and TA (automaton
product) so that subsystem models can be easily and
meaningfully composed;

• systematically develop the communication mecha-
nisms so that various concurrent interactions between
system components can be precisely captured.

In the remaining sections of this paper we will demonstrate
how Object-Z and TA can be effectively combined.

2 Object-Z and Timed Automata

In this section, brief introductions to Object-Z and TA are
presented together with motivating examples.

Object-Z

Object-Z is an extension of the Z formal specification lan-
guage to accommodate object orientation. The main reason
for this extension is to improve the clarity of large specifi-
cations through enhanced structuring.
The essential extension to Z given by Object-Z is the class
construct which groups the definition of a state schema and
the definitions of its associated operations. A class is a tem-
plate for objects of that class: for each such object, its states
are instances of the state schema of the class and its indi-
vidual state transitions conform to individual operations of

1

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

the class. An object is said to be an instance of a class and
to evolve according to the definitions of its class. Syntac-
tically, a class definition is a named box. In this box the
constituents of the class are defined and related. The main
constituents are: a state schema, an initial state schema and
operation schemas. To illustrate Object-Z, consider a sim-
ple stock-control system for a store. The store stocks items
which each have a fixed use-by date. An item can be added
to the store’s stock, but only if the use-by date of the added
item is today’s date or later. Any item can be sold by the
store. At the beginning of each day those items whose use-
by date is less than the current date are removed (i.e. purged)
from the store.
To specify this system in Object-Z, first we specify an item
as an object of the class Item:

Item

useBy : N

Effectively, at this level of abstraction the only important
thing about an item is its (fixed) use-by date.
The stock control system is specified by the class Store:

Store

stock : P Item
today : N

INIT

stock = ∅

today = 0

add
∆(stock)
i? : Item

i? �∈ stock
i?.useBy � today
stock′ = stock ∪ {i?}

sell
∆(stock)
i! : Item

i! ∈ stock
stock′ = stock \ {i!}

purge
∆(stock, today)

today′ = today + 1
stock′ = stock \ {i : stock | i.useBy < today′}

The semantics of Object-Z can be seen as a state tran-
sition system. For example, given a particular Store
object state σ = {(store, {itema, itemb}), (today, 20)},
if operation add is then performed with a new input
item itemc, the new object state would be sigma =
{(store, {itema, itemb, itemc}), (today, 20)}.
Notice that although there is an attribute today in this class
and this attribute is incremented whenever the purge opera-
tion takes place, no notion of the progressive passing of time
is captured by this specification. Conceptually, we think of
the purge operation as taking place once a day, but this is
not captured explicitly. Furthermore, in standard Object-Z

the operations are assumed to be atomic, so there is no di-
rect way of capturing the idea that an operation may take a
specific time to complete.

Timed Automata

Timed Automata (TA) are finite state machines with clocks.
It was introduced as a formal notation to model the behavior
of real-time systems. Its definition provides a general way
to annotate state-transition graphs with timing constraints
using finitely many real-valued clock variables. Another
interesting aspect of TA is that there exist model checking
methods for temporal logics with quantitative temporal op-
erators which are directly applied to TA. Thus a variety of
tools are available for specification and verification of real-
time system modeled in TA.
In this paper, we follow the definitions given in [1]. For-
mally, for a set X of clock variables, the set Φ(X) of clock
constraints ϕ is defined by the following grammar:

ϕ := x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2

where x is a clock in X and c is a constant in R.
A clock interpretation ν for a set X of clocks assigns a real
value to each clock; that is, it is a mapping from X to the
set of nonnegative reals. We say that a clock interpretation
ν for X satisfies a clock constraint ϕ over X iff ϕ evaluates
to true according to the values given by ν. For δ ∈ R, ν + δ
denotes the clock interpretation which maps every clock x
to the value ν(x) + δ. For Y ⊆ X, ν[Y := 0] denotes the
clock interpretation for X which assigns 0 to each x ∈ Y,
and agrees with ν over the rest of the clocks.
A timed automaton A is a tuple (S, S0, Σ, X, I, E), where
S is a finite set of states/locations; S0, a subset of S, is a
set of initial states; Σ is a set of actions/events; X is a fi-
nite set of clocks; I is a mapping that labels each location
s in S with some clock constraint in Φ(X); E, a subset of
S × S × Σ × 2X × Φ(X), is the set of switches. A switch
〈s, s′, a, λ, δ〉 represents a transition from state s to state s′

on input symbol a. The set λ gives the clocks to be reset
with this transition, and δ is a clock constraint over X that
specifies when the switch is enabled.
An example of a timed automaton is shown in Figure 1, a
gate in a security system. The gate has three states: closed,
open and opened (we assume the gate slams shut instantly
when directed, so there is no close state). State closed is
the initial state, as indicated by there being an action into
closed that emanates from no state. Through action open-
s, (i.e. open start) the gate starts the operation of opening
which it completes within 2 time units. When the opening
operation is completed, the action open-e (i.e. open end)
occurs and the gate becomes opened. Through action close
the gate closes instantly when exactly 10 time units have
elapsed since the gate was opened.

