
The Role of Secondary Attributes in Formal Object Modelling

a , b, c , A , B , C , area, per imeter : R+

Jin Song Dong Gordon Rose Roger Duke
Software Verification Research Centre

Department of Computer Science
University of Queensland, Australia

jason@cs.uq.oz.au roseQcs.uq.oz.au rdukeQcs.uq.oz.au

A , b , C : R+

Abstract
W h e n modelling a large and complex sys tem, clar-

z t y of the speczfication becomes a n znaportant fac tor .
I n object-oriented specification, the s ta tes of individ-
ual objects are captured by the values of the ir at-
trzbutes. Frequently however, there are dependenczes
between the attributes of a n object. An appropriate
andication of whzch attributes are przmary (indepen-
dent) and which are secondary (dependent) can add
significantly t o clarity. T h i s paper details the not ion
of secondary atlribates, the ir roles and implications in
f o r m a l object-oriented specification.

Keywords: formal specification techniques, object-
oriented modelling, object sharing, recursive struc-
tures

1 Introduction
When specifying an object, its state is captured by

the values of its attributes and its behaviour is im-
plied by its operations. In general, there are many
ways to model an object. For example, the shape of a
triangle (Figure 1) can be modelled as an object with
three attributes representing either (the lengths of)
the three sides of the triangle, or two sides and (the
size of) their included angle, or two angles and the
side between the two angles. These three alternatives
are specified in three skeletal classes, Trianglesss ,
T r z a n g l e s ~ s and TrzangleAsA using the Object-Z spec-
ification language[6, 8, 91.

Trzanglesss

a , b , c : R+

Tria nglesA s

a, B , c : E%+

B

Figure 1: Triangle ABC.

31
0-8186-7123-8/95 $4.00 0 1995 IEEE

dcsdjs
J.S. Dong, G. Rose and R. Duke. The Role of Secondary Attributes in Formal Object Modelling. In Proceedings of the First IEEE International Conference on Engineering Complex Computer Systems (ICECCS'95). pages 31--38, Ft. Lauderdale, USA, IEEE Press, Nov 1995.

sides of a triangle are given preference, then attributes
a , b , c of Trzangle become the base attributes and
other attributes become derived. The notion of sec-
ondary attributes has also been realised in [7], where
a similar concept to Rumbaugh’s derived attribute,
namely dependent varzable, is introduced with respect
to Object-Z. Although Rumbaugh’s introduction of
the concept of derived information is informal, it pro-
vides a good starting point for discussion of the notion
of secondary attributes in Object-Z. This paper for-
malises and extends the notion of secondary attributes
in object-oriented formal modelling. The structure of
the paper is as follows.

Section 2 discusses the definition of secondary at-
tributes using a simple hotel management system as
an example. Section 3 illustrates how secondary at-
tributes can simplify and clarify a specification. Sec-
tion 4 shows the use of a secondary attribute in mod-
elling object sharing, and demonstrates that the value
of a secondary attribute may depend on the environ-
ment rather than on the primary attributes of the ob-
ject itself. Section 5 presents the role of the secondary
attributes in modelling recursively structured objects.

2 Secondary Attributes and Delta

Consider a simple hotel management system that
stores information on rooms and their occupancy.
A client may Checkln to an unoccupied room or
CheckOut of an occupied room. Vacant rooms can be
listed at any time (Lzst Vacancies). Let [Room] repre-
sent the type of a room in a hotel. This simple system
can be modelled in Object-Z as:

Lists

- HotelManagementSystem

A (occupz e d)
r? : Room

r? E vacant
occupzed’ = occupied U (r?}

rooms : P Room
occupied : P Room

vacant : P Room
occupied C rooms I--- vacant = rooms - occupied

The primary attributes are rooms and occupaed
while the only secondary attribute is vacant. The de-
pendency of the secondary attribute vacant on pri-
mary attributes rooms and occupied is specified in the
second conjunct of the class invariant. In Object-Z,
the declaration of primary and secondary attributes
are syntactically separated by the A symbol, which
indicates that secondary attributes are implicitly in-
cluded in the A-list of every operation. The under-
standing of the A-list of an operation in Object-Z
is that attributes which are so listed are subject to
change. Therefore secondary attributes are always
subject to change whenever any operation is invoked.
Primary attributes not included in the A-list of an
operation are implicitly unchanged on application of
the operation. For instance, if operation Checkln is
applied, the predicate rooms’ = rooms is implicitly
included, whereas the other attributes, occupaed and
vacant, are subject to change. The changes are speci-
fied by the predicate of CheckIn and the class invari-
ant. Note that even though the secondary attribute
vacant is implicitly included in the A-list of oper-
ation List Vacancies, it remains unchanged because
both attributes, rooms and occupied, being unlisted
are unchanged and vacant is functionally determined
by them.

