Verifying DAMLA+OIL and Beyond in Z/EVES

Jin Song Dong! Chew Hung Lee* Yuan Fang Li'* Hai Wang?
! School of Computing
National University of Singapore
{dongjs,liyf} @comp.nus.edu.sg

2 DSO National Laboratories
Defense Science Organization (DSO)
Ichewhun@dso.org.sg

Abstract

Semantic Web, the next generation of Web, gives data
well-defined and machine-understandable meaning so that
they can be processed by remote intelligent agents cooper-
atively. Ontology languages are the building blocks of Se-
mantic Web as they prescribe how data are defined and re-
lated. The existing reasoning and verification tools for Se-
mantic Web are improving however still elementary. We be-
lieve that Semantic Web can be a novel application do-
main for software modeling languages and tools. Z is a
formal modeling language for specifying software systems
and Z/EVES is a proof tool for Z. In this paper, we firstly
present Z semantics for ontology language DAML+OIL.
This semantic model is embedded as a Z section dam12z in
Z/EVES, which serves as an environment for checking and
verifying Web ontologies. Then we present a tool for au-
tomatically transforming ontology documents into the spe-
cialized Z codes understood by Z/EVES. Finally, we use
a recent real application, the military plan ontologies, to
demonstrate the different reasoning tasks that Z/EVES can
perform. Furthermore, undiscovered errors in the original
ontologies were found by Z/EVES and some of these errors
are even beyond Semantic Web modeling and reasoning ca-
pabilities.

1. Introduction

Tim Berners-Lee et al. envisioned the Semantic Web, the
next generation of Web, in which not only human-human
communication is possible; intelligent agents: software that
can interpret and process data shared on the Web, will be

* Author of correspondence: liyf @comp.nus.edu.sg

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

3 Department of Computer Science
University of Manchester
hwang @cs.man.ac.uk

able to complete complex tasks on human’s behalf cooper-
atively [2]. Ontology languages such as DAML+OIL [20]
and OWL [6] play a key role in realizing the full poten-
tial of Semantic Web as they prescribe how data are de-
fined and related. Ontology languages are based on descrip-
tion logic and they are designed to be decidable [24] (except
OWL Full). Ensuring the consistency of shared ontologies
is crucial to the proper functioning of agents. Since Seman-
tic Web is still evolving and in its early stage, current verifi-
cation tools are improving though rudimentary. It is our be-
lief that Semantic Web can be a new application domain for
software modeling languages and tools.

Z [22] is a formal specification language well suited to
model system data and state. It is based on ZF set theory
and first-order predicate logic. Description logic can be re-
garded as a subset of predicate logic [14], therefore it is
not surprising that Z is more expressive than ontology lan-
guages. Z/EVES [19] is an interactive proof tool for check-
ing and reasoning Z specifications. The intrinsic homogene-
ity between semantic bases of ontology languages and Z im-
plies that Z can be regarded as an ontology meta-language
and it can even capture properties that ontology languages
cannot. We believe that by defining Z semantics for ontol-
ogy languages and transforming ontologies into Z specifica-
tions, Z/EVES can be used to improve the quality of ontolo-
gies by verifying properties of the Z specifications, some-
times beyond Semantic Web.

In this paper, we firstly give an overview of Semantic
Web, ontology languages, the DSO military plan ontolo-
gies, Z and Z/EVES (section 2). Z semantics for ontology
language DAMLA+OIL will be presented (section 3). This
semantic model is embedded as a Z section daml2z in
Z/EVES, which serves as an environment for checking and
verifying web ontologies. Then we illustrate a tool for au-
tomatically transforming ontologies into the specialized Z
codes (section 4). Finally, we use a recent real application,

un@

COMPUTER
SOCIETY

the military plan ontologies, to demonstrate the different
reasoning tasks that Z/EVES can perform (section 5). Sec-
tion 6 discusses related works and concludes the paper.

2. Overview
2.1. Semantic Web & ontology languages

The Semantic Web is a vision of next generation of the
Web. It is believed that in the future, the Web is no longer
what we conventionally think as only meant for humans to
read, it is also meant for intelligent software agents and is
truly ubiquitous. Software agents will reside in, for exam-
ple, household appliances (which can also be part of the
Web), and be able to understand the meaning of data on
the Web and undertake tasks without human’s supervision.
Understanding of data is built on giving data well-defined
structure and meaning, for which ontologies are designed.

Ontologies are expressed in terms of ontology languages,
which are built on top of XML. Compared to HTML, XML
has two main advantages. Firstly, it is extensible, which
means XML is actually a metalanguage: a language to de-
scribe other languages. Users can design their own markup
language with different tag names and data types. The pos-
sibility of having limitless languages built on top of XML
greatly enhances the Web’s ability to scale. Secondly, it is
strict in terms of structure; XML is well-defined, in other
words. By rigorously defining the structure of data, XML
provides a syntactic basis for data to be represented unam-
biguously. However, as XML aims at defining the structure
of documents, it is almost impossible for an agent to under-
stand the meaning of a document it encounters on the Web.
We need a way for machines to understand data.

