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Abstract 
W h e n  modelling a large and complex sys tem,  clar- 

z t y  of the  speczfication becomes a n  znaportant fac tor .  
I n  object-oriented specification, the  s ta tes  of individ- 
ual objects are captured by the values of the ir  at- 
trzbutes. Frequently however,  there are dependenczes 
between the attributes of a n  object. An appropriate 
andication of whzch attributes are przmary  (indepen- 
dent) and which are secondary (dependent) can add 
significantly t o  clarity. T h i s  paper details the  not ion  
of secondary atlribates, the ir  roles and implications in 
f o r m a l  object-oriented specification. 

Keywords: formal specification techniques, object- 
oriented modelling, object sharing, recursive struc- 
tures 

1 Introduction 
When specifying an object, its state is captured by 

the values of its attributes and its behaviour is im- 
plied by its operations. In general, there are many 
ways to model an object. For example, the shape of a 
triangle (Figure 1) can be modelled as an object with 
three attributes representing either (the lengths of) 
the three sides of the triangle, or two sides and (the 
size of) their included angle, or two angles and the 
side between the two angles. These three alternatives 
are specified in three skeletal classes, Trianglesss ,  
T r z a n g l e s ~ s  and TrzangleAsA using the Object-Z spec- 
ification language[6, 8, 91. 

Trzanglesss 

a ,  b ,  c : R+ 

Tria  nglesA s 

a, B ,  c : E%+ 

B 

Figure 1: Triangle ABC. 
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sides of a triangle are given preference, then attributes 
a ,  b ,  c of Trzangle become the base attributes and 
other attributes become derived. The notion of sec- 
ondary attributes has also been realised in [7], where 
a similar concept to Rumbaugh’s derived attribute, 
namely dependent varzable, is introduced with respect 
to Object-Z. Although Rumbaugh’s introduction of 
the concept of derived information is informal, it pro- 
vides a good starting point for discussion of the notion 
of secondary attributes in Object-Z. This paper for- 
malises and extends the notion of secondary attributes 
in object-oriented formal modelling. The structure of 
the paper is as follows. 

Section 2 discusses the definition of secondary at- 
tributes using a simple hotel management system as 
an example. Section 3 illustrates how secondary at- 
tributes can simplify and clarify a specification. Sec- 
tion 4 shows the use of a secondary attribute in mod- 
elling object sharing, and demonstrates that the value 
of a secondary attribute may depend on the environ- 
ment rather than on the primary attributes of the ob- 
ject itself. Section 5 presents the role of the secondary 
attributes in modelling recursively structured objects. 

2 Secondary Attributes and Delta 

Consider a simple hotel management system that 
stores information on rooms and their occupancy. 
A client may Checkln to an unoccupied room or 
CheckOut of an occupied room. Vacant rooms can be 
listed at any time (Lzst Vacancies). Let [Room] repre- 
sent the type of a room in a hotel. This simple system 
can be modelled in Object-Z as: 

Lists 

- HotelManagementSystem 

A ( occupz e d )  
r? : Room 

r? E vacant 
occupzed’ = occupied U ( r?}  

rooms : P Room 
occupied : P Room 

vacant : P Room 
occupied C rooms I--- vacant = rooms - occupied 

The primary attributes are rooms and occupaed 
while the only secondary attribute is vacant. The de- 
pendency of the secondary attribute vacant on pri- 
mary attributes rooms and occupied is specified in the 
second conjunct of the class invariant. In Object-Z, 
the declaration of primary and secondary attributes 
are syntactically separated by the A symbol, which 
indicates that secondary attributes are implicitly in- 
cluded in the A-list of every operation. The under- 
standing of the A-list of an operation in Object-Z 
is that attributes which are so listed are subject to 
change. Therefore secondary attributes are always 
subject to change whenever any operation is invoked. 
Primary attributes not included in the A-list of an 
operation are implicitly unchanged on application of 
the operation. For instance, if operation Checkln is 
applied, the predicate rooms’ = rooms is implicitly 
included, whereas the other attributes, occupaed and 
vacant, are subject to change. The changes are speci- 
fied by the predicate of CheckIn and the class invari- 
ant. Note that even though the secondary attribute 
vacant is implicitly included in the A-list of oper- 
ation List Vacancies, it remains unchanged because 
both attributes, rooms and occupied, being unlisted 
are unchanged and vacant is functionally determined 
by them. 

