Integrated Formal Modeling Techniques and UML

Dr Jin Song Dong
Computer Science Department

National University of Singapore

May 2001

http://www.comp.nus.edu.sg/ dongjs

The 23rd IEEE International Conference on Software Engineering (ICSE 2001, Toronto,
Canada) Tutorial Notes (Thanks Drs. Roger Duke and Brendan Mahony for the joint

research work and some teaching slides)

Overview

o State-based Formalism: Z/Object-Z

e Event-based Formalism: CSP/Timed-CSP
e Timed Communicating Object Z — TCOZ
o Active Objects and Network Topology

e Case Study: Lift System

e Sensor, Actuator and Control Systems

e Unified Modeling Language (UML)

e Linking TCOZ with UML

7 family on the Web with their UML pictures

Why Formal Specification?

A formal specification should

e add clarity and understanding by giving a description of the system which is

— complete
— unambiguous

— easily analysed;

e lead to better code that is
— reliable
— accurate

maintainable

reusable

verified.

Formal Specification and Software Engineering

(Towards an integrated methodology for software engineering.)

Formal specification

e is not a replacement, but rather an enhancement of existing methodologies;

e can only be effective if integrated within an overall methodology for soft ware

engineering.
Implications of using formal specification
e training in the use of notation
e integration with informal methodologies
e translation for client consumption

e emphasis upon abstraction

Some Specification Languages
Process Algebra

Systems modelled as processes partaking in communication:
CSP, CCS, LOTOS

State Oriented

Systems modelled by an underlying state which can undergo change:
VDM, Z, Object-Z

Algebraic

Systems modelled by equations related by axioms (re-writing rules):

ACT 1, CLEAR, OBJ, Larch

The Z Specification Language
o developed originally at Programming Research Group, Oxford University
e based on set theory and predicate logic

e system described by introducing fixed sets and variables and specifying the
relationships between them using predicates

e declarative, not procedural

e system state determined by values taken by variables subject to restrictions

imposed by state invariant

e operations expressed by relationship between values of variables before, and

values after, the operation
e variable declarations and related predicates encapsulated into schemas

e schema calculus facilitates the composition of complex specifications

e J. Woodcock and J. Davies , Using Z: Specification, Refinement, and Proof. Prentice-Hall, 1996

Types

7 is strongly typed: every expression is given a type.
Any set can be used as a type.

The following are equivalent within set comprehension

(z,y): Ax B
z:A;y: B
z,y: A (when B = A)

Notice that

VS:PAe... not VSCAe...
In order to support the use of standard units of measurement, Hayes and Mahony
has extended the Z typing system with standard units of measurement, e.g. time

quantities are represented by the type
T == Rs,

which represents real-valued time measured in seconds.

Relations

A relation R from A to B, denoted
by

R: A+ B,
is a subset of 4 x B.

R is theset {(c,z),(c,2),(d,2),(d,y),(d,2)}
Notation: the predicates
(c,2)€ER and c¢+—z€R and cRz
are equivalent.

domR istheset {a:A | 3b:BeaRb}
ran R istheset {b:B | Ja:AeaRb}

Examples

‘ _<_:N& N

Vz,y:Ne
2Ly & Jk:Nez+k=y

i.e. the relation < is the infinite subset
{(0,0),(0,1),(1,1),(0,2),(1,2),(2,2),.. .}

of ordered pairs in N x IN.

‘ divides : N < N

Vz:Ni; y:Ne
r dividesy < Jk:Nezk=y

3 divides6 but — (3 dividesT)

Domain and Range Restriction/Subtraction

Suppose R: A<+» Band S C A and T C B; then

S<R istheset {(a,b):R | a€ S}
R>T istheset {(a,b):R | be T}

S<9R istheset {(a,b):R | a¢ S}
Re T istheset {(a,b):R | b¢g T}

e.g. if
has_sibling : People <> People then

female < has_sibling is the relation
has_sibling > female is the relation

female < has_sibling is the relation
has_sibling & female is the relation

10

is_sister_of
has_sister

is_brother_of
has_brother

Functions

A (partial) function f from a set A to a set B, denoted by

f:A+» B,

is a subset f of A x B with the property that for each a € A there is at most one
b € B with (a, b) € f. The function f is a total function, denoted

f:A— B,

if and only if dom f is the set A.

The predicates
(a,b)ef and f(a)=0b

are equivalent.

11

Examples:

root : N + N

domroot ={n:N | Im:Nem?=n}
V n : dom root e (root(n))* =n

+:NxN—=N
V(n,m): Nx Ne+(n,m)=n+m

12

Generic Definitions

:[X,Y]
first : X xY > X

Vz:X; y:Y efirst(z,y) ==z

Exercise: Generic Purge Function

A generic purge function takes a time period (a timeout of type T) and a set of
time stamped elements of generic type X, and returns a set of updated time

stamped elements. For example

ps(2s,{(1s,a),(3s,b),(7s,c)}) ={(1s,b),(5s,¢)}

13

Solution
= [X]
ps: (T xF(T x X)) - F(T x X)

Vi:T; s:F(TxX)e
ps(t,s) ={(t1,e) : Tx X |3I(t,,e):s0t, —t =1}

or

[X]

ps(t,s) ={(to,e):s|to >t e(t,—t,e)}

Any difference between the two?