The hotel management example has illustrated the
underlying semantics of a secondary attribute in terms
of the A-list. In the following sections, the different
roles of secondary attributes in formal system mod-
elling are demonstrated.

3 Adding Clarity in Specifications
Consider a complex variable with two component

attributes, a real part and an imaginary part, and
suppose the variable can be changed by the following
operations (Figure 2):

(1) add a given real number to its real part,

(2) add a given real number to its imaginary part,

(3) rotate by a given angle and

(4) extend the modulus by a given positive real num-
ber.

When modelling a complex variable as an object,
if only two attributes] real and imag, are consid-
ered, then operations Rotate and Extend (particularly
Rotate) are difficult and cumbersome to construct.
However, if additional secondary attributes, such as
the modulus and the argument, are introduced, then
operations Rotate and Extend can be easily defined.
A suitable model of a complex variable in Object-Z is
the class Complex.

32

t
$ (real', imag')

f :

I 1
AddReal

r , i m a g L

Rotate

1

AddImag

a
4 (real', imag')

(real, imag)

1 I Extend

Figure 2: Operations to manipulate a complex number variable.

- Complex
real, imag : R

1 -Rotate
A(rea1, imag) I I a ? : B

argument' = argument + a?
modulus' = modulus

modulus' = modulus + I?
argument' = argument

1

The dependency of the secondary attributes
(modulus, argument) on primary attributes (real,

m a g) is specified in the class invariant.
The benefit of introducing the secondary attributes

modulus and argument in Complex is that operations
Rotate and Extend are easily defined by expressing
change in terms of them; moreover, in this case the
required changes to the primary attributes real and
imag are unambiguously deducible. Another inter-
esting point demonstrated by this example is that,
in a particular situation, the value of a secondary
attribute need not be uniquely determined. For in-
stance, when modulus = 0, the value of the sec-
ondary attribute argument is arbitrary and even if
modulus # 0, argument is only determined modulo
27r.

In the next section, we consider a system in which
the value of the secondary attribute is not determined
by its objects' primary attributes but by the environ-
ment .

\

4 Dependency on Environment:
Object Sharing

Consider a situation in which a group of personal
computer (PC) users share their computer games
through a communication device. Each member of the
group owns a PC and a distinct set of computer games
stored in the PC. Individual users can add a new game
to or delete an existing game from their PC. Any game
of any user can be accessed (played) by all users of the
group. Games can also be transferred between users.
See Figure 3 for an illustration. The following is an
Object-Z specification of this system.

33

Firstly, let skeletal class Game represent a com-
puter game.

U? : User

U? E users

Game

[[...

A user of the group can be modelled as:

- User

my-games : P Game0 (4 other-games : P Game

g? 4 my-games
my-games’ = my-games U {g?}

DelGame

g? : Game
my-games)

g? E my-games
my-games‘ = my-games \ {g?}

Choose

g ? E (my-games U other-games)

Play 2 Choose 0 g?.Play

The primary attribute my-games denotes the local
games. The containment notation ‘Q’[4] ensures that
each user’s my-games is a distinct set of games. That
is, the following property

’d u1, 112 : User 0 u1 # u2
u1 .my-games n u2.my-games = 0

is implied by the containment notation ‘0’.
The secondary attribute other-games denotes all

other public games, i.e. games not local to a user but
which can be accessed by the user. However such an
intention cannot be expressed as an invariant of the
class User because, for any user object U , the value of
u.other-games depends on the games which are owned
by users other than U in the group, i.e. the value of
U . other-games is dependent on the environment of U .
The precise meaning of this attribute is defined by the
state invariant of the system class below.

- GameSharangGroup

The system consists of a set of users. The class in-
variant ensures that the value of other-games of a user
in a group depends on those games which are locally
contained by any other user of the group. Inciden-
tally, the definition is facilitated by the introduction of
the secondary attribute games. This example demon-
strates that, given an object U : User in the group,
the value of u.other-games is determined by the ex-
istence of some game objects in the environment and
those game objects are not even referred to by the
primary attribute u.my-games. Therefore the value
u.other-games is subject to change even without ap-
plying an operation to U . To illustrate this in detail,
let’s consider an instance of GameSharingGroup (Fig-
ure 3).

Suppose the system performs an operation
DiscardGame (Select 0 u?.DelGame); if User2 is
selected (i.e. U? = User2) and a game is deleted
from User2.my-games1 then the game is also deleted
from Userl. other-games, use^-3. other-games and
User4. other-games.

Although every game is accessible for Play) by all
the users of the group, the existence o I local games (in
my-games) is controlled solely by the user; i.e. for any
user U , u.my-games can be changed only by perform-
ing u.AddGame or u.DiscardGame, whereas U has no
control of u.other-games. In the definition of User,
this difference is captured precisely by distinguishing
my-games and other-games as primary and secondary
respectively.

In the next section, we investigate the role of sec-
ondary attributes in modelling recursive structures.

34

GameS haringGroup

Figure 3: A group of PC users sharing games.

5 Dependency Chains and Recursion
If a component object of a composite object has the

same type as the composite object, then the composite
object is recursively defined. Frequently, a property of
a composite object depends on its component objects.
Such dependencies require that the object reference
chain from the composite object through its compo-
nent objects be acyclic. Secondary attributes can be
used to capture both the dependency chain and the
acyclic object reference structures in recursive defini-
tions. This situation arises frequently when specifying
denotational semantics, and the use of secondary at-
tributes helps to clarify and simplify the specification
of the semantic domains.

To facilitate this discussion, consider a store of sim-
ple predicates. A simple predicate can be a logical
variable or a conjunction or a negation. The value of
a simple predicate can be output from the store and
the value of a logical variable can be updated. No-
tice that the value of a logical variable is the value
stored in the variable while the value of a conjunc-
tion depends on its left and right components. If the

value of a logical variable is changed then the values
of all predicates involved with the logical variable are
affected.

All predicates in the store are within the
same scope. Figure 4 illustrates the syntactic
structure of two predicates ‘ (A and B) and C’ and
‘not (B and C)’ which both refer to the same logi-
cal variables ‘B’ and ‘C’. To model these predicates in
Object-Z, three classes model the three kinds of predi-
cate, namely logical variables, conjunctions and nega-
tions. The three classes have a common property - a
logical value. This common part is modelled as a class
Basepredicate which is inherited in the definition of
the three predicate classes - LogicVar, Conjunctzon
and Negation:

Basepredicate r,
value : B
subs : P Predicate

I ’

35

B) and C”
\

Basepredicate

“not (B and C)”

”A
\

“(A and
I

/
I

I
I

i
and B”

\

\ .
\
\
\
\ .

\
\
\
\ ’ /

. . .

\ ’ ’
\

0 ’
0 /

\ 0 ’
\ ’ ’

0
\ ‘

’ \

’
/

‘0 ’ ’ ‘
k’ 1 B‘

Figure 4: Syntax Structures of Two Predicates.

where Predicate is a class-union[3, 21:

Predicate 2 LogicVar U Conjunction U Negation

which includes any type of a predicate.
The secondary attribute u a h e represents the value

of a predicate. Secondary attribute subs represents
the collection of direct and indirect component ob-
ject identities: it will facilitate the specification of an
acyclic reference structure of any predicate.

A logical variable (an object of class LogicVar) has
a name and a content, a boolean value, which can be
changed by operation Change. LogicVar is derived by
inheritance from Basepredicate.

Logzc Var
BasePredicat e

name : Id
content : IB
value = content

Change

content’ = value?

The class invariant ‘value = content’ indicates that
the value of a variable is that stored in the variable,
while ‘subs = 0’ indicates that a logical variable has
no sub-component object.

A conjunction predicate consists of a left and a right
hand predicate and a negation predicate consists of the
predicate which is negated. They are also derived by
inheriting Basepredicate.

I, r : Predicate

value = (1.ualue A r ,vahe)
subs = { I , r } U 1.subs U ?-.subs
serf subs

subs = { p } U p.subs
self $! subs

In the definition of Conjunction and Negation, the
class invariants ‘vcslue = (1.vahe A r.ua1ue)’ and
‘value = 7 p.value’ ensure that the value of a con-
junction or a negation depend on the value of their
components and ultimately on the primary attributes
(content) of the variables. The class invariants in-
volved with the secondary attributes subs capture
the acyclic property of the object reference struc-
ture. As an illustration, Figure 5 shows the state
and the object reference structures of the two predi-
cates‘(A and B) and C’and‘not (B and C)’ofFig-
ure 4. The dependency chain from the values of
‘(A and B) and C’ and of ‘not (B and C)’ to the
values of the variables ‘A’, ‘B’ and ‘C’ are illustrated;
for instance, if the colttent of the variable ‘C’ is
changed from ‘false’ to ‘true’, the value of the predi-
cates ‘(A and B) and C’and ‘not (B and C)’will be
negated.

A store of predicates can be modelled as

36

a conjunction object
“(A and B) and C ’

value @

I
I

I
/

I
a conjunction object)I

value @ value lfalsel ...

,
I
I
I
I

a negation object f n l 7
I PO I “not (B and CY’

I
/

/

a conjunction object “ A a n d B ,pi \ “B and C”

I
I
I
I

0 ,
0 ,

0 ,
I ,0

10°

Figure 5: Object Structures of the Two Predicates.

PredSt ore

preds : IP Predicate
A
vars : P Logic Var

vars = { v : Logic Var I

#{v : vars 0 v.name} = #vars

Oulput

v E (u{p : preds 0 p.subs} U preds)}

Change G [var? : vars] 0 var?.Change

The secondary attribute uars gathers all occur-
rences (direct and indirect) of variables in the store.
The class invariant #{v : vars 0 v.name} = #vars en-
sures that all variables in the store have distinct names

so that all predicates in the store are within the same
scope. For instance, in Figure 5, ‘ (A and B) and C’
and ‘not (B and C) ’ refer to the same variables ‘B’
and ‘C’.

The operation Output demonstrates that a predi-
cate can be selected from the store and that it’s value
can be broadcast to the environment of the store. The
operation Change demonstrates that a boolean vari-
able can be selected and its value updated.

In this section, the importance of using secondary
attributes to model recursive structures has been
demonstrated.

6 Conclusion
In this paper, the implications of applying sec-

ondary attributes in formal specification have been ex-
plored. Three small case studies analyse and demon-
strate three different usages of secondary attributes in
formal modelling, namely:

0 improving the clarity and simplicity of object-
oriented system specifications in general;

37

e capturing a notion of object sharing; and

e constructing recursive definitions.

We have seen in this paper how the notion of sec-
ondary attribute enables invariant relationships be-
tween objects to be clearly specified. This is particu-
larly valuable when designing large or complex com-
puter systems.

The game sharing case study in Section 4 demon-
strates that the notions of information distribution
and information sharing are facilitated by the use
of secondary attributes. We believe that secondary
attributes will contribute significantly to the formal
modelling of distributed systems. The ideas for con-
structing recursive definitions in Section 5 have been
successfully applied to specify the denotational seman-
tics of programming languages in Object-Z[1, 51.

In this paper, the notion of secondary attribute has
been discussed within the context of formal specifi-
cation. A possible way to implement secondary at-
tributes is to use lookup (remote) functions in pro-
gramming languages. As formality becomes impor-
tant in information system design, one possible area
for further research is to investigate the relationship
between the notion of secondary attribute and the no-
tion of normalisation and functional dependency in
relational and object-oriented database design.

Acknowledgements

We would like to thank Steven Atkinson, Graeme
Smith and Kinh Nguyen for many helpful discussions
on the issues raised in this paper. We also wish to
thank the anonymous referees for many helpful sug-
gestions.

References
J . S. Dong. Formal Object Modelling Techniques
and Denotataonal Semantics Studies. PhD thesis,
The University of Queensland, (forthcomming)
1995.

J.Y. Dong. Living with Free Type and Class
Union. To appear in The 1995 Asia-Paczfic Soft-
ware Engineering Conference (APSEC’95) Bris-
bane, December 1995.

J.S. Dong and R. Duke. Class Union and Poly-
morphism. In C. Mingins, W. Haebich, J . Pot-
ter, and B. Meyer, editors, Proc. 12th Inter-
national Conference on Technology of Object-
Oraented Languages and Systems. TOOLS 12 &
9, pages 181-190. Prentice-Hall, November 1993.

J.S. Dong and R. Duke. The Geometry of Object
Containment. Object-Oriented Systems, 2(1):41-
6 3 , Chapman & Hall, March 1995.

J.S. Dong, R. Duke, and G. Rose. An Object-
Oriented Approach to the Semantics of Program-
ming Languages. Australian Computer Science
Coni m una cat io ns, 16 (1) :767-775, January 1994.

R. Duke, P. King, G. Rose, and G. Smith. The
Object-Z specification language. In T. Korson,
V. Vaishnavi, and B. Meyer, editors, Technol-
ogy of Object-Oriented Languages and Systems:
TOOLS 5, pages 465-483. Prentice-Hall, 1991.

R. Duke and G. Rose. Modelling object iden-
tity. In Proc. 16th Australian Comput. Sci. Conf.
(ACSC-l6), pages 93-100, February 1993.

R. Duke, G. Rose, and G. Smith. Object-Z: a
Specification Language Advocated for the De-
scription of Standards. To appear in a special
issue of Computer Standards and Interfaces on
Formal Methods and Standards, September 1995.

G. Rose. Object-Z. In S. Stepney, R. Barden,
and D. Cooper, editors, Object Orientation in Z,
Workshops in Computing, pages 59-77. Springer-
Verlag, 1992.

J. Rumbaugh. Derived information. Journal of
Object-Oriented Programming, 5(1):57-61, 1992.

38

