
State, Event, Time and Diagram in System Modeling

Jin Song Dong (dongjs@comp.nus.edu.sg)
Computer Science Department, National University of Singapore

Abstract

The design of complex systems requires powerful mech-
anisms for modeling state, concurrent events, and real-time
behavior; as well as for visualising and structuring systems
in order to control complexity. Methods integration has be-
come a recent research trend in software specification and
design. In the graphical area, many object-oriented meth-
ods have merged into one, the Unified Modeling Language
(UML) which combines various diagrammatic modeling
techniques to model static and dynamic aspects of software
systems. Although traditional formal methods have not
scale-up well, new integrated formal methods show great
promise. This tutorial will present the state of the art in for-
mal modeling techniques (state-based Object-Z and event-
based Timed CSP), their integration (TCOZ), and transfor-
mation techniques from the integrated formalism to UML
diagrams. An XML web environment for projecting inte-
grated formal models to UML diagrams will also be demon-
strated.

1. Overview

In recent years, integration has been a popular approach
in unifying programming theories [5], standardizing diagra-
matic notations [10] and combining formal design methods
[1, 4].

The aims and objectives of this tutorial are to learn

� the state-based and event-based formal modeling tech-
niques, Z/Object-Z [3, 12] and CSP/Timed-CSP [11]

� the powerful semantic integration of state-based and
event-based formalisms TCOZ [9, 8, 2, 7]

� the transformation techniques between the integrated
formalism and UML [13]

2. Topics

This tutorial covers the following topics.

2.1. Object-Z

Object-Z [3, 12] is an object oriented extension of the
Z formal specification language. It improves the clarity
of large specifications through enhanced structuring. The
main Object-Z construct is the class definition. A class is a
template for objects of that class: for each such object, its
states are instances of the class' state schema and its indi-
vidual state transitions conform to individual operations of
the class. An object is said to be an instance of a class and
to evolve according to the definitions of its class. The stan-
dard behavioural semantics of Object-Z classes is as transi-
tion systems. The transition system begins in a legal initial
state and then evolves through a series of state transitions
each effected by one of the class operations. The standard
semantic model of transition system behaviour is a pair con-
sisting of an initial state binding and a list of the operations
invoked on the system in the order they are invoked.

2.2. Timed CSP

Timed CSP [11] extends the well-known CSP (Commu-
nicating Sequential Processes) with timing primitives. CSP
is an event based notation primarily aimed at describing
the sequencing of behaviour within a process and the syn-
chronisation of behaviour (or communication) between pro-
cesses. Timed CSP extends CSP by introducing a capability
to consider temporal aspects of sequencing and synchroni-
sation. CSP adopts a symmetric view of process and envi-
ronment. Events represent a co-operative synchronisation
between process and environment. Both process and envi-
ronment may control the behaviour of the other by enabling
or refusing certain events or sequences of events. The stan-
dard CSP semantics reflects this by modelling a process be-
haviour as a failure pair consisting of a sequence of events
performed by the process (the trace) and a set of events that
were subsequently offered by the environment but refused
by the process (the refusal). A process is modelled by the
collection of failures exhibited by the process. The stan-
dard Timed CSP semantics enhances this failures semantics
by recording the timing of each event in the trace and also
recording a refusal set for every point in time. This powerful

0-7695-1050-7/01  $10.00  © 2001 IEEE 
733



modelling is able to describe an array of real-time concepts
such as delays, timeouts, and clock interrupts.

2.3. Timed Communicating Object Z

Timed CSP and Object-Z complement each other in their
expressiveness. Object-Z has strong data and algorithm
modeling capabilities. The Z mathematical toolkit is ex-
tended with object oriented structuring techniques. Timed
CSP has strong process control modeling capabilities. The
multi-threading and synchronisation primitives of CSP are
extended with timing primitives. The approach taken in
the Timed Communicating Object Z (TCOZ) [9, 8] is to
identify operation schemas (both syntactically and seman-
tically) with (terminating) CSP processes that perform only
state update events; to identify active classes [2] with non-
terminating CSP processes; and to allow arbitrary (channel-
based) communications interfaces between objects [6].