The hotel management example has illustrated the 
underlying semantics of a secondary attribute in terms 
of the A-list. In the following sections, the different 
roles of secondary attributes in formal system mod- 
elling are demonstrated. 

3 Adding Clarity in Specifications 
Consider a complex variable with two component 

attributes, a real part and an imaginary part, and 
suppose the variable can be changed by the following 
operations (Figure 2): 

(1) add a given real number to its real part, 

(2) add a given real number to its imaginary part, 

(3) rotate by a given angle and 

(4) extend the modulus by a given positive real num- 
ber. 

When modelling a complex variable as an object, 
if only two attributes] real and imag, are consid- 
ered, then operations Rotate and Extend (particularly 
Rotate) are difficult and cumbersome to construct. 
However, if additional secondary attributes, such as 
the modulus and the argument, are introduced, then 
operations Rotate and Extend can be easily defined. 
A suitable model of a complex variable in Object-Z is 
the class Complex. 
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Figure 2: Operations to manipulate a complex number variable. 

- Complex 
real, imag : R 

1 -Rotate 
A(rea1, imag) I I a ? : B  

argument' = argument + a? 
modulus' = modulus 

modulus' = modulus + I? 
argument' = argument 

1 

The dependency of the secondary attributes 
(modulus, argument) on primary attributes (real, 

m a g )  is specified in the class invariant. 
The benefit of introducing the secondary attributes 

modulus and argument in Complex is that operations 
Rotate and Extend are easily defined by expressing 
change in terms of them; moreover, in this case the 
required changes to the primary attributes real and 
imag are unambiguously deducible. Another inter- 
esting point demonstrated by this example is that, 
in a particular situation, the value of a secondary 
attribute need not be uniquely determined. For in- 
stance, when modulus = 0, the value of the sec- 
ondary attribute argument is arbitrary and even if 
modulus # 0, argument is only determined modulo 
27r. 

In the next section, we consider a system in which 
the value of the secondary attribute is not determined 
by its objects' primary attributes but by the environ- 
ment . 

\ 

4 Dependency on Environment: 
Object Sharing 

Consider a situation in which a group of personal 
computer (PC) users share their computer games 
through a communication device. Each member of the 
group owns a PC and a distinct set of computer games 
stored in the PC. Individual users can add a new game 
to or delete an existing game from their PC. Any game 
of any user can be accessed (played) by all users of the 
group. Games can also be transferred between users. 
See Figure 3 for an illustration. The following is an 
Object-Z specification of this system. 
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Firstly, let skeletal class Game represent a com- 
puter game. 

U? : User 

U? E users 

Game 

[[ ... 

A user of the group can be modelled as: 

- User 

my-games : P Game0 (4 other-games : P Game 

g? 4 my-games 
my-games’ = my-games U {g?} 

DelGame 

g? : Game 
my-games) 

g? E my-games 
my-games‘ = my-games \ {g?} 

Choose 

g ?  E (my-games U other-games) 

Play 2 Choose 0 g?.Play 

The primary attribute my-games denotes the local 
games. The containment notation ‘Q’[4] ensures that 
each user’s my-games is a distinct set of games. That 
is, the following property 

’d u1, 112 : User 0 u1 # u2 
u1 .my-games n u2.my-games = 0 

is implied by the containment notation ‘0’. 
The secondary attribute other-games denotes all 

other public games, i.e. games not local to a user but 
which can be accessed by the user. However such an 
intention cannot be expressed as an invariant of the 
class User because, for any user object U ,  the value of 
u.other-games depends on the games which are owned 
by users other than U in the group, i.e. the value of 
U .  other-games is dependent on the environment of U .  
The precise meaning of this attribute is defined by the 
state invariant of the system class below. 