RDF (Resource Description Framework) [17] is a model
of metadata defining a mechanism for describing resources
that makes no assumptions about a particular application
domain. It allows structured and semi-structured data to be
mixed and shared across applications. XML describes doc-
uments, whereas RDF is a framework for metadata: it de-
scribes actual things. It provides a simple way to make
statements about Web resources. Statements are of the form
(subject predicate object), where subject is the resource we
are interested in, predicate specifies the property or charac-
teristic of the subject and object states the value of the prop-
erty. RDF Schema [3] provides basic vocabularies for de-
scribing RDF documents. In order for agents to understand
data unambiguously, it is necessary that these data items are
strictly structured. This requirement is relaxed by RDF to
allow for greater flexibility. Moreover, RDF Schema does
not contain all modeling primitives users have desired.

DAML (DARPA Agent Markup Language) [20] is built
on top of RDF Schema and it has a much richer set of lan-
guage constructs to express class and property relationships

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

than those allowed in RDF Schema; more refined support
for data types are also incorporated in DAML. DAML com-
bined effort with the Ontology Inference Layer (OIL) [4]
project and it is now referred to as DAML+OIL. The other
major extension of DAMLA+OIL is the ability to express re-
strictions on class and property definitions. By restricting
existing classes and properties, new concepts can be built
incrementally. This facilitates construction of new ontolo-
gies as previous ones can be reused.

In 2003, W3C published a new ontology language,
the OWL (Web Ontology Language) [23]. Based on
DAML+OIL, OWL consists of three sublanguages: Lite,
DL and Full, with increasing expressiveness. The three sub-
languages are meant for user groups with different re-
quirements of expressiveness and decidability. OWL
Lite and DL are decidable whereas OWL Full is gener-
ally not.

The consistency of ontologies is essential to the proper
functioning of agents. For example, we can imagine how
chaotic it can be if an online marriage registry agent allows
a person already married to register for marriage again. This
could happen if the marriage ontology does not constrain
that a person can only have at most one spouse. A consis-
tent ontology satisfies the following two criteria: realiza-
tion, every class has at least one instance and retrieval, ev-
ery individual is an instance of some class [16].

Alongside ontology languages, a number of ontology-
related tools have been developed. [18] provides an ex-
tensive survey. Here we briefly introduce two reasoners
that support DAML+OIL: FaCT and RACER. FaCT (Fast
Classification of Terminologies) [9] is a T-Box (concept
level) reasoner, whose major functionalities include concept
subsumption and satisfiability testing. RACER (Renamed
ABox and Concept Expression Reasoner) [8] implements
a TBox and ABox (instance level) reasoner for the de-
scription logic SHZQ [11]. Compared to FaCT, it has
much richer functionalities, including creating, maintain-
ing, deleting ontologies, concepts, roles and individuals,
querying, retrieving and evaluating the knowledge base,
etc. Moreover, they perform their functions automatically,
which means by “pushing a button”, these tools return a
definitive answer without intermediate steps.

2.2. Military Plan Ontology

DSO National Laboratories (DSO) developed a
DAMLA+OIL military plan ontology [15], defining con-
cepts in the military domain, including military organiza-
tions, specialities, geographic features, etc. For example,
the class LandMineField, a sub class of LandArea, is
defined as follows.
<daml:Class rdf:about="http://www.dso.org.sg/

PlanOntology#LandMineField">
<rdfs:label>LandMineField</rdfs:label>

un@

COMPUTER
SOCIETY

<rdfs:subClassOf>
<daml:Class rdf:about="http://teknowledge.com/
ontology/Merge. txt#LandArea"/>
</rdfs:subClassOf>
</daml:Class>

A number of plan instances of this ontology were also
generated from plain text by an information extraction (IE)
engine developed by DSO. Military plans are typically pre-
pared as both graphical overlays and textual documents
detailing the plans. IE is used as the first part of a pro-
cess to transform the textual documents into ontological
data. A typical IE workflow consists of word segmenta-
tion & stemming, POS (part of speech) tagging, Named En-
tity recognition, syntactic processing, etc. With all informa-
tion gathered from the various steps, the IE engine then fills
the slots in pre-defined templates, which are subsequently
transformed into a RDF document. Generally speaking, an
instance ontology is made up of the following four main in-
gredients.

e A set of military operations and tasks, defining their
types, phases and the logic order.

e A set of military units, which are the participants of the
military operations and tasks,

e A set of geographic locations, where such operations
take place and

e A set of time points for constraining the timing of such
operations.

2.3. Z & Z/EVES

Z [22] is a formalism based on ZF set theory and first-
order predicate logic. It is specially suited to model system
data and state. Z has a number of language constructs in-
cluding given type, abbreviation type, axiomatic definition,
state and operation schema definitions, etc.

Since ontology languages are based on description logic,
which can be regarded as a subset of predicate logic [14],
Z is by nature more expressive than ontology languages.
Hence, it is able to capture more facets of information than
ontology languages can. In the following section, we will
present the Z semantics for DAML+OIL.

Z/EVES [19] is an interactive system for composing,
checking, and analyzing Z specifications. It supports the
analysis of Z specifications in a number of ways: syntax
and type checking, schema expansion, precondition calcu-
lation, domain checking, general theorem proving, etc.

In Z/EVES, Z specifications are in the form of sections
to improve reuse. The built-in section toolkit defines ba-
sic constants and operators. Specifications are built hierar-
chically by including existing sections as their parents.

3. Z Semantics for DAML+OIL

To use Z/EVES to check ontologies, it is necessary to
define Z semantics for the ontology language. This seman-
tic model serves as a reasoning environment for verification
using Z/EVES. In this section, we define Z semantics for
a subset of DAML+OIL language primitives. The complete
model can be found in Appendix A. Note that we present
the Z definitions in Z/EVES syntax, where extra parenthe-
ses around predicates are sometimes needed for Z/EVES to
correctly parse them. In the second part, proof support for
Z/EVES is discussed. Examples of various constructs de-
fined in this section can be found later in this paper.