14

Sequences
A sequence s of elements from a set A, denoted
s :seq A,

is a function s : N -+ A where dom s = 1 .. n for some natural number n. For

example,

(b, a,c,b) denotes the sequence (function){l > 8,2+ a,3— c,4+> b}

The empty sequence is denoted by ().

The set of all sequences of elements from A is denoted seq A and is defined to be

seqA=={s:N-»A | 3n:Nedoms=1..n}
We define seq; A to be the set of all non-empty sequences, i.e.
seq; A ==seq A — {()}

Notice that: (a, b, a)# (a,a, b)+# (a, b)

Special Functions for Sequences

Concatenation
(a,b)™(b,a,c)={a,b,b,a,c)

Head, Last
‘ head,last :seq; A — A

‘ Vs :seq, A e head(s) = s(1) A last(s) = s(#s)

head{c, b, b)=c last{c,b,b)=b

Tail

‘ tail : seq; A — seq A

‘ Vs :seq, A e (head(s)) tail(s) =s

tail{c, b, b)= (b, b)

16

Combining Formal Specification with Object-Oriented Design

goes against the conventional view of separating the concerns of functionality and

design, but

e adds clarity and leads to simplification of large systems;

e helps with system abstraction and suggests a refinement into object-oriented

code.

Object-Z is an extension to Z developed at the University of Queensland. It
supports the design of object-oriented design.

e R. Duke and G. Rose, Formal Object Oriented Specification Using Object-Z. Cornerstones of
Computing Series (editors: R. Bird, C.A.R. Hoare), Macmillan Press, March 2000.

e G. Smith, The Object-Z Specification Language, Kluwer Academic Publishers, 2000.

17

Object-Z Basics: Buffer Example

__ Buffer[X]
INIT
maz : N lritems =()
items : seq X
A
size : N
#items = size A size < maz
_Join _ Leave
A(items) A(items)
17: X il X
items’ = (i?)"items size # 0 A\ items = items’ ™ (il)

18

Exercise: For this Buffer class specify:

(a) an operation count which, given a message, outputs the number of times that

message occurs in the buffer;

(b) an operation duplicate which appends to the buffer the message currently at
the head of the buffer, provided the buffer is not empty or already full;

(c) an operation titanic whereby a sequence of messages is appended to the buffer
except those messages for which there is no room are discarded (the buffer is
like a life-boat on the Titanic: people queue to get on, but once the boat is full
all the remaining people are left behind);

(d) an operation penguin whereby, like the operation titanic, a sequence of
messages is input to the buffer, but this time the messages on the end of the
sequence are accepted while those at the front are discarded if there is no room

(the messages are acting like penguins, pushing out the messages already in the
buffer once the buffer is full).

19

Solution

__count _ duplicate
m?: X A(items)
count! : N)
| #items € 1.. (maz — 1)
count! = #(items > {m?}) items’ = items ™ (head items)
_titanic — penguin
A(items) A(items)
s?:seq X s?7:seq X
items’ = (1 .. maz) < (items ™ s7) ds:seq X o

s " items’ = items 7 s7
s # () = fitems’ = maz

20

Two Linked Buffers (single thread)

_ TwoBuffers[X]
INIT
bi, by : Buffer[X] ’7b1.INIT A by INIT
by # b

Join = by.Join
Leave = by.Leave
Transfer = by.Leave || by.Join

21

time time tine tinme
,,,,,,,,,,,, T ransfer Transfer
Do i . |
P2 g P8 <!
| o b il
left buffer right buffer bt
L e : e uf fer ; 3 righ ffer
Join 3 : | : ight buffe
i i Join | & :
g Join | § g ‘
B Y S ! Leave
B | in | § g P |
"""" . JinAndLeave,

Figure 1: passive events

Figure 2: active events

22

CSP/Timed CSP

Hoare’s CSP (Communicating Sequential Processes) an event based notation
primarily aimed at describing the sequencing of behaviour within a process and

the synchronisation of behaviour (or communication) between processes.

Timed CSP extends CSP by introducing a capability to quantify temporal

aspects of sequencing and synchronisation.

e S. Schneider. Concurrent and Real-time Systems: The CSP Approach, Wiley, 1999.
e A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
e J. Davies, Specification and Proof in Real-Time CSP, Cambridge University Press, 1993.

e C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

23

Events

A process engages in events; each event is an atomic action. e.g. the events for a

vending machine are

cotn—insert a coin

choc—extract a chocolate

The set of events that a process can possibly engage in is the alphabet of the process

e.g. the alphabet of the vending machine is

{coin, choc}

24

Traces

A trace is a finite sequence of events.
A (deterministic) process is specified by the set of traces denoting its possible

behaviour. e.g. the traces of the vending machine:

()
(coin)

(coin, choc)
(coin, choc, coin)

Any execution of the process will be one of these sequences. If s ™ ¢ is a trace of a
process,
then so also is s;

i.e. the set of traces is prefix closed.

25

Examples

(1) STOP, is the process with alphabet A
that can do nothing.

traces(STOP,) = {()}

(2) CLOCK is the process with « CLOCK = {tick}
which can ‘tick’ at any time.

traces(CLOCK) = tick*

(3) VM is the process with a VM = {coin, choc}
which repeatedly supplies a chocolate after a coin is inserted.

traces(VM) =
{s : seq{coin, choc} | 3n : N e s < {coin, choc)"}

(4) WALK is a one-dimensional random walk process
with a WALK = {left, right}.
traces(WALK) = (left U right)*

26

Prefix

A process which may participate in event a then act according to process

description P is written

a@t — P(t).