- GameSharangGroup 

The system consists of a set of users. The class in- 
variant ensures that the value of other-games of a user 
in a group depends on those games which are locally 
contained by any other user of the group. Inciden- 
tally, the definition is facilitated by the introduction of 
the secondary attribute games. This example demon- 
strates that, given an object U : User in the group, 
the value of u.other-games is determined by the ex- 
istence of some game objects in the environment and 
those game objects are not even referred to by the 
primary attribute u.my-games. Therefore the value 
u.other-games is subject to change even without ap- 
plying an operation to U .  To illustrate this in detail, 
let’s consider an instance of GameSharingGroup (Fig- 
ure 3). 

Suppose the system performs an operation 
DiscardGame (Select 0 u?.DelGame); if User2 is 
selected (i.e. U? = User2) and a game is deleted 
from User2.my-games1 then the game is also deleted 
from Userl. other-games,  use^-3. other-games and 
User4. other-games. 

Although every game is accessible for Play )  by all 
the users of the group, the existence o I local games (in 
my-games) is controlled solely by the user; i.e. for any 
user U ,  u.my-games can be changed only by perform- 
ing u.AddGame or u.DiscardGame, whereas U has no 
control of u.other-games. In the definition of User, 
this difference is captured precisely by distinguishing 
my-games and other-games as primary and secondary 
respectively. 

In the next section, we investigate the role of sec- 
ondary attributes in modelling recursive structures. 
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GameS haringGroup 

Figure 3: A group of PC users sharing games. 

5 Dependency Chains and Recursion 
If a component object of a composite object has the 

same type as the composite object, then the composite 
object is recursively defined. Frequently, a property of 
a composite object depends on its component objects. 
Such dependencies require that the object reference 
chain from the composite object through its compo- 
nent objects be acyclic. Secondary attributes can be 
used to capture both the dependency chain and the 
acyclic object reference structures in recursive defini- 
tions. This situation arises frequently when specifying 
denotational semantics, and the use of secondary at- 
tributes helps to clarify and simplify the specification 
of the semantic domains. 

To facilitate this discussion, consider a store of sim- 
ple predicates. A simple predicate can be a logical 
variable or a conjunction or a negation. The value of 
a simple predicate can be output from the store and 
the value of a logical variable can be updated. No- 
tice that the value of a logical variable is the value 
stored in the variable while the value of a conjunc- 
tion depends on its left and right components. If the 

value of a logical variable is changed then the values 
of all predicates involved with the logical variable are 
affected. 

All predicates in the store are within the 
same scope. Figure 4 illustrates the syntactic 
structure of two predicates ‘ ( A  and B) and C’ and 
‘not (B and C)’ which both refer to the same logi- 
cal variables ‘B’ and ‘C’. To model these predicates in 
Object-Z, three classes model the three kinds of predi- 
cate, namely logical variables, conjunctions and nega- 
tions. The three classes have a common property - a 
logical value. This common part is modelled as a class 
Basepredicate which is inherited in the definition of 
the three predicate classes - LogicVar, Conjunctzon 
and Negation: 

Basepredicate r, 
value : B 
subs : P Predicate 

I ’  
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Figure 4: Syntax Structures of Two Predicates. 

where Predicate is a class-union[3, 21: 

Predicate 2 LogicVar U Conjunction U Negation 

which includes any type of a predicate. 
The secondary attribute u a h e  represents the value 

of a predicate. Secondary attribute subs represents 
the collection of direct and indirect component ob- 
ject identities: it will facilitate the specification of an 
acyclic reference structure of any predicate. 

A logical variable (an object of class LogicVar) has 
a name and a content, a boolean value, which can be 
changed by operation Change. LogicVar is derived by 
inheritance from Basepredicate. 

Logzc Var 
BasePredicat e 

name : Id 
content : IB 
value = content 

Change 

content’ = value? 