2

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

closed

open
x <= 2

open-s, x := 0

open-e, x := 0

opened
x <= 10

close
[x = 10]

Figure 1. a gate

3 Combining Object-Z and TA

In this section, the semantic and syntactic issues on integrat-
ing Object-Z and TA are discussed and a combined notation
is proposed.
To illustrate how Object-Z and TA can be effectively inte-
grated, consider the simple stock-control system we met in
the last Section. What we want is to integrate into this spec-
ification a notion of the sequential passing of time.
Suppose time is a positive real number measured in days
starting at 0 (so, for example, 1.5 is halfway through the
second day). The use-by date associated with an item is a
positive integer denoting the day by which the item must be
sold or else purged from the store (e.g. a use-by date of 3
means that if the item is not sold on or before day 3, at the
start of day 4 it is purged).
We shall suppose it takes at most Ta time units to add an
item to the stock, at most Ts time units to sell an item
in stock, and more than Tp1 but less than Tp2 time units
(Tp1 < Tp2) to purge the stock at the beginning of the day,
where each of Ta, Ts and Tp2 is much less than 1. Further-
more, the addition of any item to the stock or the selling
of any item in stock must be started and completed within
the same day. In our model, operations of the store will be
disjoint, i.e. time-wise they do not overlap.
The store with this timing information incorporated is spec-
ified by adding a Timed Automaton to the class Store to get
the class TimedStore as shown. The top part of the class
box is the standard Object-Z specification we met in the last
section and contains no timing information. The bottom
part of the class box contains a declaration of the timing
constants and the names of the clocks (in this case there
are two clocks, x and y) as well as the associated automa-
ton. Declaration x : clock means that x plays a dual role:
it identifies (i.e. names) a clock and also records the time
showing on the clock, i.e. it is a variable that takes positive
real number values. In fact, as we shall see, the value of
the clock x in this specification always lies between 0 and
1 inclusive and denotes the time that has passed in the cur-
rent day. The clock y is used to ensure that the operations
are completed within the specified time. It is assumed both
clocks progress at the same rate, i.e. the passage of time is
universally uniform.

TimedStore
Store

Ta, Ts, Tp1, Tp2 : R

x, y : clock

purge
y < Tp2

A
x <= 1

add
y < Ta

sell

[i?, x < 1-Ta]
add-s, y := 0

add-e

x := 0, y := 0

[x = 1]
purge-e

[x < 1-Ts]
sell-s, y := 0 sell-e

x := 0

y < Ts

[y > Tp1]

[i!]

purge-s

The locations of the automata represent the various situa-
tions in which the store can find itself. A location, together
with the switches to and from that location, specifies the
timing limits (if any) for the corresponding situation. For
each of the three operations specified in the Object-Z part
there is a similarly-labeled location to capture the situation
when the store is undergoing this operation; the store can
undergo this operation only when in the corresponding lo-
cation. The other location, A, represents the situation when
the store is idle and no operation is being performed.
To illustrate the switches, consider those between locations
A and add. The switch from A to add is labeled add-s
(i.e. add start), while the switch from add to A is labeled
add-e (i.e. add end). The expression in square brackets, i.e.
[i?, x < 1− Ta] in the case of the switch labeled add-s, cap-
tures the requirements that must be met if the switch is to
take place, i.e. the input item i? (as defined in the Object-Z
operation add) must be supplied, and in addition the time as
recorded by the clock x must be less than 1−Ta (so that the
operation, which can take up to Ta time units to occur, can
be completed within the same day). In addition, the precon-
dition of the Object-Z operation add must hold for the add-s
switch to occur. As the precondition of an operation must
always hold before the switch to the place labeled by that
operation’s name can occur, this precondition is always im-
plicitly conjoined with any specific additional requirements
within the square brackets. When the switch from A to add
occurs, the clock y is reset to 0; annotating the location add
with the condition y < Ta ensures that this location is exited
within time duration Ta, as required.
For the operation sell, the supply of the output item i! is a
requirement that must be met for the switch sell-e to occur
after the completion of the operation. Compare this with
the add operation where the input i? was required for the
switch starting the operation to occur.

3

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

Looking now at the switch purge-s, this switch can occur
only when x is 1. Furthermore, it must occur at this time
because of the time restriction placed on location A. This
ensures that the purge operation occurs precisely once a day
(starting at the end of each day and the beginning of the
next). When the switch does occur, the clock x is reset to
0 (ensuring that x always lies between 0 and 1 and hence
denotes the time that has passed in the current day).
Location A is the automaton’s initial location. The under-
standing is that the initial conditions as specified by the INIT

schema must hold when the automaton is started in location
A, and at the same time the clock x is set to 0 (the initial
value of the clock y can be arbitrary and so is not specified).
The fact that the ‘start’ switches associated with each oper-
ation emanate from location A and the ‘end’ switches each
return to A, ensures that the operations add, sell and purge
do not overlap time-wise.
Note that the naming of switches can be systematic, e.g.,
a switch pointing to an operation state can be labeled with
the operation name follow by ‘s’ (for start). If a switch is
pointing from an operation state to an idle (control) state,
then it can be labeled with the operation name follow by ‘e’
(for end).