It may be noted that we build Z semantics for
DAMLA+OIL using only axiomatic definitions. This is be-
cause in this paper, we are only interested in checking
the static properties of ontologies, which can be well cap-
tured by axiomatic definitions. Schema definitions, on
the other hand, are best used to model dynamic proper-
ties, as found in Semantic Web services such as DAML-S

[5].
3.1. Z Semantics for DAML+OIL

Basic Concepts
Everything in Semantic Web is a Resource. So we model
it as a given type in Z.

[Resource]

Class corresponds to a concept, which has a number of
resources associated with it: the instances of this class.
Hence, we model class as a subset of resource and instances
as a function from a class to a set of resources.

Class : P Resource
instances : Class — P Resource

Property is also a subset of Resource, disjoint with
class. A property relates resources to resources. The func-
tion sub_val maps each property to the resources it re-
lates.

| Property : P Resource

| Property N Class = @

| sub_val : Property — (Resource < Resource)

Class relationships

The property subClassOf is defined as a relation from
class to class. For a class ¢; to be the sub class of class
c9, the instances of ¢; must be a subset of instances of cs.
Other properties such as disjointWith are similarly de-
fined. Note that the subset relationship is expressed in terms
of membership relationship to make proof in Z/EVES more
automated.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) ..;-;@

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

subClassOf : Class < Class
disjointWith : Class < Class

Vci1,c2 : Class e
c1 subClassOf c2 < instances(c1) € Pinstances(c2)
c1 disjointWith co < instances(c1) N instances(c2) = &

Class & Property

The property toClass attempts to establish a maximal
possible set of resources as a class. It states that any re-
source ay is an instance of class ¢ if either: a; is defined
for property p and (a1,a2) € sub_val(p) implies that as is
an instance of class c2; or that a; is not defined for p at all.

| toClass : (Class x Property) < Class

Vc1,c2 : Class; p : Property e (c1,p) toClass ca <
(Vai,asz : Resource o ay € instances(c1) <
((a1,az2) € sub_val(p) = a2 € instances(cz2)))

Property hasValue states that all instances of class ¢ have
resource r for property p.

| hasValue : (Class x Property) < Resource

Y c : Class; p : Property; r : Resource
(c,p) hasValue r <
(Va : instances(c) o (a,r) € sub_val(p))

Property relationships

The property subPropertyOf states that a property p; is
a sub property of another property po iff sub_val(p;) is a
subset of sub_val(ps).

| subPropertyOf : Property < Property

V p1,p2 : Property e p1 subPropertyOf p2 <
sub_val(p1) € P sub_val(p2)

3.2. Proof support for Z/EVES

The semantic model is contained in a section daml2z,
on top of toolkit. According to the authors of Z/EVES,
definitions alone are not sufficient to exploit the full power
of Z/EVES. An ample stock of rewrite rules, forward rules
and assumption rules is needed to make proof processes
more automated. Based on the semantic model, we con-
structed a section, called DAML2ZRules, of rules which
describes the above definitions in more than one angle. This
section has dam12z as parent.

The rewrite rule toClassDisjointWithRulel,for
example, relates two properties: toClass and disjointWith.
This rule states that for classes c1, c2, ¢3 and property p, if
¢2 and c3 are disjoint and ((c1,p), c3) satisfies property to-
Class, then it can be implied that ((c1,p), c2) does not sat-
isfy toClass.

theorem rule toClassDisjointWithRulel
Vc1,c2,c3 : Class; p : Property ®
(c3, c2) € disjointWith A ((c1,p),cs) € toClass) =
= ((e1,p), c2) € toClass

Ontologies are built layer on layer. Other domain specific
ontologies are built in terms of basic concepts presented
in this section and their corresponding Z models will have
DAML2ZRules or its descendent sections as parents.

4. Transforming DAML+OIL to Z

Using a Java package for Semantic Web, the “Jena
Frameworks” [12], we have developed a tool in Java
to automatically transform ontologies into Z. Given a
DAMLA+OIL or RDF ontology, it iterates through all ele-
ments and transforms them into Z definitions.

We used this tool to transform the military plan ontol-
ogy introduced in section 2 into Z section military, with
DAML2ZRules as parent.

To better utilize Z/EVES’s proof power, We made the
following enhancements to the military section:

e labels are systematically added to Z predicates during
transformation to make them axioms (either rewrite
rules or assumption rules) recognized by Z/EVES,
which will assume an assumption rule to be true and
rewrite the left-hand side of a rewrite rule to its right-
hand side during the proof process.

e Since MilitaryProcess and its sub classes have a start
and end time, start and end are modeled as func-
tions from MilitaryProcess to integer, so that Z/EVES
can perform reasoning over integer domain.

e A set of theorems specific to these military definitions
are formulated. These theorems describe the relation-
ships among the various military entities. For exam-
ple, we have theorems stating sub task relationship be-
tween different kinds of military tasks, transitivity of
sub task relationship, etc.