The event a is initially enabled by the process and occurs as soon as it is requested
by its environment, all other events are refused initially. The event a is sometimes
referred to as the guard of the process. The (optional) timing parameter ¢ records
the time, relative to the start of the process, at which the event a occurs and allows

the subsequent behaviour P to depend on its value. For examples:

VMU = coin — STOP
SHORTLIFE = (beat — (beat — STOP)) = beat — beat — STOP

VMS = coin — choc — STOP

27

Understanding Timed Prefix

Let P be a process which has two free time variables #; and #;. A possible

execution of the prefix:
a@t; — b@ty — P
1 3 (time passed)
a@t — b@ty — P[(t; + 3)/t1]
1 a (event occur)
b@t, — P[3/t]
1 4 (time passed)
b@ty — P[3/t1][(ta +4)/t2]
1 b (event occur)

P[3/u][4/t]

28

Other CSP/Timed-CSP primitives:

e P; @ (sequential composition)

P|[X]| @ (synchronous), P ||| @ (asynchronous)

a — POb— @Q (external choice), a = P M b — @Q (internal choice)

P; V e — P, (interrupt process)

WAIT ¢; P (delay), a — P >{t} @ (time-out)

29

Sequential Composition
e The second form of sequencing is process sequencing. A distinguished event v/

is used to represent and detect process termination.

e The sequential composition of P and @, written P; @, acts as P until P

terminates by communicating v' and then proceeds to act as Q.

e The termination signal is hidden from the process environment and therefore
occurs as soon as enabled by P. The process which may only terminate is

written SKIP.

30

Parallel composition
The parallel composition of processes P and @), synchronised on event set X, is
written

PIIX]Q.
No event from X may occur in P |[X]| @ unless enabled jointly by both P and Q.
When events from X do occur, they occur in both P and ¢ simultaneously and are

referred to as synchronisations. Events not from X may occur in either P or @

separately but not jointly. For example, in the process described by

(a = P)|[a]l(c = a— Q)

all a events must be synchronisations between the two processes.

In an asynchronous parallel combination
Pl e

both components P and) execute concurrently without any synchronisations.

31

Choice

Diversity of behaviour is introduced through two choice operators.

The external choice operator allows a process a choice of behaviour according to

what events are requested by its environment. The process

(a=>P)O(b— Q)
begins with both a and b enabled. The environment chooses which event actually
occurs by requested one or the other first. Subsequent behaviour is determined by
the event which actually occurred, P after a and @ after b respectively.
Internal choice represents variation in behaviour determined by the internal state of
the process. The process

a—PM1b—Q

may initially enable either a, or b, or both, as it wishes, but must act subsequently
according to which event actually occurred. The environment cannot affect internal

choice.

32

Channel

A channel is a collection of events of the form c.n: the prefix c is called the channel
name and the collection of suffixes is called the values of the channel.

When an event c.n occurs it is said that the value n is communicated on channel c.
When the value of a communication on a channel is determined by the environment
(external choice) it is called an input and when it is determined by the internal
state of the process (internal choice) it is called an output.

It is convenient to write ¢?n : N — P(n) to describe behaviour over a range of
allowed inputs instead of the longer [1n : N @ c.n — P(n). Similarly the notation
c!n: N = P(n) is used instead of [1n : N e c.n — P(n) to represent a range of

outputs.
e.g.
COPYBIT = in.0 = out.0 —» COPYBIT O in.1 — out.1 - COPYBIT

aCOPYBIT = {in.0, out.0,in.1, out.1}

33

Interrupt

The interrupt process P; V e — Py behaves as Py until the first occurrence of
interrupt event e, then the control passes to Ps.

Recursion

Recursion is used to given finite representations of non-terminating processes. The

process expression

wPealn:N—blf(n) > P

describes a process which repeatedly inputs a natural on channel a, calculates some

function f of the input, and then outputs the result on channel b.

34

Timeout

The timeout construct passes control to an exception handler if no event has

occurred in the primary process by some deadline.

The process
(a = P)e{t} Q

will try to perform a — P, but will pass control to @ if the a event has not

occurred by time ¢, as measured from the invocation of the process. For example,

MayPrint1 = (receive — print — STOP) >{60} shutdown — STOP

MP1(t) = (receive — print — STOP) {60 — t} shutdown — STOP

35

Exercise: Transmitter

A transmitter which repeatedly send a given message z until it receives and
acknowledgement. Assume that the transmitter is in an environment which is
always ready to accept a send message, then it will send the message every 5 time

units until an ack message is received. (hint using recursion together with timeout).

36

Solution

Transmit(z) = send!z — ((ack — STOP) >{5} Transmit(z))

37

Delay

A process which allows no communications for period ¢ then terminates is written

WAIT t. The process

Warrt; P = STOP »{t} P
a5 P = a— WAITt; P = a— (STOP »{t} P)

is used to represent P delayed by time t.

38

State parameters

In general, the behaviour of a process at any point in time may be dependent on its

internal state and this may conceivably take an infinite range of values.

It is often not possible to provide a finite representation of a process without

introducing some notation for representing this internal process state.

The approach adopted by CSP is to allow a process definition to be parameterised
by state variables. Thus a definition of the form

Pn:N = Q(’I’l)
represents a (possibly infinite) family of definitions, one for each possible value of

n.