TimedStoreP
TimedStore[redef add]

∆
pItems : P Items

pItems =
{i : store |

i.useBy < today + 2}
add
∆(stock)
i? : Item

i? �∈ stock ∧ i?.useBy � today + 3 ∧ stock′ = stock ∪ {i?}

pSell
∆(stock)
is! : P1 pItems

stock′ = stock \ is!

Tpm : R

A
x <= 1

add
y < Ta/2

[i?, x < 1-Ta/2]
add-s, y := 0

add-e

pSell
y < Tpm

[x < 1-Tpm]
pSell-s, y := 0

pSell-e

Inheritance

Inheritance is a mechanism for incremental specification
and reuse, whereby new classes may be derived from an ex-
isting class. Object-Z inheritance has a similar style as the
Z schema inclusion. We propose that the control behaviour
(expressed by the TA) can also be inherited and extended in
a simple way. Consider a system TimedStoreP which has
the same sell and purge functionalities with TimedStore ex-

cept the add operation: only items with their expiration date
at least 3 days ahead of the current day can be added into
the store and the add operation takes less than a half of the
Ta time units to finish. In addition, The system is able to
identify the set pItems (promotion items) of items which
have only two days left before their expiration. An extra
operation pSell (promotion sell), which takes at most Tpm
time units to execute, can sell a subset of these promotion
items. The class TimedStoreP can be defined by inheriting
the class TimedStore. For the behaviour (automaton) part,
the add location refers to the redefined add operation and
its local invariant changes to y < Ta/2 and enabling con-
dition changes to x < 1 − Ta/2. And a new location pSell
is introduced and is connected (by new switches) with the
control (idle) location A from TimedStore. The other loca-
tions and their connections remain unchanged as follows:
If we expand the inheritance, then TimedStoreP becomes:

TimedStoreP

stock : P Item
today : N

∆
pItems : P Items

pItems = {i : store | i.useBy < today + 2}

pSell
∆(stock)
is! : P1 pItems

stock′ = stock \ is!

INIT

[unchanged]

sell
[unchanged]

purge
[unchanged]

add
∆(stock)
i? : Item

i? �∈ stock
i?.useBy � today + 3
stock′ = stock ∪ {i?}

Ta, Ts, Tp1, Tp2, Tpm : R

x, y : clock

purge
y < Tp2

A
x <= 1

add
y < Ta/2

sell

[i?, x < 1-Ta/2]
add-s, y := 0

add-e

x := 0, y := 0
[x = 1]

purge-e

[x < 1-Ts]
sell-s, y := 0 sell-e

x := 0

y < Ts

[y > Tp1]

[i!]

purge-s,

pSell
y < Tpm

[x < 1-Tpm]
pSell-s, y := 0

pSell-e

Note that pItems is modelled as a secondary attribute whose
value is subject to change with each operation (implicitly it
is included in every operation’s ∆ list).
For multiple inheritance cases, the rules are that all simi-

4

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

larly named locations (and switches) are merged, with all
corresponding invariants and conditions conjoined.

4 Composition and Communication

In this section, various composition and communication as-
pects of the combined language are discussed and synchro-
nized communication links are systematically introduced.

Independent stores

Consider now a system consisting of two stores operat-
ing independently. This system is specified by the class
TwoIndStores:

TwoIndStores

s1, s2 : TimedStore

s1 ‖ s2

The timed automaton of this class is simply the product [1]
of the automata for the two stores s1 and s2. The timed au-
tomaton for s1 is just the automaton of the TimedStore class
but with the label of each location, the label of each switch,
and the names of the clocks distinguished by an ‘s1.’ pre-
fix, as illustrated in Figure 2. Notice that the input/output
variables are not prefixed.

s1.purge
s1.y<Tp2

s1.A
s1.x<=1

s1.add
s1.y<Ta

s1.sell

[i?, s1.x < 1-Ta]
s1.add-s, s1.y:=0

s1.add-e

s1.x := 0, s1.y := 0

[s1.x = 1]

s1.purge-e

[s1.x < 1-Ts]
s1.sell-s, s1.y := 0 s1.sell-e

s1.x := 0

s1.y<Ts

[s1.y > Tp1]

[i!]

s1.purge-s

Figure 2. the automaton s1

The timed automaton for s2 is labeled similarly. The s1 ‖ s2
notation in the class TwoIndStores denotes the product of
the associated automata. The implication here is that the
two stores are not only completely independent, but oper-
ations in different stores can be executed concurrently. In-
deed, when an object of the class TwoIndStores is instanti-
ated, the two store objects start at the same time in their A
position with s1.x and s2.x set to 0 synchronously. As time
passes at the same rate for all clocks, both stores will always

synchronise on the start of their respective purge operations,
namely, at the start of the next day, but apart from that they
run completely independently.
The two-stores example can be generalised to a collection of
independent stores, as specified by the class CollnIndStores.
In this class the expression ‖ s : stores denotes the timed
automata product (s1 ‖ s2 ‖ · · ·) where the set stores is
{s1, s2, · · ·}.