The class LandMineField presented earlier in sec-
tion 2.2 is transformed into the following axiomatic defini-
tion. Note that the predicate (LandMineField, LandArea) €
subClassOf is marked as an assumption rule so that during
proof, Z/EVES will automatically that LandMineField
is a sub class of LandArea.

| LandMineField : Class
{(grule LandMineField_subClassOf_LandArea))
(LandMineField, LandArea) € subClassOf

Our tool also supports transforming instance ontologies
into Z specifications. For example, a fragment of an instance

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) ..;-;@

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

plan ontology, planE.daml, and its Z model are shown be-
low (names in ontology and Z section are shortened to save
space, when necessary).

<rdf :Description rdf:about='G. DALLAS’>
<rdf:type rdf:resource='http://teknowledge.com/
ontology/Merge. txt#GeographicArea’ />
</rdf:Description>
<rdf:Description rdf:about='TF 1'>
<rdf:type rdf:resource='http://www.dso.org.sg/
PlanOntology#Task Force’/>
</rdf:Description>
<rdf :Description rdf:about=’'PLAN-P3-P6-P1’>
<NS4 :subTaskOf rdf:resource='PLAN-P3-P6’/>
<rdf:type rdf:resource=
"http://www.dso.org.sg/PlanOntology
#EstablishPosition-MilitaryTask’'/>
<NSO:start rdf:resource='7'/>
<NSO:end rdf:resource='12"'/>
<NS4 :assignedTo
rdf :resource='ArmouredBattalion 51b’/>
</rdf:Description>

G_DALLAS : Resource

{(grule G_LDALLAS_type))
G_DALLAS € instances(GeographicArea)

TF_1 : Resource

{(grule TF_1_type))
TF_1 € instances(Task_Force)

PLAN_P3_P6_P1 : Resource

{(grule PLAN_P3_P6_P1_type))

PLAN_P3_P6_P1 €

instances(EstablishPosition_MilitaryTask)

{(rule PLAN_P3_P6_P1_assignedTo))

(sub_val(assignedTo))(| {PLAN_P3_P6_P1} |) =
{ArmouredBattalion_51b}

{(rule PLAN_P3_P6_P1_end))

end(PLAN_P3_P6_P1) = 12

((rule PLAN_P3_P6_P1_start))

start(PLAN_P3_P6_P1) = 7

Sometimes, manual works are necessary to make the Z
definitions acceptable by Z/EVES and to make the proof
process more automated. To minimize the manual works
and fully utilize the automated proof power of Z/EVES, we
fine-tuned the transformation tool as follows:

e For the same reasons as in plan ontology, labels are
added to all Z predicates.

e Z definitions and predicates are re-ordered dur-
ing transformation to avoid advance or circular refer-
ences, which are not allowed by Z/EVES.

e In military plans, information about to which military
units a military task is assigned to is captured but the
inverse relation is not. In order for more automated rea-
soning about the temporal relationships of these tasks,
information about military units executing tasks is col-
lected separately by the tool and the corresponding Z
definitions are put to the end of the specification.

e In ontology languages, different names refer to differ-
ent entities (Unique Name Assumption [8]). However,
in Z, different names can refer to the same entity. We
use cardinality of sets to make Z/EVES work the same
way. Whenever two military tasks are related by sub
task or super task relationship, we construct a set con-
taining the two tasks and assume the cardinality of the
set is two, as follows:

((grule PLAN_P3_P6_P1_disj_PLAN_P3_P6))
#{PLAN_P3_P6_P1, PLAN_P3_P6} = 2

The benefits of these enhancements in transformation will
be seen when we discuss reasoning beyond DAMLA+OIL in
section 5.

5. Checking Ontologies Using Z/EVES

In this section, we demonstrate how Z/EVES can be
used to verify properties of ontologies through the military
ontologies case study. The demonstration consists of two
parts. In the first part, standard Semantic Web reasoning:
(class) inconsistency, subsumption and instantiation testing,
whose formal definitions can be found in [1], are performed.
In the second part, we will show that Z/EVES can check on-
tology properties beyond Semantic Web. In this section, la-
bels are shown only when they are used by Z/EVES during
the proof process, either automatically or interactively.

By applying Z/EVES, we discovered an error in the plan
ontology in the first part. In the second part, more errors be-
yond Semantic Web modeling capabilities were found by
Z/EVES.

5.1. Standard Semantic Web reasoning

Inconsistency Checking

Ensuring the consistency of individual classes is an impor-
tant task as the property of overall ontology consistency can
be reduced to class consistency [10].

After transforming the plan ontology into Z section
military, We applied Z/EVES to section military
to systematically check consistency for its classes. Dur-
ing checking, we identified the following closely-related Z
definitions.

| PrepareDemolition_MilitaryTask : Class

(PrepareDemolition_MilitaryTask, MilitaryTask) €
subClassOf

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) un@

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

EngineerUnit : Class
(EngineerUnit, ModernMilitaryUnit) € subClassOf
{(grule EngineerUnitSpeciality))

((EngineerUnit, speciality),
EngineeringMilitarySpeciality) € hasValue

{(grule DemolitionAssignedtoEngin))

((PrepareDemolition_MilitaryTask, assignedTo),
EngineerUnit) € toClass

EngineerSection : Class

{(grule SectionIsSubClassOfUnit))
(EngineerSection, EngineerUnit) € subClassOf
((EngineerSection, echelon), SECT) € hasValue

ArtilleryFiringUnit : Class

((FUIsMUnit))

(ArtilleryFiringUnit, ModernMilitaryUnit) €
subClassOf

(grule FiringUnitDisjWithEngin))

ArtilleryFiringUnit, EngineerUnit) € disjointWith

(grule DemolitionAssignedToFU))

(PrepareDemolition_MilitaryTask, assignedTo),
ArtilleryFiringUnit) € toClass

e

With the assumption rule label DemolitionAs-
signedToFU removed, we issue the following goal to
test the consistency of the above definitions.

try ((PrepareDemolition\ MilitaryTask,
assignedTo) ,ArtilleryFiringUnit) \in toClass;

We enter a sequence of commands into Z/EVES. The
first 2 are axioms (labelled predicates) from the spec-
ification and the 3" is a theorem defined in section
DAML2ZRules. The final command reduce performs
simplification and rewriting.