The class invariant ‘value = content’ indicates that 
the value of a variable is that stored in the variable, 
while ‘subs = 0’ indicates that a logical variable has 
no sub-component object. 

A conjunction predicate consists of a left and a right 
hand predicate and a negation predicate consists of the 
predicate which is negated. They are also derived by 
inheriting Basepredicate. 

I, r : Predicate 

value = (1.ualue A r ,vahe)  
subs = { I ,  r }  U 1.subs U ?-.subs 
serf subs 

subs = { p }  U p.subs 
self $! subs 

In the definition of Conjunction and Negation, the 
class invariants ‘vcslue = (1.vahe A r.ua1ue)’ and 
‘value = 7 p.value’ ensure that the value of a con- 
junction or a negation depend on the value of their 
components and ultimately on the primary attributes 
(content) of the variables. The class invariants in- 
volved with the secondary attributes subs capture 
the acyclic property of the object reference struc- 
ture. As an illustration, Figure 5 shows the state 
and the object reference structures of the two predi- 
cates‘(A and B) and C’and‘not (B and C)’ofFig- 
ure 4. The dependency chain from the values of 
‘(A and B) and C’ and of ‘not (B and C)’ to the 
values of the variables ‘A’, ‘B’ and ‘C’ are illustrated; 
for instance, if the colttent of the variable ‘C’ is 
changed from ‘false’ to ‘true’, the value of the predi- 
cates ‘(A and B) and C’and ‘not (B and C)’will be 
negated. 

A store of predicates can be modelled as 
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Figure 5: Object Structures of the Two Predicates. 

PredSt ore 

preds : IP Predicate 
A 
vars : P Logic Var 

vars = { v : Logic Var I 

#{v : vars 0 v.name} = #vars 

Oulput 

v E (u{p : preds 0 p.subs} U preds)} 

Change G [var? : vars] 0 var?.Change 

The secondary attribute uars gathers all occur- 
rences (direct and indirect) of variables in the store. 
The class invariant #{v : vars 0 v.name} = #vars en- 
sures that all variables in the store have distinct names 

so that all predicates in the store are within the same 
scope. For instance, in Figure 5, ‘ ( A  and B) and C’ 
and ‘not (B and C) ’  refer to the same variables ‘B’ 
and ‘C’. 

The operation Output demonstrates that a predi- 
cate can be selected from the store and that it’s value 
can be broadcast to the environment of the store. The 
operation Change demonstrates that a boolean vari- 
able can be selected and its value updated. 

In this section, the importance of using secondary 
attributes to model recursive structures has been 
demonstrated. 

6 Conclusion 
In this paper, the implications of applying sec- 

ondary attributes in formal specification have been ex- 
plored. Three small case studies analyse and demon- 
strate three different usages of secondary attributes in 
formal modelling, namely: 

0 improving the clarity and simplicity of object- 
oriented system specifications in general; 
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e capturing a notion of object sharing; and 

e constructing recursive definitions. 

We have seen in this paper how the notion of sec- 
ondary attribute enables invariant relationships be- 
tween objects to be clearly specified. This is particu- 
larly valuable when designing large or complex com- 
puter systems. 

The game sharing case study in Section 4 demon- 
strates that the notions of information distribution 
and information sharing are facilitated by the use 
of secondary attributes. We believe that secondary 
attributes will contribute significantly to the formal 
modelling of distributed systems. The ideas for con- 
structing recursive definitions in Section 5 have been 
successfully applied to specify the denotational seman- 
tics of programming languages in Object-Z[1, 51. 

In this paper, the notion of secondary attribute has 
been discussed within the context of formal specifi- 
cation. A possible way to implement secondary at- 
tributes is to use lookup (remote) functions in pro- 
gramming languages. As formality becomes impor- 
tant in information system design, one possible area 
for further research is to investigate the relationship 
between the notion of secondary attribute and the no- 
tion of normalisation and functional dependency in 
relational and object-oriented database design. 
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