CollnIndStores

stores : P Store

‖ s : stores

Transferring between stores

Consider now a system consisting of two stores, where each
item sold by the first store is added (i.e. transferred) to the
second. Effectively, the first store sells items only to the
second store. A specification of this system is given by the
class TransStores:

TransStores

s1, s2 : TimedStore

(s1 ‖ s2) • sync {s1.sell-e ↔ s2.add-s}

The sync clause indicates that the two switches labeled
s1.sell-e and s2.add-s are to be treated as if these labels
were identical, i.e. the automata must synchronize on these
switches. As part of this synchronization, as the output i!
and the input i? have the same base-name they are identified
and hidden (just as is the case for the Object-Z parallel op-
erator, i.e. they specify internal communication rather than
communication with the environment). Apart from this syn-
chronization, the product of the two timed automata effec-
tively ensures that the two automata operate independently
and concurrently.
Now consider a system like TransStores where again each
item sold by the first store is added (i.e. transferred) to the
second. However, an item from the environment may also
be added to the second store, i.e. not all items added to the
second store are necessarily transferring from the first. This
system is specified in the class Alt1TransStores:

Alt1TransStores

s1, s2 : TimedStore

(s1 ‖ s2) • sync {s1.sell-e → s2.add-s}

5

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

The implication here is that whenever the switch s1.sell-
e is taken then there must be synchronization with the
switch s2.add-s. However, the switch s2.add-s can occur
independent of (i.e. without synchronizing with) the switch
s1.sell-e. With this notation, notice that the synchroniza-
tion sync {s1.sell-e ↔ s2.add-s} in the TransStores class
could have been alternatively (but less elegantly) expressed
as sync {s1.sell-e → s2.add-s, s2.add-s → s1.sell-e}.
Now consider the situation as before where an item sold by
the first store can be transferred to the second, but in addi-
tion not only can an item from the environment be directly
added to the second store, (i.e. not all items added to the sec-
ond store are necessarily transferring from the first) but also
an item sold by the first store can be passed to the environ-
ment (i.e. not all items sold by the first store are necessarily
transferred to the second). This system is specified in the
class Alt2TransStores:

Alt2TransStores

s1, s2 : TimedStore

(s1 ‖ s2) • sync {s1.sell-e �↔ s2.add-s}

The implication here is that when any of the switches
s1.sell-e or s2.add-s is taken there may or may not (the
choice is non-deterministic) be synchronization with the
switch s2.add-s or s1.sell-e respectively.
The examples involving two stores given so far in this sec-
tion can be generalised to a collection of stores. Consider
a system consisting of a collection of stores where an item
from the environment can be added to any store, an item
sold by any store can be passed back to the environment,
and given any two stores in the collection, an item sold by
the first store can be added (transferred) to the second. Such
a system is specified in the class CollnTransStores:

CollnTransStores

stores : P TimedStore

(‖ s : stores) • sync {s1, s2 : stores | s1 �= s2 •
s1.sell-e �↔ s2.add-s}

More on synchronization

To further illustrate synchronization in timed automata,
consider the three timed automata U, V and W illustrated in
Figure 3. The timed automaton (U ‖ V ‖ W) • sync {a ↔
b} is behaviorally equivalent to the product U1 ‖ V1 ‖ W1
of the timed automata U1, V1 and W1 illustrated in Fig-
ure 4. In this case the switches labeled a and b have been

re-named to a common label d. As these labels are the same,
the product automaton will synchronize on these switches.
Consequently, the switch from location u1 to location u2 in
U1 is always synchronized with the switch from location v1
to location v2 in V1, and conversely.

v2v1
b

u2u1
a

U V

w2w1
c

W

Figure 3. timed automata U, V and W

v2v1
d

u2u1
d

U1 V1

w2w1
c

W1

Figure 4. timed automata U1, V1 and W1

The timed automaton

(U ‖ V ‖ W) • sync {a ↔ b, a ↔ c, b ↔ c}

is behaviorally equivalent to the product U2 ‖ V2 ‖ W2
of the 3 automata U2, V2 and W2 illustrated in Figure 5.
In this case the switch from location u1 to u2 in U2 must
synchronize with either the switch from location v1 to v2 in
V2 or from w1 to w2 in W2; the switch from location v1
to v2 in V2 must synchronize with either the switch from
location u1 to u2 in U2 or from w1 to w2 in W2; and the
switch from location w1 to w2 in W2 must synchronize with
either the switch from location u1 to u2 in U2 or from v1 to
v2 in V2.

u2u1

e

U2

w2w1

f

W2

v2v1

V2

f g g

e

Figure 5. timed automata U2, V2 and W2

u2u1
h

U3

w2w1
h

W3

v2v1

V3

h

Figure 6. timed automata U3, V3 and W3

Compare this to the automaton

(U ‖ V ‖ W) • sync {a ↔ b ↔ c}.

This automaton is behaviorally equivalent to the product
U3 ‖ V3 ‖ W3 of the three automata U3, V3 and W3 il-
lustrated in Figure 6. In this case the three switches from
location u1 to u2 in U3, from location v1 to v2 in V3 and
from location w1 to w2 in W3 must synchronize.
The timed automaton (U ‖ V) • sync {a → b} is be-
haviorally equivalent to the product U4 ‖ V4 of the timed
automata U4 and V4 illustrated in Figure 7. In V4 a switch

6

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

labeled a is added to duplicate the switch labeled b. As
the switch in automaton U4 is also labeled a, this ensures
that the product automaton will synchronize on these two
switches. Consequently, the switch from location u1 to lo-
cation u2 in U4 is always synchronized with a switch from
location v1 to location v2 in V4, but not conversely. The
transition from location v1 to location v2 can use the switch
labeled b in which case no synchronization takes place.

u2u1
a

v2v1

b

U4
V4
a

Figure 7. timed automata U4 and V4

u2u1

a

v2v1

b

U5 V5

d d

Figure 8. timed automata U5 and V5

The timed automaton (U ‖ V) • sync {a �↔ b} is behav-
iorally equivalent to the product U5 ‖ V5 of the timed au-
tomata U5 and V5 illustrated in Figure 8. In this case both
of the switches labeled a and b are duplicated and a com-
mon name, d, is assigned to these new switches. This en-
sures that the product automaton will synchronize on these
two switches. Consequently, a transition from location u1
to location u2 in U5 can synchronize with a transition from
location v1 to location v2 in V5 if the switch labeled d is
used. However, a transition from location u1 to location u2
in U5 could use switch a, or a transition from location v1
to location v2 in V5 could use switch b; in either case no
synchronization takes place.

5 Semantics

In this section we present a formal description of the opera-
tional behavior of this integrated language. The fundamen-
tal semantic links between Object-Z and TA are:

• Object-Z operations are identified as states in Timed
Automata.

• Pre/Post-conditions of an Object-Z operation are iden-
tified to TA transition conditions.

The key novel idea of integrating the Object-Z semantics
and TA semantics is to embed object state updates (of
Object-Z) into the action transition semantics of TA. To fa-
cilitate the description of dynamic behaviors of a system,
we introduce a set of locations A, called control locations,
to coordinate the location switches from one Object-Z op-
eration to another. Each location of a timed automaton
specified in a class must be either a control location or an

Object-Z operation location. A class has an Object-Z part
OZDefinition which obeys the conventional definition [26].
OZop represents the set of Object-Z operations defined in
the class. The original Object-Z operation operators: paral-
lel composition, nondeterministic choice, sequential com-
position are replaced by TADefinition, which is a timed au-
tomaton:
SOZTA is a tuple (S, S0, Σ, X, I, E), where

• S is a union of A and Op, in which A is a finite set of
control (idle) states and Op is a finite set of operation
states correspond to the Object-Z operations

• S0, a subset of S, is a set of initial locations

• Σ is a set of labels

• X is a finite set of clocks

• I is a mapping that labels each location s in S with
some clock constraint in Φ(X)

• E, a subset of S × S × Σ × 2X × Φ(X), is the set of
switches. A switch 〈s, s′, a, r, ϕ〉 represents a transi-
tion from location s to location s′ on input symbol a.
The set r gives the clocks to be reset with this transi-
tion, and ϕ is a clock constraint over X that specifies
when the switch is enabled.

Operational Semantics

In this subsection, we present a timed transition system
SOZTA to represent operational semantic models for this in-
tegrated language. Before we start to define the opera-
tional semantics, we need some definitions for the validity
of Object-Z and TA expressions.
The fact that a state guard G is valid under the semantic
function σ : Var �→ Value is denoted as σ � G, which reads
that G is valid under the semantic function σ. The fact that
an operation Op is valid under the semantic functions σ1, σ2

is denoted as σ1, σ2 � Op. For example, in the context of
the Store system,

{(store, {itema, itemb}), (today, 20)},
{(store, {itema, itemb, itemc}), (today, 20)} � add[i? �→ itemc]

To keep track of the changes of clock values, we use func-
tions known as clock assignments mapping X to the non-
negative reals R+. Let u, v denotes such functions, and use
u � ϕ to mean that the clock values denoted by u satisfy the
guard ϕ. For d ∈ R+, let u + d denote the clock assignment
that maps all x ∈ X to u(x) + d, and for r ⊆ X, let [r �→ 0]u
denote the clock assignment that maps all clocks in r to 0
and agree with u for the other clocks in X\r.
To facilitate the description of operational semantics, let

OP : Location �→ OZop

7

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

denote the association between TA locations to Object-Z
operations.
The operational semantics of this integrated language is an
extension of TA transition semantics coupled with object
states. The timed state transition system SOZTA consists of
states which are tuples 〈l, u, σ, σ1〉 and state transitions are
defined by the rules:

R1 : l
a,ϕ,r−→l′ σ,σ1�OP(l) σ1,σ2�OP(l′) u�ϕ u′=[r �→0]u u′�I(l′) l,l′∈Op

〈l,u,σ,σ1〉 a−→〈l′,u′,σ1,σ2〉

R1 is an action transition from one operation (location) state
l to another operation state l′ where the post object state of l
must be the same as the pre object state of l′, the timing con-
straints on the transition must be satisfied and the location
invariants of l and l′ must be true.

R2 : σ1,σ2�OP(l) u�I(l) u+d�I(l) d∈R+ l∈Op

〈l,u,σ1,σ2〉 d−→〈l,u+d,σ1,σ2〉

R2 is a delay transition in a certain operation state where
only time is progressed.

R3 : l
a,ϕ,r−→l′ u�ϕ u′=[r �→0]u u′�I(l′) l∈A l′∈A

〈l,u,σ,σ〉 a−→〈l′,u′,σ,σ〉

R3 is an transition from one control (location) state l to an-
other control state l′ where object states remain the same.

R4 : u�I(l) u+d�I(l) d∈R+ l∈A

〈l,u,σ,σ〉 d−→〈l,u+d,σ,σ〉

R4 is a delay transition in a control state where time is pro-
gressed.

R5 : l
a,ϕ,r−→l′ σ1,σ2�OP(l) u�ϕ u′=[r �→0]u u′�I(l′) l∈Op l′∈A

〈l,u,σ1,σ2〉 a−→〈l′,u′,σ2,σ2〉

R5 is an action transition from one operation (location) state
l to a control state l′ where the post object state of l must be
the same as the object state of l′, the timing constraints on
the transition must be satisfied and the location invariants of
l and l′ must be true.

R6 : l
a,ϕ,r−→l′ σ,σ1�OP(l′) u�ϕ u′=[r �→0]u u′�I(l′) l∈A l′∈Op

〈l,u,σ,σ〉 a−→〈l′,u′,σ,σ1〉

R6 is the inverse of R5.
These rules define six types of transitions in SOZTA. These
rules are applied to a single timed transition system. A
complex system can be described as a product of interact-
ing timed transition systems. The communications between
two transition systems are obtained by synchronizing the
transition with identical labels.

6 A Case Study

As an illustration of how Object-Z and TA can be success-
fully integrated in practice, we present here a case study of
an electronic key system.

A room can be accessed through a sliding door. To open
the sliding door, an electronic key is inserted into the door’s
electronic lock. The identity of the key (as encoded as part
of the key) is passed to the lock that then checks to see if
the key has permission to access the room. When access
permission has been checked the key is ejected from the
lock. If the key has access permission the door is opened
(or remains open); otherwise the door is closed (or remains
closed).

We shall suppose that it takes less than Tsp time units from
the time the key is inserted in the door’s lock for the key
to supply its identity to the lock, less than Tch time units
for the lock to check if the key has permission to access the
room, less than Tej time units for the key to be ejected from
the lock, and less than Top time units for the door to satisfy
an ‘open’ request. Also, if the door has been open Tto time
units since the last ‘open’ request, a time-out occurs and the
door is closed. It takes less than Tcl time units for the door
to satisfy a ‘close’ request.

A key is specified by the class Key:

Key
supplyId
k! : Key

k! = self

Tsp, Tej : R

x : clock

A supplyId
x < Tsp

supplyId-s, x := 0

supplyId-e
[k!]

wait
eject-s, x := 0

eject-e

eject
x < Tej

The only operation in the Object-Z section of this class is
supplyId specifying the situation in which a key supplies its
identity (to the lock). When considering time aspects, how-
ever, other situations arise. A key will be in location wait
after it has supplied its identity and is waiting to see whether
or not access is granted. A key will be in location eject when
it is being ejected from the lock once access permission has
been decided.

The lock is specified by the class Lock. The attribute keys
in this class denotes the set of keys that have permission
to access the room. The operations grant and deny capture
whether or not any supplied key is in this set, and hence
whether or not access to the room is granted or denied.

8

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

Lock

keys : P Key

grant
k? : Key

k? ∈ keys

deny
k? : Key

k? �∈ keys

Tch : R

y : clock

B
grant

y < Tch

[k?]
grant-s, y := 0

grant-e

deny
y < Tch

[k?]
deny-s, y := 0

deny-e

The door is specified by the class Door:

Door

State ::= opened | closed

status : State
INIT

status = closed

open
∆(status)

status′ = opened

close
∆(status)

status′ = closed

Top, Tto, Tcl : R

z : clock

closed close
z < Tcl

open
z < Top

close-e

open-s, z := 0

open-e, z := 0
opened
z <= Tto

timeOut, z := 0
[z = Tto]

open-s, z := 0open-s

open-s,
z := 0

close-s,
z := 0

close-s close-s

close-s,
z := 0

A door can be in any of four situations: closed (loca-
tion closed) opening (location open where the operation
open occurs) opened (location opened) and closing (loca-
tion close where the operation close occurs). In each situa-
tion, the door can receive an instruction to open or close the
door. In all cases, when an instruction to open the door is
received the switch open-s is taken, while if an instruction
to close the door is received the switch close-s is taken.
In locations closed or close, if the instruction to open is re-
ceived the operation open is invoked, while if the instruction

to close is received effectively the door continues as if noth-
ing had happened. In location open, if the instruction to
open is received effectively the door continues as if nothing
had happened, while if the instruction to close is received
the operation close is invoked. In location opened, if the
instruction to open is received the door remains open but
the timing is reset to 0, while if the instruction to close is
received the operation close is invoked.
The complete electronic key system can now be specified
by the class KeySystem. In this class, the attribute keys de-
notes the set of all keys in the system; the set of keys that
have permission to access the room will be a subset of keys.
The synchronization conditions ensure that the key identity
output by a key is passed to the lock and used to determine
whether or not that key has permission to access the room,
and that once the access permission has been decided the
key is ejected and the door requested to open or close, de-
pending on whether access was granted or denied.

KeySystem

keys : P Key
lock : Lock
door : Door

lock.keys ⊆ keys

INIT

door.INIT

((‖ key : keys) ‖ lock ‖ door) • sync{ky : keys •
ky.supplyId-e ↔ lock.grant-s,

ky.supplyId-e ↔ lock.deny-s,

lock.grant-e ↔ ky.eject-s ↔ dr.open-s,

lock.deny-e ↔ ky.eject-s ↔ dr.close-s}

7 Related Works and Conclusion

This research can be classified as one of the integrated for-
mal methods (IFM). The IFM research area has been active
for a number of years (e.g. [2, 14, 6, 4]) with a particular
focus on integrating state based and event based formalisms
(e.g. [13, 31, 27, 32, 35]).
One closely related area to ours is the research work on in-
tegration of Object-Z with various timed calculi. For exam-
ple, Object-Z is combined with Timed CSP [25] in [22, 8],
with timed refinement calculus [21, 12] in [28] and with
duration calculus [37] in [18]. Indeed, those combinations
have made improvements in comparison to some early con-
servative framework approaches [9, 23].
The technical difference between our approach to the oth-
ers has been the way to clearly separate functionalities and
timed behaviour and the use of graph based Timed Au-
tomata instead of the timed calculi to capture the behaviour.

9

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

One clear benefit of our approach is that many existing well
developed tools [3, 7, 30, 33] for TA can be used to check
the timed behaviour of the design models. In addition to
the benefit of bring graphical appeal in capturing the object
behaviour of Object-Z classes, our approach also provide a
way to structure TA automatons using Object-Z classes so
that the scale up problem of TA can be managed. The novel
communication mechanism developed in our approach is
also more flexible and expressive than CSP channels. For
example, arbitrary communication between various objects
can be captured at the composite class level with the elegant
communication links.
Another related work is the combination of Z with graphical
diagrams, i.e. statecharts and petri nets. For example, in [5]
a framework is presented to link Z with statecharts and
treats Z operation schemas as state transition links in stat-
echarts. Similarly, the language OZS [15] blends Object-Z
with statecharts and treats Object-Z operations as state tran-
sition links. Combinations of Z and Petri Nets have also
been investigated in [17, 16]. All those approaches suf-
fer a common drawback that the states in the graph have
no systematic correspondence in Z or Object-Z parts. The
issues of object composition and timing have not been ad-
dressed. Our approach is different: we treat Object-Z op-
erations as states (TA locations) instead of state transitions
(TA switches) and furthermore we have a systematic nam-
ing convention for all switches. Object composition and
real-time issues are the main focus points in our approach.
In our future work, we plan to investigate the refinement
techniques for this combination of Object-Z and TA. We
also plan to develop various tools to support the combina-
tion, e.g. to develop an OZTA editor and various linking
programs to the Object-Z tools and TA model checkers. For
the OZTA editor, we chose to represent the OZTA specifica-
tion information in an XML format to enable easy linkage
with Object-Z and TA tools. Some of our on-going tool de-
velopment can be accessed here [19].

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[2] K. Araki, A. Galloway, and K. Taguchi, editors. IFM’99: Integrated Formal
Methods, York, UK. Springer-Verlag, June 1999.

[3] J. Bengtsson, K. G. Larsen, F. Larsson, and P. Pettersson avd Y. Wang. UP-
PAAL - a tool suite for automatic verification of real-time systems. In Hybrid
Systems III: Verification and Control, pages 232–243. Springer, 1996.

[4] E. Boiten, J. Derrick, and G. Smith, editors. IFM’04: Integrated Formal Meth-
ods, Lect. Notes in Comput. Sci. Springer-Verlag, April 2004.

[5] R. Bussow and W. Grieskamp. A Modular Framework for the Integration of
Heterogeneous Notations and Tools. In Araki et al. [2], pages 211–230.

[6] M. Butler, L. Petre, and K. Sere, editors. IFM’02: Integrated Formal Methods,
Lect. Notes in Comput. Sci. Springer-Verlag, October 2002.

[7] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid
Systems III: Verification and Control, pages 208–219. Springer, 1996.

[8] J. Derrick. Timed csp and object-z. In 3nd International Conference of Z and
B Users (ZB’03), LNCS. Springer, June 2003.

[9] J. S. Dong, J. Colton, and L. Zucconi. A Formal Object Approach to Real-
Time Specification. In the 3rd Asia-Pacific Software Engineering Conference
(APSEC’96), Seoul, Korea, December 1996. IEEE Press.

[10] J.S. Dong, P. Hao, S.C. Qin, J. Sun, and W. Yi. Timed Patterns: TCOZ to
Timed Automata. In Jim Davies and Wolfram Schulte, editors, The 6th In-
ternational Conference on Formal Engineering Methods (ICFEM’04), Seattle,
USA, November 2004.

[11] R. Duke and G. Rose. Formal Object Odiented Specification Using Object-Z.
Cornerstones of Computing. Macmillan, March 2000.

[12] C. J. Fidge, I. J. Hayes, A. P. Martin, and A. K. Wabenhorst. A set-theoretic
model for real-time specification and reasoning. In Mathematics of Program
Construction, 1998.

[13] C. Fischer and H. Wehrheim. Model-Checking CSP-OZ Specifications with
FDR. In Araki et al. [2].

[14] W. Grieskamp, T. Santen, and B. Stoddart, editors. IFM’00: Integrated Formal
Methods, Lect. Notes in Comput. Sci. Springer-Verlag, October 2000.

[15] J. P. Gruer, V. Hilaire, A. Koukam, and P. Rovarini. Heterogeneous formal spec-
ification based on object-z and startechart: semantics and verification. J. Sys-
tems and Software, 2004.

[16] X. He. Pz nets a formal method integrating petri nets with z. Information &
Software Technology, 43(1):1–18, 2001.

[17] M. Heiner and M. Heisel. Modeling safety-critical systems with Z and Petri
nets. In International Conference on Computer Safety, Reliability and Security,
LNCS, Springer, pages 361–374, 1999.

[18] J. Hoenicke and E.-R. Olderog. Combining Specification Techniques for Pro-
cesses, Data and Time. In Butler et al. [6].

[19] NUS Software Engineering Lab. OZTA tools. http://nt-
appn.comp.nus.edu.sg/fm/ozta/introduction.htm.

[20] C. Lüth, E. W. Karlsen, Kolyang, S. Westmeier, and B. Wolff. Hol-Z in the
UniForM-workbench – a case study in tool integration for Z. In J. P. Bowen,
A. Fett, and M. G. Hinchey, editors, ZUM’98: The Z Formal Specification No-
tation, volume 1493 of Lect. Notes in Comput. Sci., pages 116–134. Springer-
Verlag, 1998.

[21] B. P. Mahony. The Specification and Refinement of Timed Processes. PhD
thesis, University of Queensland, 1991.

[22] B. P. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: An introduc-
tion to TCOZ. In K. Futatsugi, R. Kemmerer, and K. Torii, editors, The 20th
International Conference on Software Engineering (ICSE’98), pages 95–104,
Kyoto, Japan, April 1998. IEEE Press.

[23] K. Periyasamy and V.S. Alagar. Adding Real-Time Filters to Object-Oriented
Specification of Time Critical Systems. In the 1998 IEEE Workshop on
Industrial-strength Formal specification Techniques, Boca Raton, Florida,
USA, October 1998. IEEE Press.

[24] M. Saaltink. The Z/EVES system. In J. P. Bowen, M. G. Hinchey, and D. Till,
editors, ZUM’97: Z Formal Specification Notation, volume 1212 of Lecture
Notes in Computer Science, pages 72–85. Springer-Verlag, 1997.

[25] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W.
Roscoe. Timed CSP: Theory and practice. In J. W. de Bakker, C. Huizing,
W. P. de Roever, and G. Rozenberg, editors, Real-Time: Theory in Practice,
volume 600 of Lect. Notes in Comput. Sci., pages 640–675. Springer-Verlag,
1992.

[26] G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

[27] G. Smith and J. Derrick. Specification, Refinement and Verification of Current
Systems — An Integration of Object-Z and CSP. Formal Methods in System
Design, 18:249–284, 2001.

[28] G. Smith and I. Hayes. Towards Real-Time Object-Z . In Araki et al. [2].
[29] G. Smith, F. Kammuller, and T. Santen. Encoding object-z in isabelle/hol. In

2nd International Conference of Z and B Users (ZB’02), LNCS. Springer, 2002.
[30] M. Sorea. TEMPO: A model-checker for event-recording automata. In Pro-

ceedings of Workshop on Real-time Tools, August 2001.
[31] C. Suhl. RT-Z: An integration of Z and timed CSP. In Araki et al. [2].
[32] K. Taguchi and K. Araki. The State-Based CCS Semantics for Concurrent

Z Specification. In M. Hinchey and S. Liu, editors, the IEEE International
Conference on Formal Engineering Methods (ICFEM’97), pages 283–292, Hi-
roshima, Japan, November 1997. IEEE Press.

[33] S. Tasiran, R. Alur, R. P. Kurshan, and R. K. Brayton. Verifying abstractions of
timed systems. In Proceedings of the 7th Conference on Concurrency Theory,
volume 1119 of LNCS, pages 546–562. Springer, 1996.

[34] K. Winter and R. Duke. Model Checking Object-Z Using ASM. In Butler et al.
[6], pages 165–184.

[35] J. Woodcock and A. Cavalcanti. The Semantics of Circus. In 2nd International
Conference on Z and B, volume 2272 of Lect. Notes in Comput. Sci., pages
184–203. Springer-Verlag, 2002.

[36] X.Nicollin, J.Sifakis, and S.Yovine. Compiling Real-time Specifications into
Extended Autoamta. In IEEE TSE Special Issue on Real-Time Systems, volume
18(9), pages 794–804, 1999.

[37] C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information
Processing Letters, 40:269–276, 1991.

10

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