Proof
use FiringUnitDisjWithEngin;
use DemolitionAssignedtoEngin;
apply disjointWithRuleO;
reduce;

Z/EVES returns the following predicate as the remain-
ing goal to be proven.

- instances EngineerUnit N instances ArtilleryFiringUnit = {}

We suspect that there is potentially an inconsistency
since the disjointness of the above two classes is stated in
the specification. Since it is very hard for a theorem prover
to prove falsity, we use the usual trick: negate the goal and
retry.

try \lnot ((PrepareDemolition\ MilitaryTask,
assignedTo) ,ArtilleryFiringUnit) \in toClass;

With the same sequence of commands entered, Z/EVES
manages to return true. Hence we know that the pred-
icate is inconsistent with the section. After checking the
original ontology, we found that there is indeed an incon-
sistency, which was intentionally inserted by DSO staff as
a test case for our tool without our pre-knowledge.

Subsumption Reasoning

The task of subsumption reasoning is to infer a DAML+OIL
class is a sub class of another class. It is supported by
Z/EVES with a high degree of automation: usually a
reduce; command will prove the goal.

Instantiation Reasoning

Instantiation reasoning asserts that one resource is an in-
stance of a class. Some Semantic Web reasoning tools, such
as FaCT, are designed to only support TBox reasoning,
hence reasoning involving instances cannot be performed.
We demonstrate through an example that Z/EVES supports
instance level reasoning.

In one of the instance ontologies, planE.daml, an in-
stance of ModernMilitaryUnit is assigned to an instance of
PrepareDemolition_MilitaryTask. We want to deduce that it
is an instance of the class EngineerUnit.

ModernMilitaryUnit_8ad : Resource

{(grule ModernMilitaryUnit_8ad_type))
ModernMilitaryUnit_8ad €
instances(ModernMilitaryUnit)

PLAN_P2_P4 : Resource

{(grule PLAN_P2_P4_type))

PLAN_P2_P4 €
instances(PrepareDemolition_MilitaryTask)

{(rule PLAN_P2_P4_assignedTo))

(sub_val(assignedTo))({PLAN_P2_P4} |) =
{ModernMilitaryUnit_8ad}

try ModernMilitaryUnit\ 8ad \in
instances (EngineerUnit) ;

With two axioms from the specification and two theo-

rems from section DAML2ZRules used, a final prove;
command cleans up the proof and Z/EVES returns true.

Proof
use imageTupleRule[p := assignedTo,
x := PLAN_P2_P4,y := ModernMilitaryUnit_8ad);
use DemolitionAssignedtoEngin;
use PLAN_P2_P4_type;
use toClassInstanceRule2
[c1 := PrepareDemolition_MilitaryTask,
co := EngineerUnit, a1 == PLAN_P2_P4,
az := ModernMilitaryUnit_8ad, p := assignedTo];
prove;
|

un@

COMPUTER
SOCIETY

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

Instance Property Reasoning

Another important reasoning task in the Semantic Web do-
main is instance property reasoning, which is often regarded
as knowledge base querying. In Semantic Web, a promis-
ing vision is that intelligent agents can discover informa-
tion that is not explicitly stored in the knowledge base. We
illustrate Z/EVES’s capability of instance property reason-
ing using an example.

In the beginning of this section, we know that the special-
ity of EngineerUnit is EngineeringMilitarySpeciality and
that EngineerSection is a sub class of EngineerUnit. We
want to know whether EngineerSection’s speciality is also
EngineeringMilitarySpeciality. The goal is established as
follows:

try ((EngineerSection, speciality),
EngineeringMilitarySpeciality) \in hasValue;

With the following commands issued, Z/EVES proves
the goal to be true.

Proof
use EngineerUnitSpeciality;
use SectionlsSubClassOfUnit;
use subClassHasValueRulel
[c1 := EngineerSection, c2 := EngineerUnit,
p = speciality, r := EngineeringMilitarySpeciality];
reduce;
|

5.2. Checking beyond DAML+OIL

The above examples demonstrate Z/EVES’s capability
of performing consistency, subsumption and instantiation
reasoning on Semantic Web ontologies with a certain degree
of automation. Moreover, Z/EVES can check more com-
plex properties that Semantic Web languages cannot cap-
ture. For example, Semantic Web languages have problems
dealing with concrete domains. DAML+OIL, for instance,
can only specify min, max and exact values of cardinality
constraints over integer. Z/EVES, however, can perform ba-
sic arithmetic operations and comparisons, which improves
proof power beyond Semantic Web.