There is no inherent notion of process state in CSP, but rather these annotations
are a convenient way to provide a finite representation of an infinite family of

process descriptions.
39

Exercise: A generic timed-collection

The generic timed-collection denotes a collection of elements of type X with a time
stamp. Operations are allowed to add elements to and delete elements from the
collection. When deleting an element from the collection, the oldest element should
be removed and output to the environment. The collection has the following timing
properties. Firstly, that it updates the internal state during a add or delete
operation. Secondly, each element of the collection becomes stale if it is not passed
on within ¢, time units of being added to the collection. Stale elements should

never be passed on, but are instead purged from the collection upon becoming stale.

40

Solution

TimedCollection = TCy.
TCyx = left?e : X — TC{(to,e)}

TC(t,a)}us =
(left?e : X @t; — TCpy(s, {(t,a)}Us)U{(10,e)} O
’[‘lght'a@tl — TCps(t,',S)) D{t} TCps(t,s)

where (t, a) = find_oldest({(t, a)} U s).

= [X]
find_oldest : P, (T x X) — (T x X)
Vs:P(TxX)e
3(t,e) : s @ t = min(dom s)
find_oldest(s) = (t, e)

41

Object-Z and Timed CSP

e Object-Z
v an excellent tool for modeling data states

X but difficult for modelling real-time concurrent systems
e Timed CSP

V' Good for specifying the timed process and communication

x Like CSP, cumbersome to capture the data state of a complex system

e Timed Communicating Object Z: a blending of Object-Z and Timed CSP

Related Work

* 7/0Z with CSP: Fischer, Smith, Derick, Suhl, Bolton, Davies, Woodcock ...

* 7 with CCS: Galloway, Stoddart, Taguchi, Araki ...

42

Timed Communicating Object Z (TCOZ)

_ TimedBuffer[X]

_INIT
items : seq X items = ()
left, right : chan
_Add — Remove
A(items) A(items)
17: X . ;. .
items’ = items B> {last(items)}
items’ = (i?)"items

Join = [i: X] e left?i — Add; DEADLINE #j

Leave = [items # ()] e right!last(items) — Remove; DEADLINE ¢

MAIN = g Q o (Join O Leave); @

43

Abstract syntax
[ZS, ZE] [Z schemas and expressions]

TZE ::= [TCOZ constructor expressions]
ref (NAME)) | SToP | SKIP | WAIT((ZE)) | (e _){(ZS x TZE)) |

(L= (S x TZEY | (c——)% x ZE x TZE) |
(L0)(TZE x TZEY | ...| (u_ e)(NAME x TZE))

TZB == {C : NAME + TZE | [TCOZ class body]
Vize :ranC; N : NAME e
N esigtze = N € domC}
TZC, == [init : ZS; C : TZB| [passive classes]
TZC, == [active classes|

[init : ZS; C: TZB; main : TZE | sigmain C dom TZB]

44

TCOZ Semantics

The support of timing primitives in TCOZ is made possible through the adoption
of Reed’s timed-failures semantics for Timed CSP. The timed-failures semantics
models CSP processes in terms of timed event-traces and timed event-failures. This
semantic model allows CSP to be extended with time related primitives such as
delays, timeouts, and clock-interrupts. In order to support objects with
encapsulated state this model is extended to include an initial state and state
update events. Object-Z operations are modelled as terminating sequences of timed

state-update events.

e B. Mahony and J.S. Dong. Overview of the Semantics of TCOZ. Integrated
Formal Methods (IFM’99), pages 66-85, Springer-Verlag, York, UK, June 1999.

45

Exercise: A generic timed-collection in TCOZ

The generic timed-collection denotes a collection of elements of type X with a time
stamp. Operations are allowed to add elements to and delete elements from the
collection. When deleting an element from the collection, the oldest element should

be removed and output to the environment. The collection has the following timing

properties. ...
Solution
46
_ TimedCollection[X]

INIT
te : P(T x X) ’7tc:®
left, right : chan
A
t:T; oldest : X

tc # @ = (t, oldest) € tc A t = mindom tc

_Addy _ Deleteg

A(te) A(te)

e?: X; t;: T t,: T

te' = ps(t;, tc) U{(t,,e?)} te' = ps(t;, tc \ {(t, oldest)})

Add =[e: X; t; : T] o left?e @t; — Add,
Delete = [t; : T] o rightloldest @t; — Deleteg

]
MAIN=puT o [tc=o] e Add; T O
[tc # @] @ ((Add O Delete) >{t} tc := ps(t,tc)); T

47

The Notion of Active Object

e Active objects have their own thread of control.
o Passive objects are controlled by other objects in a system.

e A class for defining active objects is called an active class

A class for defining passive objects is called a passive class.

In TCOZ, MAIN, a non-terminating process definition, distinguishes the active
and the passive classes.

48

Inheritance between active/passive classes

e When a new active class is derived from an existing active class, the MAIN

process must always be redefined explicitly.

e A new active class can be derived from an existing passive class, in this case, a
MAIN process definition needs to be added.

e A new passive class can also be derived from an existing active class, in this

case, the MAIN process of the existing class is implicitly removed.

e A new passive class can be derived from an existing passive class following the

same rules as the standard Object-Z.

49

Composition and interaction of active objects

_A _B
v: Ty ... a: A
c: chan; ...
OpAl =
OpBs = a.0OpA;
MAIN =

_;(OnA OpAy) Identifying the object name with its
v,..., OpAi, ..., OpA,

MAIN process, e.g. if ob; and 0bs are ac-

tive object components, then o0by ||| ob2

means 0b1.MAIN ||| 0b2. MAIN.