The syntactic implications of this approach is that the ba-
sic structure of a TCOZ document is the same as for Object-
Z. A document consists of a sequence of definitions, includ-
ing type and constant definitions in the usual Z style. TCOZ
varies from Object-Z in the structure of class definitions,
which may include CSP channel and processes definitions.
In fact, all operation definitions in TCOZ are considered
to define CSP processes. The CSP view of an operation
schema is that it describes all the sequences of update events
which change the system state as required by the schema
predicate. The exact nature and granularity of these update
events is left undetermined in TCOZ (at least at the syntac-
tic level), but by allowing an operation to consist of a num-
ber of events, it becomes feasible to specify its temporal
properties when describing the operation. Since operation
schemas take on the syntactic role of CSP processes, they
may be combined with other schemas and even CSP pro-
cesses using the standard CSP process operators. Thus it
becomes possible to represent true multi-threaded computa-
tion even at the operation level, something that would not be
possible with other approaches. In addition to the inherited
CSP's channel-based communication mechanism, in which
messages represent discrete synchronisations between pro-
cesses, TCOZ is extended with continuous-function inter-
face mechanisms inspired by process control theory, the
sensors and the actuators [7]. Those communication in-
terfaces (channels, sensors and actuators) are given an in-
dependent, first class role in TCOZ. This allows the com-
munications and control topology of a network of objects
to be designed orthogonally to their class structure and re-
duces the need to reference other classes in class definitions,
thereby enhancing the modularity of system specifications.

2.4. UML and Linking with TCOZ

UML mainly includes various graphical notations which
can capture the static system structure (class diagram),
system component behaviour (statechart diagram), system
component interaction (collaboration and sequence dia-
gram). The shortcomings of UML is that there is no unified
formal semantics for all those diagrams, therefore, the con-
sistency between diagrams is problematic. If UML is com-
bined with formal specification techniques, then its power
can be further realised and enhanced. We believe that the
best companions for UML are likely to be formal object-
oriented methods. We have developed the transformation
techniques and the XML web enviornment for projecting
TCOZ models to UML diagrams.

References

[1] K. Araki, A. Galloway, and K. Taguchi, editors. IFM'99:
Integrated Formal Methods, York, UK. Springer-Verlag, June
1999.

[2] J.S. Dong and B. Mahony. Active Objects in TCOZ. the
2nd IEEE International Conference on Formal Engineering
Methods (ICFEM'98), pages 16–25. IEEE Press, Dec 1998.

[3] R. Duke and G. Rose. Formal Object Oriented Specification
Using Object-Z. Macmillan, March 2000.

[4] W. Grieskamp, T. Santen, and B. Stoddart, editors. IFM'00:
Integrated Formal Methods,, Lect. Notes in Comput. Sci.
Springer-Verlag, October 2000.

[5] C.A.R. Hoare and J. He. Unifying Theories of Programming.
Prentice-Hall, 1998.

[6] B. Mahony and J.S. Dong. Overview of the semantics of
TCOZ. In Araki et al. [1], pages 66–85.

[7] B. Mahony and J.S. Dong. Sensors and Actuators in TCOZ.
FM'99: World Congress on Formal Methods, Lect. Notes in
Comput. Sci., pages 1166-1185, Toulouse, France, Sep 1999.
Springer-Verlag.

[8] B. Mahony and J.S. Dong. Timed Communicating Object
Z. IEEE Transactions on Software Engineering, 26(2):150–
177, February 2000.

[9] B. P. Mahony and J.S. Dong. Blending Object-Z and Timed
CSP: An introduction to TCOZ. The 20th International Con-
ference on Software Engineering (ICSE'98), pages 95–104,
Kyoto, Japan, April 1998. IEEE Press.

[10] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
eling Languauge Reference Manual. Addison-Wesley, 1999.

[11] S. Schneider and J. Davies. A brief history of Timed CSP.
Theoretical Computer Science, 138, 1995.

[12] G. Smith. The Object-Z Specification Language. Kluwer
Academic Publishers, 2000.

[13] J. Sun, J. S. Dong, J. Liu, and H. Wang. Z Fam-
ily on the Web with their UML Pictures. http://nt-
appn.comp.nus.edu.sg/fm/zml, 2000.

734