This added power of Z/EVES is illustrated through the
following real-world example. One of our aims is to check
ontologies in the military domain. To ensure the correctness
of a military ontology, it is not enough to check properties
discussed in the last sub section. It is necessary to ensure,
for example, that no military unit is assigned to two or more
military tasks at the same time, and that no military task is
a sub task of itself. Semantic Web ontology languages can-
not capture this idea. Using Z/EVES, we can check whether
these constraints are satisfied.

In this subsection, we consider one of the instance on-
tologies: planE.daml. Using the tool described previously, it
is transformed into a Z section, which was partially shown
in Section 4. A brief statistics of this ontology and the cor-
responding Z section can be found in Table 1. The incon-
sistency we discovered in the military ontology earlier was
also summarized in the table (ontology error).

Items Numbers
Resources 138
Operations, tasks, phases 56

Units 47
Geographic areas 35
Statements (in planE.daml) 592

Ontology error (in military ontology) | 1 |

Transformed Axiomatic Defns (in Z) | 138

Transformed Predicates (in Z) 410
|| Type errors | 22 ||
|| Hidden errors | 9 ||

Table 1. Statistics of the military ontology &
instance ontology planE.daml

Note that 22 type errors were detected by Z/EVES. Most
of these errors are caused by the inaccuracy of the IE en-
gine: for example, Task_Force was defined as a class
in section military; it is redefined as a resource of type
Thing in this instance ontology.

After correcting all syntax and type errors in the Z
model, we use a set of theorems to systematically test prop-
erties beyond Semantic Web. 9 hidden errors are discov-
ered. 2 of them are caused by military tasks having start
time greater than end time; 4 are caused by military tasks
without end time defined and 3 are caused by a military unit
being assigned to different tasks simultaneously. The rest of
this section is devoted to showing how various checking be-
yond Semantic Web can be performed by Z/EVES.

The following theorem tests that for any instance of mil-
itary task, its start time is less than or equal to its end time
and it is not a sub task of itself.

theorem MilitaryTaskTimeSubTaskTest1
V x : instances(MilitaryTask) e
start(x) < end(x) A x & (sub_val(subTaskOf))({x} |

Since this theorem is universally quantified, we need to
iterate through all such instances to prove its correctness
against this specification. The following scripts show the
proof of one such instance. The last command reduce re-
turns true, which proves the current sub goal.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) un@

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

Proof
try lemma MilitaryTaskTimeSubTaskTest1;
split x = PLAN_P2_P7_S1_P1; cases;
use cardCup [Resource] [S := {PLAN_P2_P7_S1_P1},
T := {PLAN_P2_P7_S1}];
reduce;

The proof process is intuitive: we consider the super
tasks of x one by one. When all super tasks are satisfied,
this goal is proven. The rule cardCup is defined in section
toolkit, used here to make the two military tasks dis-
tinct, as discussed in the end of section 4. Other instances
are proved using similar scripts.

Next, we test another military task: PLAN_P3_P3_S1.
With the command reduce issued, Z/EVES returns the fol-
lowing remaining goal:

PLAN_P2_P7_S1_P1 = PLAN_P3_P3_S1
V = x = PLAN_P3_P3_51

which means that the sub goal of PLAN_P3_P3_S1
is not proven. By negating the theorem and trying again,
Z/EVES does return true. In the ontology, we found that
start time is 7 but end time is 4; hence it is indeed an er-
ror unable to be found by Semantic Web reasoners.

Applying this checking to all military tasks revealed 2
such errors. There are two possible sources: inaccuracy of
the IE engine or human error. After checking with the de-
velopers at DSO, it was found out that the errors were in
the original text document, which is the input of the IE en-
gine. Hence it was human error.

The discovery of this kind of errors motivated us to per-
form some more advanced reasoning. The following the-
orem states that for any given military unit and two mil-
itary tasks assigned to this unit, the durations of the two
tasks do not overlap. Since we have ensured that start time
is less than the end time for each military task, the predi-
cate end(y) < start(z) V end(z) < start(y) is sufficient.

theorem MilitaryUnitTest
Y x : instances(ModernMilitaryUnit) e
Yy, z : instances(MilitaryTask) |
x € (sub_val(assignedTo))({y}) A
x € (sub_val(assignedT0))({z} |) ®
end(y) < start(z) V end(z) < start(y)

We systematically apply this theorem to appropriate mil-
itary units and tasks. As stated in section 4, we have col-
lected information about what tasks each military unit exe-
cutes, it is easy to proceed in this case. The proof process of
one such combination is shown below.

Proof
try lemma MilitaryUnitTest,
split x = TF_1; cases;
splity = PLAN_P3_P5_S1; cases;
split z = PLAN_P3_P5_S3; cases;
reduce;

The last reduce command returns the following:

7= PLAN_P3_P5_S1 ANy = PLAN_P3_P5_S3
= - x=TF_1

which obviously contradicts the known facts since we
explicitly instantiate x to TF_ 1. Hence, we sense that there
is a potential error and we negate the theorem and prove it.

After issuing similar commands, we proved the negated
goal. In the original ontology, we found out that the start
and end time of these two military tasks are the same. Hence
this is indeed an error that cannot be discovered by Seman-
tic Web reasoners.

6. Conclusion

In this paper, we demonstrated the Z semantics for on-
tology language DAML+OIL and automatic transformation
of DAML+OIL and RDF ontologies into Z specifications.
Through a recent case study, the military plan ontologies,
we showed that Z/EVES can be used to check properties
of ontologies. Undiscovered errors in the original ontolo-
gies were found by Z/EVES. Some of these errors are be-
yond the modeling capabilities of ontology languages and
hence cannot be found by Semantic Web reasoning tools.