OpAl =

MAIN = ...

50

Two Communicating Timed Buffers

Timed-Buffer Timed-Buffer

left middle r right

TwoBuffers[X]

! : TimedBuffer[X][middle/right]
r : TimedBuffer[X|[middle/left]

MAIN = (I|[middle]| r \ middle)

Complex network topologies

(A[bc" [bc] || ab, ac]| (Blac'/ac]|[bc]| Clab’/ ab]) \ ab, ac, bc)[ab, ac, be/ ab’, ac’, bc']

ch ch, ch
(|| V1, V2, U3... ® U1 <3 Vg, Vg 3 U3, U3 3 v1,...) (A4, B, C)

||(4«% B, B 0,05 4) o ||[(A=<2> B C <2 4)

52

The Lift Case Study

o Multi-floors with multi-elevators OO DG D

e Non-trivial

o Commonly used example

Both CSP and Object-Z have been

applied (but no real-time issues)

53

Lifts

Floors
Controller
Cj enter ’W‘ select
) -
visit
- -
° service
)

request int_request

Detailed model can be found at:
B. Mahony and J.S. Dong. Timed Communicating Object Z.

Engineering, 26(2):150-177, Feb 2000.

IEEE Transactions on Software

http://www.comp.nus.edu.sg/~dongjs/papers/tse00.ps

54
— Button
_INIT
state : On | Off state = Off
— TurnOn — TurnOff
A(state) A(state)
state’ = On state’ = Off
—_TopFloor
INIT

downbutton : Buttong
request, enter, service : chan

lrdownbutton.INIT

PressDown = [downbutton.state = Off] @
(request? Down — downbutton. TurnOn); (enter!Down — Skip)

DownOff = service? Down — downbutton. TurnOff
MAIN = p T o (PressDown O DownOff); T

[
1=

___ BottomFloor

INIT
upbutton : Buttong liupbutton.INIT

__ MiddleFloor
TopFloor, BottomFloor
MAIN = p M o (PressDown O DownOff O PressUp O UpOff); M

Floor = TopFloor U BottomFloor U MiddleFloor

Floors

floors : seq Floorg

MAIN = ||| f : ran floor

56

Lift door control

___Door

open, conf, close, servo, sensor : chan

OpenDoor, CloseDoor = ...
CycleDoor = OpenDoor; conf —

(1 CD o WAIT t,; CloseDoor V{sensor?(self, Interrupt)} OpenDoor; conf — CD)
MAIN = p D e open — CycleDoor; close — D

Moving the lift
Shaft

move, arrive : chan

MAIN = p S ® move?n — WAIT |n| * T + delay; arrive — S

_Internal_Q

panel : seq Buttong

int_request, int_sched, int_serv : chan

NextUp, NextDown, MAIN = ...

_ LiftControl

fi:N

md :

MowveDirection

move, arrive : chan

[shaft]

MAIN = p LC o
... =& Internal; LC O
... = External; LC

lc
lc

k)

open,close,conf d
B B — M
)

int__sched,int__serv

iq)

Lifts

lifts : P Liftg

MaAIN = ||| [: lifts

58
— Lift lift
iq : Internal_Qg Internal_Q m
lc : LiftControlg)
int_request : move | arive
s : Shaftg Kmd
d : Door int_serv
© - lift_Control select
MAIN ; || (- visit
le move,arrive oo e

__ Controller

requests : seq(N x MoveDirection)
enter, select, visit, service : chan

_Join Remove

Dispatch = [...] o select!item — Remove
CheckServ =
[item : N X MoveDirection] e visit?item — ...

MAIN = p C o (Join O Dispatch O CheckServ); C

60

The Lift System

Floors Lifts
Controller

000

service

request int_request

— LiftSystem

fs : Floorsg
Is : Liftsg
contr : Controllerg

~ lect, check i
MAIN = ||(f&‘ enter contr setect,chec lS service fS)

61

Sensors and Actuators — Control Systems

Uncontrolled

1T T oo osooooooooooooooooooooooooo Variables
I
I Control |
I
| Logic Actuating ! Manipulated Controlled
Command Command Setpoint Feedfoward 1 Variables Controlled Variables
! Elements Elements : Process
| I
| I
| I
| I
| I
| I
| I
| I
! |
| Sensor |
! Signal Feedback }
I Elements !
: I
| I
| I
I

x CSP channel mechanism is discrete

X CSP channel mechanism is synchronous

62

Example: Digital Temperature Display

So Hot

63

c
T temp
23.0 screen
220 L
T /9-;0 “e—
21.0+ 7¥4//o;o
4 /.—r(/\ ////._O
200+ — T
- ~._--~<__®&——*0
19.0+
+ L B e s e o e e)
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 S

nil — &—o o
4 4 A A
init on off on

Figure 3: The office communication scenario.

64

temp : R°Csensor, == temp:Rs— R°C.

Internally, temp takes the syntactic role of a CSP channel. Whenever a

value v is communicated on the internal channel at a time ¢, temp(t) = v.

screen : Display actuator,

where

Display == Temp{{N=x0.5°C)) | nil.

The internal role is that of the local state variable.

65

—DTD

_SetScreen
temp : Rsensor A(screen)
screen : Display actuator t?7:R°C

. ch —
on, off : chan Jdt:N%05°C e

_INIT dt =t+05°CA

screen = nil screen’ = Temp(dt)

Show = ([t : R°C] o temp?t — SetScreen; DEADLINESs; WAITUNTIL5s; Show)
v off - NoShow

NoShow = screen := nil; on — Show

MAIN = on — Show

66

Asynchronous active object
Synchronous active objects

e have discrete interfaces, synchronous channels;

e are highly dependent.
Asynchronous active objects

e have analog interfaces, asynchronous sensor/actuators;
e are highly independent;

e can be further classified into periodic and non-periodic objects.

67

Exercise: a calendar clock

A typical periodic object: a calendar clock ticks every second ...

CalendarTime == Nyr xNmn xNdy xNhr xNmin xNs.

‘ Convert : Ns — CalendarTime

‘ [detail of function omitted]

68
Solution
— Clock
per ==1s
gain == 50ms
_Inc

total : N's A(total)
A total’ = total + 1
display : Calendar Time actuator otar = tota

display = Convert(total)

MAIN = p C e Inc; DEADLINE gain; WAITUNTIL per; C

69

UML

e UML stands for Unified (?) Modeling Language

e The UML combines/collects Data Modeling concepts (Entity Relationship
Diagrams), Business Modeling (work flow), Object Modeling, and Component
Modeling

e The UML is the OMG standard language for visualising, specifying,

constructing, and documenting the artifacts of a software-intensive system

o UML consists of use case, class, statechart, collaboration diagrams ...

70

Use Case Diagram

e Use case is a pattern of behavior the system exhibits Each use case is a
sequence of related transactions performed by an actor and the system in a
dialogue. Actors are examined to determine their needs. Use case diagrams are

created to visualise the relationships between actors and use cases

/Q\/Select MoveDirection

user \O

SelectDestinaton

71

Class Diagram

o A class diagram shows the existence of classes and their relationships in the
logical view of a system. It consists of classes and their structure and behavior,
association, aggregation, dependency, and inheritance relationships,

multiplicity and navigation indicators, and role names

Lifts Lift
1.* 1 1
1
1 1
1 1 1 1
Internal_Q LiftControl Shat Door
72

Collaboration Diagram — dynamic behavior, message-oriented

e A collaboration diagram displays object interactions organised around objects

and their links to one another

_ Shaft

1 moveﬂg

ZZZ: arrive 4. open

4: close

: LiftControl : Door
6:int_sched 536 f
8:int_serv() s con
7:int_sched
_t Internal_Q

73

Statechart Diagram — dynamic behavior, event-oriented

o A statechart diagram shows the life history of a given class, the events that
cause a transition from one state to another, and the actions that result from a

state change

PressDown

TurnOn
entry/ downbutton.TurnOn

enter! (num, Down)

downbutton. state = O

request? (num,Down)

downbutton.state = On

Main @

DownOff
senvice?(num,Down) entry/ downbutton. TurnOff

74

Shortcomings of UML

e There is no unified formal semantics for all those diagrams. There are a few
approaches to formalize a subset of UML, e.g. (Evans and Clark, 1998, Kim
and Carrington, 1999) concentrated on class diagram semantics. Therefore, the

consistency between diagrams is problematic; and

e There are limited capabilities for precisely modeling timed concurrency. For
example, (in a new feature that has been added to the UML 1.3)
synchronisation between concurrent substates of a single statechart diagram
can be captured using a synch state link. However there is no facility to
precisely model synchronous interactions between states in two different

statechart diagrams.

75

Linking TCOZ and UML

e Syntactically, UML/OCL (Object Constraint Language) is extended with
TCOZ communication interface types — chan, sensor and actuator. Upon
that, TCOZ sub-expressions can be used (in the same role as OCL) in the

statechart diagrams and collaboration diagrams.

e Semantically, UML class diagrams are identified with the signatures of the
TCOZ classes. The states of the UML statechart are identified with the TCOZ
processes (operations) and the state transition links are identified with TCOZ

events/guards.

o Effectively, UML diagrams can be seen as the viewpoint visual projections from

a formal TCOZ model.

76

Combination Process of TCOZ and UML

1. Firstly, the UML use-case models (user-case and collaboration diagrams) are
used to analyse system requirements so that main classes and operations will
be identified (e.g. classification of the boundary and control classes).
Communication links of the collaboration diagrams guide the design of
communication interfaces of the TCOZ model (synchronisation — channel,

synchronisation — sensor/actuator).

2. Then, the UML class diagrams are used to capture the static structure of the

system, in which class/object relationships can be captured.

3. Based on UML class diagrams, detailed TCOZ formal models are constructed
in a bottom-up style. The states, timing and concurrent interactions of the

system objects are captured precisely in the TCOZ models.

4. Finally, UML state diagrams are used to visualize the behaviors (process states
and events) of essential components of the system, which are closely associated
with the behavior parts of the TCOZ model.

7

Class

78

Synchronisation

Main = ...c?...

_AB

Main = ...a <= b...

79

Asynchronisation

e — a:A

¢ : Nactuator

80

Dynamic Behavior

Pl; e — P2 [P1 e P2

-

P1; ([guardl] ¢ P20
[guard2] e P3) w
[guard2]

P1=P2||| P3 P1
P2
S

81

Light Control System (LCS)

In most existing light control systems, all lights are controlled manually. Electrical
energy is wasted by lighting rooms that are not occupied and by not adjusting light
levels relative to need and daylight. LCS is an intelligent control system. It can
detect the occupation of the building, then turn on or turn off the lights
automatically. It is able to tune illumination in the building according to the

outside light level. It gains input from sensors and actuators.

LCS
Light
1
7
|
|
1 ;’ 1
L1
MotionDetector RoomController ControlledLight
82
Hlumination == 1..10000 lux
Percent == {0} U 10..100
__ MotionDetector
motion : chan
md : (Move | NoMove) sensor [motion sensor]

NoUser = md?Move — motion!l — User O
md?NoMove — WAIT 1s; NoUser

User = md?NoMove — motion!0 — NoUser O
md?Move — WAIT 1s; User

MAIN = NoUser

83

__ Light

dim : Percent actuator [dim value]
on:B
TurningOn = dim := 100; on := true
TurningOff = dim := 0; on := false
_ ControlledLight
Light

button, dimmer : chan

[control channels]

ButtonPushing = button?1 —
([dim > 0] @ TurningOff O [d
DimChange = [n : Percent] & dimmer?
([on] ® dim :=n O [~ on] e S
MAIN = p N e (ButtonPushing O Dim

im = 0] e TurningOn)
n—

KIP)

Change); N

84

[dim=0]_
o

button?1
—

ButtonPushing

TurningOn

do/ dim : = 100
exit/ on := true

TurningOff

do/ dim := 0
exit/ on := false

dimmer?n[on]

Dim change

do/ dim :=n

| satisfy : Percent <> Illumination

— RoomController
_ Adjust
dimmer, motion : chan dim! : Percent on dimmer
odsensor : Illumination sensor
1 et)
absenT : T dim! satisfy olight
olight : Illumination

Ready = motion?1 — On

Regular = R o [n : Illumination] e
odsensor?n — olight := n; Adjust; dimmer!dim — R
On = Regular V motion?0 — OnAgain
OnAgain = (motion?l — On) >{absenT} Off
Off = dimmer!0 — Ready
MaIN = Off

86

__LCS

m : MotionDetector
l : ControlledLight
r : RoomCtrller

MAIN = ||(m motion r dimmer l)

:RoomController

1: motion

: MotionDetector

2:dimmer

: ControlledLight

87

Z Family on the Web with their UML Photos
e Use eXtensible Markup Language (XML) to develop web environment for Z

family languages

— share design models
— hyperlinks among models

— advance browsing facilities
http://nt-appn.comp.nus.edu.sg/fm/zml/

e Develop techniques for projecting (object-oriented) Z models to UML
diagrams, based on XML Metadata Interchange (XMI).

o Use Object-Z to specify and design the essential functionalities of the ZML
environment

88

XML entity
XML Schema Definition (DTD)

/ Internet Explorer 5
Parsed XML HTML Document

Original — / \ —-
XML Document XML Parser
‘ Parsed XSL
Commands

]

XSL Stylesheet
XT
/Parsed XML\ XM Document UML Diagram
_‘ Rational
DOM/SAX Par ser XSLT Processor > . | Ros2000 | ==
Parsed XSL {
Commands
XSL Stylesheet

89

Formal Object Design of ZML

Type
l name : Name
Typedef
Type
defs : Dtype Schemadef,
Type
v
incl : Inclusion glassdef
Aziomd ef decpart : Name — Diype ype
Type azpart : P Predicate inherit : Type + (Name — Name)
state : Statedef
decpart : Na.me' — Dtype Schemadefp init : Initdef
arpart : [P Predicate Type ops : P Opdef
cale : PredCale
90
UMLClass UMLDiagram
name : String classes : P UMLClass
attris : String — Dtype inh, agg : UMLClass ++ UMLClass
ops : ' String dom(inh Uagg) Uran(inh Uagg) C classes

Vh:classes o (h,h) & inh™*

project : P Classdef — UMLDiagram

W(oz, uml) : project »
{c:o0zecname} ={c: uml.classes » c.name} »
Veil,eco:0z e
3, ¢ : uml.classes »
d.name = ¢,.name
d.attris = {cls : 0z ® cls.name} < e1.state.d ecpart
c.ops ={o: Opdef |0 € c;.0ps ® o.name}
co.name € {t : ran ¢;.state.decpart o t.ﬂ,ame} =
3, (¢}, ¢h) s uml.agg ® c{.name = c;.name A ch.name = cy.name
cg.name € {inh : dom cy.inherit ® inh.name} =

3, (¢}, ch) : uml.inh e ¢|.name = c1.name A ch.name = cz.name

91

Basic Implementation Ideas

o 7ZML: Define a customized XML for Z family languages for web-browsing

purpose

e UML tool: Rational Rose 2000 supports XMI import/export according to
UML.DTD

e Translation rules are applied using XSLT techniques to automatically translate
Object-Z/TCOZ model(XML) to UML diagrams(XMI) and vice versa

92

Syntax definition

<ElementType name="op" content="eltOnly" order="seq">
<element type='"name" minOccurs="1" maxOccurs="1"/>
<element type="delta" minOccurs="0" maxOccurs="1"/>
<element type="decl" minOccurs="0" maxOccurs="*"/>

<element type='"predicate" minOccurs="0" maxOccurs="*"/>

</ElementType>

<ElementType name='"classdef" content="eltOnly">
<element type=state" minOccurs=1" maxOccurs=1"/>
<element type=init" minOccurs="0" maxOccurs=1"/>

<element type="op" minOccurs="0" maxOccurs="*"/>

</ElementType>

93

XSL Transformation

<xsl:template match="classdef [@layout=’simpl’] classdef[@layout=’gen’]">
<html>

<a><xsl:attribute name="name'"><xsl:value-of select='"name"/></xsl:attribute>
<xsl:apply-templates select="state"/>

<xsl:apply-templates select="init"/>

<xsl:apply-templates select="op"/>

</html>

</xsl:template>

94

Light example

<classdef layout="simpl" align="left">
<name>Light</name>
<state>
<decl>
<name>dim</name>
<dtype><type>Percent</type><type>&actuator;</type></dtype></decl>
<decl>
<name>on</name>
<dtype><type>&bool;</type></dtype></decl>
</state>
<op layout="calc">
<name>TurningOn</name>

<predicate>dim := 100; on := true</predicate> </op>

</classdef>

Fowad Step Haorne

Seach Favaries

3

History

Mail

»

Address [#] hitp://t-appn comp. rus.edu sgm/zml/srl-webight xrl

=] @6o [|Lnks>

——Light = |
dim - Percent acfuator
on. &
TumingOn 2 dim = 100, on = frue
TumingOf = dim = 0; on = false
——Confrolfed! ight
Light EI
bButton, dimmer - chan
BittonPushing 2 button? 1 — (fdim>gf « TumingOf T [dim=07 « TumingOn)
DimChangs £ fn : Percent] - dirmmer?n — (forf - dim=n 0 { ~onj - SKIP)
MAIN 2 u N - (ButionPushing 0 DimChangs); N .
|
[&] Dene. [B lecalintanet

96

It's the time to
conclude

97

Conclusion and Further Work

o State-based (Object-Z), Event-based (Timed CSP), Graph-based (UML)

e TCOZ

— combines the modelling powers from Object-Z and Timed CSP

— distinguishes the notion of active and passive objects

e Further research

applications to the specification of

+ software architectures

« parallel distributed systems

tools support
— Hoare and He’s UTP to TCOZ semantics
— TCOZ refinement rules

98

TCOZ papers

Most

J. Sun, J.S. Dong, J. Liu and H. Wang. Object-Z Web Environment and Projections to UML. WWW-10: 10th
International World Wide Web Conference, ACM Press, May 2001.

J. Liu, J.S. Dong and J. Sun. TRMCS in TCOZ, 10th International Workshop on S/W Specification and Design (ISSWD’00),
San Diego, USA, IEEE Press, Nov, 2000.

J. Liu, J.S. Dong, B. Mahony and K. Shi. Linking UML with Integrated Formal Techniques, UML: Systems Analysis,
Design, and Development Issues, 2000.

B. Mahony and J.S. Dong. Timed Communicating Object Z.IEEE Transactions on Software Engineering, 26(2):150-177,
Feb 2000.

J.S. Dong, B. Mahony and N. Fulton, Capturing Concurrent Interactions of Mission Computer Tasks, The 6th
Asia-Pacific S/E Conference (APSEC’99), IEEE Press, Dec, 1999.

B. Mahony and J.S. Dong. Sensors and Actuators in TCOZ. World Congress on Formal Methods (FM’99), Lecture Notes

in Computer Science, Springer-Verlag, Toulouse, France, Sep 1999.

B. Mahony and J.S. Dong. Overview of the Semantics of TCOZ. Integrated Formal Methods (IFM’99), Springer-Verlag,
York, UK, June 1999.

J.S. Dong and B. Mahony. Active Object in TCOZ. the IEEE International Conference on Formal Engineering Methods
(ICFEM’98), pages 16-25, IEEE Press, Brisbane, Dec 1998.

B. Mahony and J.S. Dong. Network Topology and a Case Study in TCOZ. the 11th International Conference of Z Users
(ZUM’98), LNCS, pp 308-327, Springer-Verlag, Berlin, Sep 1998.

B. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: An introduction to TCOZ. the 20th International
Conference on S/E (ICSE'98), pages 95-104, IEEE Press, Kyoto, April 1998.

online versions can be found at: http://www.comp.nus.edu.sg/ dongjs

99

Other integrated approaches (partial collection)

e G.Smith and J. Derrick. Specification, refinement and verification of concurrent systems - an integration of
Object-Z and CSP, Formal Methods in System Design, 2001. (To appear.)

e H. Treharne and S. Schneider. How to Drive a B Machine, ZB 2000 , Lecture Notes in Computer Science.
Springer-Verlag, 2000.

e C. Fischer. Combination and implementation of processes and data: from CSP-OZ to Java. PhD thesis. University
of Oldenburg, 2000.

e H. Wehrheim. Data Abstraction for CSP-OZ. In FM’99: World Congress on Formal Methods, Lecture Notes in
Computer Science. Springer-Verlag, 1999.

e M. Butler. csp2B: A Practical Approach to Combining CSP and B. In FM’99: World Congress on Formal Methods,
Lecture Notes in Computer Science. Springer-Verlag, 1999.

e C. Bolton, J. Davies and J. Woodcock. On the Refinement and Simulation of Data Types and Processes. In
Integrated Formal Methods (IFM’99). Springer-Verlag, 1999.

e C. Suhl. RT-Z: An Integration o Z and timed CSP. In Integrated Formal Methods (IFM’99). Springer-Verlag, 1999.

e K. Taguchi and K. Araki. The State-Based CCS Semantics for Concurrent Z Specification ICFEM’97. IEEE Press,
1997

® A. Galloway and W. Stoddart. An operational semantics for ZCCS. ICFEM’97. IEEE Press, 1997

100