In our previous works, the reverse approach [7] was in-
vestigated, in which DAML+OIL ontologies can be ex-
tracted from Z requirement models. We also applied the
Alloy [13] model checker to DAMLA+OIL to perform au-
tomated reasoning [21]. There are some pros and cons to
Alloy approach. Being a model checker, reasoning in Al-
loy is fully automated and if there is an inconsistency, Al-
loy can give a counter example so that it is easier to trace
the origin of the inconsistency. On the other hand, Alloy
is not very scalable. Since it performs exhaustive search, it
can only handle ontologies with no more than twenty en-
tities. Moreover, Alloy does not support concrete domains
such as integer. These characteristics make Alloy more au-
tomated, but less powerful and expressive than Z/EVES.

Compared to Semantic Web-specific reasoning tools and
Alloy, the apparent disadvantage of Z/EVES, being a theo-
rem prover, is that it has a lower degree of automation and
can only perform reasoning tasks interactively. However,
the high degree of expressiveness of Z language implies that
it can capture properties beyond ontology languages and ap-
plying Z/EVES to checking ontologies gives us more confi-
dence in the correctness of ontology related properties.

The new ontology language OWL Full is designed to
be very expressive and reasoning will generally be unde-
cidable [23]. Therefore, proof will be inevitably interactive
and Z/EVES is a natural choice for reasoning OWL. Ex-
tending the support to OWL will be one future work direc-
tion. Modeling and checking behaviors of Semantic Web
services in Z or other formalisms such as process alge-

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) ..;-;@

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

bra would be another future work.

Acknowledgement

The authors would like to thank Chan Kum Lan, Chew Lock
Pin, How Khee Yin and Lee Hian Beng for their collabora-
tion and support. We are also grateful to anonymous refer-
ees for their valuable comments. This work is partially sup-
ported by the Defense Innovative Research Project (DIRP)
research grant “Formal Design Methods and DAML”.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

F. Baader and W. Nutt. Basic description logics. In F. Baader,
D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors, The description logic handbook: theory,
implementation, and applications, pages 43-95. Cambridge
University Press, 2003.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, May 2001.

D. Brickley and R. G. (editors). Resource de-
scription framework (rdf) schema specification 1.0.
http://www.w3.0rg/TR/2000/CR-rdf-schema-20000327/,
March, 2000.

J. Broekstra, M. Klein, S. Decker, D. Fensel, and 1. Horrocks.
Adding formal semantics to the web: building on top of rdf
schema. In ECDL Workshop on the Semantic Web: Mod-
els, Architectures and Management, 2000.

M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. Mcll-
raith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and
H. Zeng. Daml service. http://www.daml.org/services/daml-
s/2001/05/.

M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Hor-
rocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. S.
(editors). OWL Web Ontology Language 1.0 Reference.
http://www.w3.org/TR/owl-retf/, 2002.

J. S. Dong, J. Sun, and H. Wang. Z Approach to Seman-
tic Web. In International Conference on Formal Engineer-
ing Methods (ICFEM’02), pages 156-167, Shanghai, China,
Oct. 2002. LNCS, Springer-Verlag.

V. Haarslev and R. Moller. RACER User’s Guide and Refer-
ence Manual: Version 1.7.6, Dec. 2002.

I. Horrocks. The FaCT system. Tableaux’9S, LNCS,
1397:307-312, 1998.

I. Horrocks. DAMLAOIL: a description logic for the seman-
tic web. IEEE Data Engineering Bulletin, 25(1):4-9, 2002.
I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning
for very expressive description logics. Logic Journal of the
IGPL, 8(3):239-263, 2000.

HP Labs. Jena Semantic Web Toolkit - version 1.
http://www.hpl.hp.com/semweb/jenal.htm.

D. Jackson. Alloy: A lightweight object modeling notation.
Available: http://sdg.lcs.mis.edu/alcoa, 1999.

P. Lambrix. Description Logics home page.
http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html.
C. H. Lee. Phase I Report for Plan Ontology. DSO National
Labs, Singapore, 2002.

0270-5257/04 $20.00 © 2004 IEEE

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

A.

D. Nardi and R. J. Brachman. An introduction to description
logics. In F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. Patel-Schneider, editors, The description logic hand-
book: theory, implementation, and applications, pages 1-40.
Cambridge University Press, 2003.

O. Lassila and R. R. Swick (editors). Resource De-
scription Framework (RDF) Model and Syntax Spec-
ification. http://www.w3.0rg/TR/1999/REC-rdf-syntax-
19990222/, Feb, 1999.

Ontoweb Ontology-Based Information. Deliverable 1.3:
A survey on ontology tools. http://ontoweb.aifb.uni-
karlsruhe.de/About/Deliverables/D13_v1-0.zip.

M. Saaltink. The Z/EVES system. In J. P. Bowen, M. G.
Hinchey, and D. Till, editors, ZUM’97: Z Formal Specifica-
tion Notation, volume 1212 of Lect. Notes in Comput. Sci.,
pages 72-85. Springer-Verlag, 1997.

F. van Harmelen, P. F. Patel-Schneider, and 1. H. (editors).
Reference description of the DAML+OIL ontology markup
language. Contributors: T. Berners-Lee, D. Brickley, D. Con-
nolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, O.
Lassila, D. McGuinness, L. A. Stein, ..., March, 2001.

H. Wang, J. S. Dong, and J. Sun. Checking and Reasoning
about Semantic Web through Alloy. In Proceedings of For-
mal Methods Europe: FME’03, volume 2805 of Lect. Notes
in Comput. Sci., pages 796-814, Pisa, Italy, Sept. 2003.
LNCS, Springer-Verlag.

J. Woodcock and J. Davies. Using Z: Specification, Refine-

ment, and Proof. Prentice-Hall International, 1996.

World Wide Web Consortium (W3C). OWL Web Ontology
Language Overview. http://www.w3.org/TR/owl-features/,
Mar. 2003.

World Wide Web Consortium (W3C). Web Ontol-
ogy Language (OWL) Use Cases and Requirements.
http://www.w3.org/TR/webont-req/, Mar. 2003.

7. Semantics for DAML+OIL

A.1. Basic concepts

This section defines how basic language constructs in
DAMLA+OIL are modeled in Z. Note that Thing is the su-
per class of all classes and that Not hing is the sub class of
all classes.

[Resource] | DataType : P Class

Class : P Resource Thing, Nothing : Class

V' r : Resource @

Property : P Resource
Class N Property = {}

r € instances(Thing)
r & instances(Nothing)

instances : Class — P Resource

un@

COMPUTER
SOCIETY

A.2. Class elements

This section presents the Z model of DAML+OIL lan-
guage constructs that model the inter-class relationships.

subClassOf , disjointWith, sameClassAs : Class < Class

Yecy,c2 : Class e

c1 subClassOf c2 < instances(c1) € Pinstances(c2)

c1 disjointWith co < instances(c1) N instances(c2) = &
c1 sameClassAs co < instances(c1) = instances(cz)

intersectionOf , unionOf : seq Class < Class

Vel : seq Class; ¢ : Class o
cl intersectionOf ¢ <

instances(c) = [{x : rancl e instances(x)}
cl unionOf ¢ &

instances(c) = | J{x : rancl e instances(x)}

disjointUnionOf : seq Class < Class

V¢l : seq Class; ¢ : Class o cl disjointUnionOf ¢ <
cl unionOf ¢ N\
(Vx,y:rancl @ x # y = x disjointWith y)

A.3. Property restrictions

A property restriction defines for a class whose instances
satisfy certain restriction.

sub_val : Property — (Resource < Resource)

toClass : (Class x Property) < Class

Vc1,c2 : Class; p : Property e (c1,p) toClass ca <
(Vai,az : Resource e ay € instances(c1) <

((a1,az2) € sub_val(p) = az € instances(cz2)))

hasValue : (Class x Property) < Resource

Y c : Class; p : Property; r: Resource
(¢c,p) hasValue r &
(Va : instances(c) o (a,r) € sub_val(p))

hasClass : (Class x Property) < Class

Y c1,c2 : Class; p : Property o (c1,p) hasClass co2 <
(Ya : instances(c1) ®
sub_val(p)({a} |) N instances(cz2) # @)

cardinality, maxCardinality, minCardinality :
(Class x Property) — N

V¢ : Class; p : Property; n: N e
cardinality(c,p) = n <

(Va : instances(c) o #(sub_val(p)({a} |)) =n)
maxCardinality(c,p) = n <

(Va : instances(c) o #(sub_val(p)({a} |)) < n)
minCardinality(c,p) = n <

(Va : instances(c) o #(sub_val(p)({a} |)) > n)

(Class x Property x Class) — N

Vci1,c2 : Class; p : Property; n: N e
cardinalityQ(c1,p,c2) = n <

(Ya : instances(c1) ®

#(sub_val(p)({a} |) N instances(c2)) = n)
maxCardinalityQ(c1,p,c2) = n &

(Va : instances(c1) @

#(sub_val(p)({a} |) Ninstances(cz2)) < n)
minCardinalityQ(c1,p, c2) = n <

(Ya : instances(c1) ®

#(sub_val(p)({a} |) N instances(c2)) > n)

A.4. Property elements

cardinalityQ, maxCardinalityQ, minCardinalityQ :

In this subsection, inter-property relationships, such as

subPropertyOf, and properties about properties,

as TransitiveProperty, are defined.

subPropertyOf , samePropertyAs, inverseOf :
Property < Property

¥ p1,p2 : Property ®

p1 subPropertyOf pa <
sub_val(p1) € P sub_val(p2)

p1 samePropertyAs p> <
sub_val(p1) = sub_val(p2)

p1 inverseOf p2 <
sub_val(p1) = (sub_val(p2))”~

domain, range : Property < Class

¥V p : Property; c: Class ®
p domain ¢ < dom(sub_val(p)) € P instances(c)
p range ¢ < ran(sub_val(p)) € Pinstances(c)

TransitiveProperty : P Property

Y p : Property e p € TransitiveProperty <

(Vx,y,z : Resource ®

(x,y) € sub_val(p) A (y,z) € sub_val(p) =
(x,z) € sub_val(p))

UniqueProperty : P Property

¥V p : Property ® p € UniqueProperty <

(Vx,y,z: Resource o

(x,y) € sub_val(p) N (x,z) € sub_val(p) =
y=2)

UnambigousProperty : P Property

¥V p : Property ® p € UnambigousProperty <

(Vx,y,z: Resource o

(x,2) € sub_val(p) N (y,z) € sub_val(p) =
x=y)

such

un@

COMPUTER
SOCIETY

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

	footer1:

