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Abstract. The Semantic Web vision is being realized to reach the full
potential of the Web. Semantic data modeling is the foundation of the
Semantic Web. The Web Ontology Language (OWL) and OWL Rules
Language (ORL) provides basic machinery to the semantic mark-up for
data. However, there is limited tool support for OWL and no tool sup-
port currently for ORL. In this paper, we propose to model OWL and
ORL language semantics in PVS specification language so that OWL
and ORL ontologies can be transformed and verified in the Prototype
Verification System (PVS). PVS user-defined proof strategies are also
developed to automate the proof process.
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1 Introduction

Unlike conventional web as we have now, the Semantic Web (SW) [2] is a plat-
form for inter-machine data and information exchange, filtering, integration, etc.,
across organizational boundaries without human supervision. It extends the cur-
rent web and reaches its full potential by making it truly ubiquitous and ready
for the machines. The Web Ontology Language (OWL) [7], a Recommendation
by World Wide Web Consortium (W3C), defines the basic vocabulary for de-
scribing data on the web and is a layer on which Web Services can be developed.
In a way, modeling of data using OWL is an important part of requirements
engineering for Semantic Web.

In order for intelligent software agents to automatedly process data on the
web, ontology languages such as DAML+OIL and (part of) OWL were originally
designed to be decidable [19, 22]. However, the trade-off is the limited expressive-
ness, which forbids some very desirable properties to be specified. To partially
overcome this limitation of OWL, the OWL Rules Language (ORL) [12] has
recently been proposed by Horrocks & Patel-Schneider.

Reasoning tool support for OWL is limited at the moment. Moreover, cur-
rently there is no tool support for ORL. SW reasoning tools such as FaCT [11]
and RACER [10] have been developed to be fully automated; hence they can-
not support ORL without major modification. However, as it can be foreseen

� Author for correspondence: fengyz@comp.nus.edu.sg.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 265–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



266 J.S. Dong, Y. Feng, and Y.F. Li

that ORL be integrated into the ontology languages hierarchy, the correctness
of OWL and ORL ontologies is crucial to establishing trust in Semantic Web.

SW can be regarded as an emerging area from the knowledge representation
and the web communities. The software engineering community can also play
an important role in the SW development. Software verification techniques can
be applied to check SW ontology related properties. We believe SW will be
a new research and application domain for software engineering, especially for
software verification techniques. In this paper, we propose to develop reasoning
environment in PVS for OWL and ORL.

The rest of the paper is organized as follows. We briefly introduce the Se-
mantic Web, ontology languages, tools and PVS in Section 2. In Section 3, we
present PVS semantics for OWL with ORL axioms. In Section 4, we concisely
discuss transformation from ORL to PVS. Reasoning support for OWL and ORL
using PVS theorem prover is presented through a few case studies in Section 5.
Section 6 presents related works, summarizes our contribution and discusses
possible future works.

2 Overview

2.1 Semantic Web, Languages and Tools

Semantic Web. Although the traditional World Wide Web (WWW) was origi-
nally designed for machine processing, it ends up to be consumed only by human,
i.e., web contents are only visually marked-up for humans to read. To reach the
its full potential, it is necessary to make the web a platform for intelligent soft-
ware agents to interact with each other to accomplish complex tasks without
human supervision. To achieve this goal, data on the web must be given struc-
tured and precise meaning so that software agents can process data cooperatively
and autonomously. The Semantic Web [2] was proposed by Tim Berners-Lee as
the next generation of the web and it is now a W3C activity in its second phase.

Ontology Languages. Data in SW are represented by ontologies, which define
their concepts and relationships. Ontology languages provide vocabularies for
expressing ontologies.

Built on top of XML, the Resource Description Framework (RDF) [14] is a
model of metadata defining a mechanism for describing resources without as-
sumptions about a particular application domain. RDF describes web resources
in a simple triplet format: 〈subject predicate object〉, where subject is the resource
of interest, predicate is one the properties of this resource and object states the
value of this property. RDF Schema [4] provides facilities to describe RDF data.
RDF Schema allows structured and semi-structured data to be mixed together,
which makes them hard for machines to process.

The syntactic ambiguity and relatively limited expressiveness of RDF Schema
is partially overcome by the DARPA Agent Markup Language (DAML) [19],
which is built on top of RDF Schema and based on description logics. DAML
pooled effort with the Ontology Inference Layer project [5] to produce the ontol-
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ogy language DAML+OIL. It provides a richer set of language primitives to de-
scribe classes and properties than RDF Schema and allows only structured data.

In 2004, a new ontology language based on DAML+OIL, the Web Ontology
Language (OWL) [21] became the W3C Recommendation. It consists of three sub-
languages: OWL Lite, DL & Full, with increasing expressiveness. These languages
are designed for user groups with different requirements. OWL Lite & DL are de-
cidable but Full is generally not. The undecidability of OWL Full comes from re-
laxing certain constraints from OWL DL. For example, OWL Full does not enforce
the mutual exclusiveness between classes, properties, data values and individuals.

Although the design of OWL has taken into consideration of the different
expressiveness needs of different user groups, it is still not expressive enough.
Some very desirable properties cannot be expressed even in OWL Full. An im-
portant reason for this is that although the language provides a relatively rich
set of language primitives for describing classes, it does not provide as many
primitives for describing properties. For example, it does not support property
composition. In the light of this weakness, Horrocks and Patel-Schneider [12]
proposed an extension to OWL, the OWL Rules Language (ORL), in a syntac-
tically and semantically coherent manner. ORL incorporates Horn clause rules
into OWL and makes rules part of axioms that can be used to express more
complex classes and properties.

The major extensions of ORL are the inclusion of Horn clause rules and vari-
able declarations. The rules are in the form of antecedent → consequent, where
both antecedent and consequent are conjunctions of atoms: class membership,
property membership, individual (in)equalities. Informally, a rule means that if
the antecedent holds, then the consequent must also hold. A simple example rule
shown below states that if ?b is a parent of ?a and ?c is a brother of ?b, then
?c is an uncle of ?a.

parent(?a, ?b) ∧ brother(?b, ?c) → uncle(?a, ?c)

Ontology Tools. Various ontology tools have been built to support the de-
velopment of the SW, such as ontology design, creation, management, merging,
maintenance, publishing, reasoning, etc. In the rest of this section, we will briefly
introduce a few reasoning tools.

FaCT (Fast Classification of Terminologies) [11] is a description logics clas-
sifier developed at University of Manchester. FaCT supports automated concept-
level reasoning (concept subsumption and satisfiability testing), but not instance-
level reasoning. Currently FaCT supports DAML+OIL and OWL.

RACER (Renamed ABox and Concept Expression Reasoner) [10] is a rea-
soner for the description logic ALCQHIR+(D)− [9]. It has a much richer set
of functionalities compared to that of FaCT, including ontology creation, query,
retrieval and evaluation, knowledge base conversion to DAML+OIL/OWL, etc.

2.2 PVS

The Prototype Verification System (PVS) is an integrated environment for the
development of formal specifications written in the PVS specification language
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[17]. It supports a wide range of activities in specification development: creation,
documentation, type-checking, theorem-proving, etc. The distinguishing feature
of PVS is its synergistic integration of an very expressive specification language
and powerful theorem-proving capabilities.

PVS provides an expressive specification language that augments classical
higher-order logic with a sophisticated type system with predicate subtypes and
dependent types, and with parameterized theories and a mechanism for defining
abstract data types such as lists and trees.

PVS specifications are organized into theories, which define data types, ax-
ioms, theorems and conjectures that can be reused by other theories.

PVS has a powerful interactive theorem prover/proof checker [16]. The ba-
sic deductive steps in PVS are large compared with many other systems: there
are atomic commands for induction, quantifier reasoning, automatic condition
rewriting, simplification, etc. User-defined proof strategies can be used to en-
hance the automation in the proof checker.

The proof goal in PVS is represented as a sequent which consists of a list
of formulas called antecedents and a list of formulas called consequents. The
interpretation of a sequent is that the conjunction of the antecedents implies
the disjunction of the consequents. Either or both of the antecedents and conse-
quents may be empty. An empty antecedent is equivalent to true, and an empty
consequent is equivalent to false, so if both are empty the sequent is false. Every
proof in PVS starts with a single consequent. It can be seen that the structure
of sequents in PVS very much resembles that of the rules in ORL except that
in ORL the conjunction of antecedents implies the conjunction of consequents.
But as pointed out in [12] that an ORL rule of multiple consequents can be
easily transformed into multiple rules each with a single consequent. Therefore
we believe PVS is a natural reasoner for ORL.

3 PVS Semantics for OWL and ORL

In order to use PVS to verify and reason ontologies with ORL axioms, it is
necessary to define the PVS semantics for OWL & ORL. This semantic model
forms the reasoning environment for verification using PVS theorem prover. In
this section, we present a PVS specification for a subset of OWL Full language
primitives and the newly proposed ORL. The complete model can be found
online1.

3.1 PVS Semantics for OWL Constructs

Basic Concepts

Everything in Semantic Web is a Resource. So we model it by defining a non-
empty type in PVS.

RESOURCE: TYPE+

1 http://www-appn.comp.nus.edu.sg/~rpfm/ORL2PVS
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In OWL Full the universe of individuals consists of all resources. Thus we
define Individual to be a type equivalent to Resource.

INDIVIDUAL: TYPE+ = RESOURCE

Each class in OWL is a resource, which has a number of individuals associated
with it: the instances of this class. So we model Class as a subtype of Resource
and define a function instances that maps a class to a set of individuals.

CLASS: TYPE+ FROM RESOURCE
instances: [CLASS -> set[INDIVIDUAL]]

A property relates resources to resources. So we model Property as a predicate
over a tuple of two resources.

PROPERTY: TYPE = pred[[RESOURCE,RESOURCE]]

Class Relationships

The property subClassOf is defined as a boolean function from two classes. For
a class c1 to be the sub-class of class c2, the instances of c1 must be a subset
of the instances of c2.

subClassOf?(c1,c2:CLASS): bool =
(

subset?(instances(c1),instances(c2))
)

Other class relationship properties such as disjointWith and equivalentClass
are similarly defined.

Class and Property

The property allValuesFrom attempts to establish a maximal set of individuals
as a class. It defines a class c1 of all individuals i1 for which it holds that if the
pair (i1,i2) is in the property p implies that i2 is an instance of class c2. So
we model it as a function from a property p and a class c2 to a class c1 and
specify its meaning as an axiom as follows.

allValuesFrom: [PROPERTY, CLASS -> CLASS]
allValuesFrom_ax: AXIOM FORALL (c1,c2:CLASS),(p:PROPERTY):

(allValuesFrom(p,c2) = c1 IMPLIES FORALL (i1:INDIVIDUAL):
member(i1,instances(c1)) IFF FORALL (i2:INDIVIDUAL):

(p(i1,i2) IMPLIES member(i2,instances(c2)))))

Property Relationships

The property subPropertyOf states that a property p1 is a sub-property of pro-
perty p2 if and only if all pairs (i1, i2) in p1 are also in p2. Therefore it is
modeled as a boolean function of two properties.

subPropertyOf?(p1,p2:PROPERTY): bool =
(

FORALL (i1,i2:INDIVIDUAL): (p1(i1,i2) IMPLIES p2(i1,i2))
)
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3.2 ORL Extension

In ORL [12], a rule consists of an antecedent and a consequent, each of which
consists of a (possibly empty) set of atoms. Atoms can be of the form C (x ),
P(x , y), sameAs(x , y) or differentFrom(x , y), where C is an OWL class descrip-
tion, P is an OWL property, and x , y are either variables, OWL individuals
or OWL data values. Informally, an atom C (x ) holds if x is an instance of the
class description C , an atom P(x , y) holds if x is related to y by property P ,
an atom sameAs(x , y) holds if x is interpreted as the same object as y , and an
atom differentFrom(x , y) holds if x and y are interpreted as different objects. A
rule may be read as meaning that if the antecedent holds (is ”true”), then the
consequent must also hold.

An ORL rule will be modeled as a PVS rewrite rule, e.g., a universally quan-
tified predicate of the form

a1 ∧ a2 ∧ ... ∧ am ⇒ c1 ∧ c2 ∧ ... ∧ cn

where ai and cj are one of the four forms of atoms.

3.3 Proof Support for PVS

To make the proving process of PVS more automated, a set of rewrite rules and
theorems is also defined. They aim to hide certain amount of underlying model
from the verification and reasoning and to achieve abstraction and automation.
Usually these rules relate several classes & properties by defining the effect of
using them in a particular way. One simple example is the subClassOf_transitive

theorem. It states that if a class c1 is a sub-class of a class c2 and c2 is a sub-class
of a class c3, then c1 is a sub-class of c3.

subClassOf_transitive: THEOREM FORALL (c1,c2,c3:CLASS):
subClassOf?(c1,c2) AND subClassOf?(c2,c3) IMPLIES

subClassOf?(c1,c3)

The following theorem, member subClassOf states that an instance of a par-
ticular class is also an instance of all the super classes of this class.

member_subClassOf: THEOREM
FORALL (i:INDIVIDUAL),(c1,c2:CLASS):

member(i, instances(c1)) AND subClassOf?(c1,c2)
IMPLIES member(i, instances(c2))

4 Transforming ORL to PVS

As ORL is an extension to OWL with the inclusion of rules, we perform the
transformation in two steps. We transform OWL constructs into PVS specifica-
tions first, followed by the transformation of ORL rules.

We have developed a tool in Java to automatically transform OWL ontologies
into PVS specifications. For example, the following ontology fragment defines a
class Person and specifies some of its properties. The transformed PVS fragment
is shown at the right.
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<owl:Class rdf:ID="Person">
<rdfs:subClassOf rdf:resource="#Animal"/>
<rdfs:subClassOf><owl:Restriction>

<owl:onProperty
rdf:resource="#hasParent"/>

<owl:allValuesFrom
rdf:resource="#Person"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction owl :cardinality="1">
<owl:onProperty

rdf:resource="#hasFather"/>
</owl:Restriction></rdfs:subClassOf>

<owl:unionOf rdf:parseType="Collection">
<owl:Class prefab="#Man"/>
<owl:Class prefab="#Woman"/>

</owl:unionOf></owl:Class>

Person: CLASS
Person_union_ax:

AXIOM Person=unionOf((:Man,Woman:))
Person_subClassOf_ax_1:

AXIOM subClassOf?(Person,Animal)
Person_subClassOf_ax_2: AXIOM subClassOf?

(Person,allValuesFrom(hasParent,Person))
Person_subClassOf_ax_3: AXIOM subClassOf?

(Person,cardinality(hasFather,1))

In order to facilitate reasoning about numbers, data type properties are trans-
formed into predicates and functional data type properties are transformed into
functions. The advantage of doing this will become clearer when we discuss rea-
soning in Section 5. For example, transformation of the datatype property age
is given below the OWL fragment:

<owl:DatatypeProperty rdf:ID="age">
<rdf:type rdf:resource="http://www.w3.org/

2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="http://www.w3.org/

2000/10/XMLSchema#nonNegativeInteger"/>
</owl:DatatypeProperty>

age: [INDIVIDUAL -> Nat]

The tool we developed is also capable of transforming instance ontologies into
PVS specifications. For example, the following shows an OWL instance ontology
fragment and the corresponding PVS specification.

<Description rdf:ID="Ian">
<rdf:type>

<owl:Class rdf:ID="Person"/>
</rdf:type>
<shoe size>14</shoe size>
<age>37</age>

</Description>

Ian: INDIVIDUAL
Ian_Person_ax:

AXIOM member(Ian,instanceOf(Person))
Ian_shoesize_14_ax: AXIOM shoe_size(Ian)=14
Ian_age_37_ax: AXIOM age(Ian)=37

Transformation of ORL rules is straightforward. Each rule is transformed
into an axiom, which is a universally quantified Horn clause with each of the
atoms transformed into a predicate. For example,

<owlr:Rule rdf:ID="Rule1">
<owlr:antecedent>

<owlr:individualPropertyAtom polypro="hasParent">
<owlr:Variable tournament="x1" />
<owlr:Variable tournament="x2" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom polypro="hasBrother">

<owlr:Variable tournament="x2" />
<owlr:Variable tournament="x3" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>
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<owlr:individualPropertyAtom polypro="hasUncle">
<owlr:Variable tournament="x1" />
<owlr:Variable tournament="x3" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

is transformed into

Rule1_ax: AXIOM FORALL (x1,x2,x3: RESOURCE)
hasParent(x1,x2) AND hasBrother(x2,x3)

IMPLIES hasUncle(x1,x3)

5 Ontology Reasoning Using PVS

In this section, we demonstrate how PVS can be used to check ontology-related
properties and to reason beyond the modeling power of OWL & ORL. It is
presented in two parts. Firstly, standard SW reasoning are performed. In the
second part, we show how PVS can reason ORL and more complex properties
that even ORL cannot express.

5.1 Standard SW Reasoning

Standard SW reasoning includes three categories, namely inconsistency checking,
subsumption reasoning and instantiation reasoning. The following subsections
illustrate each category with an example.

Inconsistency Checking. Ensuring the consistency of ontologies is an impor-
tant task in various stages of ontology development, as inconsistent ontologies
may lead agents to reason erroneously and make wrong conclusions.

To be precise, knowledge base consistency amounts to verifying whether every
concept in the knowledge base admits at least one individual [15].

The following is an example of inconsistency checking in the animal ontol-
ogy. After transforming the ontology into a PVS specification, we identified the
following closely related classes, properties and their axioms.

Animal,Vegetarian,Cow,MadCow,Food,Meat,Vegetable:CLASS
eats:O_PROPERTY
Vegetarian_subClassOf_ax_1: AXIOM subClassOf?(Vegetarian,Animal)
Vegetarian_allValuesFrom_ax_1: AXIOM Vegetarian=allValuesFrom(eats,Vegetable)
Cow_subClassOf_ax_1: AXIOM subClassOf?(Cow,Vegetarian)
MadCow_subClassOf_ax_1: AXIOM subClassOf?(MadCow,Cow)
MadCow_subClassOf_ax_2: AXIOM subClassOf?(MadCow,someValuesFrom(eats,Meat))
Meat_subClassOf_ax_1: AXIOM subClassOf?(Meat,Food)
Vegetable_subClassOf_ax_1: AXIOM subClassOf?(Vegetable,Food)
Vegetable_disjointWith_ax_1: AXIOM disjointWith?(Vegetable,Meat)

We suspect that there is an inconsistency in the class of MadCow . To prove
that, we assert the following theorem, which means that the class of MadCow
does not admit any individual.

MadCow_inconsistent: THEOREM
(EXISTS (i:INDIVIDUAL):member(i, instances(MadCow))) IMPLIES FALSE
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After applying (lemma) to supply PVS with known facts (axioms), applying
(skolem!) to remove quantifiers and instructing PVS to understand the subclass
relationship between MadCow and Vegetarian, we need to prove
member(i!1,instances(Vegetarian)), that i !1 is a member of Vegetarian, which
can be proved by the theorem member subClassOf introduced in Section 3.3.

By expanding the definition of Vegetarian and exploiting the fact that
MadCow is a subclass of an anonymous class that eats Meat , we can finish
up the proof using a (grind), which is a catch-all strategy that is frequently
used to automatically complete a proof branch or to apply all the obvious sim-
plifications.

Subsumption Reasoning. The task of subsumption reasoning is to infer that
an OWL class is a sub-class of another. This could be accomplished in PVS fairly
automatically. One of the simplest ways is by using the fact that subClassOf? is
a transitive property, which can be easily proved by PVS.

There are other ways of proving subsumption relationships. One of them is
by inter-class relationships such as intersectionOf and UnionOf. For example, we
have the following transformed ontology fragment and we want to prove that the
class TallMan is a subclass of Person using theorem TallMan subClassOf Person
defined on the right:

TallMan_intersection_ax: AXIOM
TallMan=intersectionOf((:TallThing,Man:))

Person_union_ax: AXIOM
Person=unionOf((:Man,Woman:))

TallMan_subClassOf_Person: THEOREM
subClassOf?(TallMan,Person)

The main steps of this proof are to prove separately subClassOf?(TallMan,Man)

and subClassOf?(Man,Person). Then the simple subsumption reasoning can finish
proving the theorem. The above two goals can be proved by the application of
two user defined theorems relating intersectionOf and unionOf to subClassOf ,
respectively.

Instantiation Reasoning. Instantiation reasoning asserts that one resource
is or is not an instance of a class. Some SW reasoning tools such as FaCT
are designed to only support concept-level reasoning. Hence reasoning at the
instance-level cannot be performed by these tools. We demonstrate through an
example that PVS supports instance-level reasoning.

In the example ontology, we defined an individual called Santa, who can move
by both walking and flying, by the following axioms.

Santa_moves_walk_ax: AXIOM moves(Santa,walk)
Santa_moves_fly_ax: AXIOM moves(Santa,fly)

We want to prove that Santa is not an instance of the class Person. By
stating the facts that all instances of the Person class can move only by walk,
that the individual Santa can fly, and that walk and fly are disjoint, we can
finish the proof with a (grind) command.
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Table 1. The Model of Scheduling Tasks

:Agent a owl:Class. :a1 a Agent. :tp1 a TimePoint;
:Task a owl:Class. :a2 a Agent. :precedes :tp2.
:TimePoint a owl:Class. :t1 a Task; :tp2 a TimePoint;
:Data a owl:Class. :starts :tp1; :precedes :tp3.
:relatesTo a owl:TransitiveProperty; :ends :tp3; :tp3 a TimePoint;

rdfs:domain Task; :assignedTo :a1. :precedes :tp4.
rdfs:range Task; :t2 a Task; :tp4 a TimePoint;

:assignedTo a owl:ObjectProperty; :starts :tp2; :precedes :tp5.
rdfs:domain Task; :ends :tp4; :tp5 a TimePoint.
rdfs:range Agent. :uses :d2; :d1 a Data.

:starts a owl:ObjectProperty; :assignedTo :a2. :d2 a Data.
rdfs:domain Task; :t3 a Task;
rdfs:range TimePoint. :starts :tp4;

:ends a owl:ObjectProperty; :ends :tp5;
rdfs:domain Task; :relatesTo :t1;
rdfs:range TimePoint. :uses :d1;

:precedes a owl:TransitiveProperty; :assignedTo :a2.
rdfs:domain TimePoint;
rdfs:range TimePoint.

:overlaps a owl:ObjectProperty;
rdfs:domain Task;
rdfs:range Task.

:uses a owl:ObjectProperty;
rdfs:domain Task;
rdfs:range Data.

5.2 Checking ORL and Beyond

The above examples demonstrate PVS’s power of performing consistency, sub-
sumption and instantiation reasoning about OWL ontologies with certain degree
of automation. Now we shall illustrate that PVS can reason about ORL and more
complex properties that even ORL cannot capture.

ORL Reasoning. As stated earlier, one important reason of OWL expressive
limitation is that while the language contains a rich set of class constructors, very
little can be said about properties. Even simple composition of two properties
is impossible to represent. It is for this reason that ORL is proposed. Here we
demonstrate how PVS can act as a reasoner to support ORL.

We illustrate our idea with an example ontology about scheduling agents
for different tasks, which is represented in n3 [3] syntax below in Table 1. The
main reasoning task is, given a schedule and a set of constraints, to determine
whether the schedule violates the constraints. Informally, there is a set of tasks
and a set of agents. Any task can be assigned to any agent. There is also a set of
discrete time points and a set of data. A time point may precede another. Each
task starts and ends at a particular time point and may possibly use a piece of
data. A task could relate to another task. Some tasks may overlap with some
other task(s).

Four rules capture the requirements of the system. The first one states that
an agent cannot be assigned to two overlapping tasks. The transformed PVS
theorem is given on the right.
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Task(t1) ∧ Task(t2) ∧
Agent(a1) ∧ Agent(a2) ∧
assignedTo(t1, a1) ∧ assignedTo(t2, a2)

∧ overlaps(t1, t2) →
differentFrom(a1, a2)

rule_1: AXIOM FORALL(t1,t2,a1,a2 : RESOURCE):
member(t1,instances(Task)) AND
member(t2,instances(Task)) AND
member(a1,instances(Agent)) AND
member(a2,instances(Agent)) AND
assignedTo(t1,a1) AND assignedTo(t2,a2)
AND overlaps(t1,t2)

IMPLIES
differentFrom?(a1,a2)

Since ORL rules transformation to PVS is straightforward, as we previously
mentioned in Section 4, we will omit the PVS version of the following rules.

The second rule requires that related tasks must be assigned to the same
agent.

Task(t1) ∧ Task(t2) ∧ Agent(a1) ∧ Agent(a2) ∧
assignedTo(t1, a1) ∧ assignedTo(t2, a2) ∧ relatesTo(t1, t2) →
sameAs?(a1, a2)

The third rule requires that any two overlapping tasks cannot use the same
piece of data.

Task(t1) ∧ Task(t2) ∧ Data(d1) ∧ Data(d2) ∧
uses(t1, d1) ∧ uses(t2, d2) ∧ overlaps(t1, t2) →
differentFrom?(d1, d2)

The last rule defines when two tasks are overlapping - when one task that
starts earlier ends after the other task starts.

Task(t1) ∧ Task(t2) ∧
TimePoint(tp1) ∧ TimePoint(tp2) ∧ TimePoint(tp3) ∧ TimePoint(tp4) ∧
starts(t1, tp1) ∧ ends(t1, tp2) ∧ starts(t2, tp3) ∧ ends(t2, tp4) ∧
precedes(tp1, tp3) ∧ precedes(tp3, tp2) →
overlaps(t1, t2)

To prove that the schedule violates some of the constraints, we simply prove
the following PVS theorem: violateConstraint: theorem FALSE.

A proof strategy is intended to capture patterns of inference steps. A defined
proof rule is a strategy that is applied in a single atomic step so that only the
final effect of the strategy is visible and the intermediate steps are hidden from
the user. We define a number of proof strategies, such as (installTimePoint),
(installData), (installAgent), etc., each of which introduces all the axioms one
by one of a particular class. The following strategy introduces to PVS all facts
related to all the time points.

(defstep installTimePoint ()
(then

(lemma "tp1_instanceOf_ax")
(lemma "tp1_precedes_ax")
(lemma "tp2_instanceOf_ax")
(lemma "tp2_precedes_ax")
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(lemma "tp3_instanceOf_ax")
(lemma "tp3_precedes_ax")
(lemma "tp4_instanceOf_ax")
(lemma "tp4_precedes_ax")
(lemma "tp5_instanceOf_ax")

)
"Installing all axioms of TimePoint"
"Installing all axioms of TimePoint"

)

Then we also define a strategy which finds and installs the transitive closure
of the property precedes, i.e., the relative temporal order of all pairs of time
points, as follows. This is needed for determining instances of the overlaps
property later.

(defstep installAllPrecedes ()
(then

(lemma "precedes_transitive_ax")
(rewrite "transitiveProperty?")
(try (forward-chain -1) (installAllPrecedes) (delete -1))

)
"Finding and installing all precedes property instances"
"Finding and installing all precedes property instances"

)

Basically this strategy repeatedly forward-chains the precedes_transitive_ax

axiom until there is no more effect. Similarly, we find all instances of the property
relatesTo by using the strategy installAllRelatesTo (not shown here).

Now we apply the rules. First, we apply the fourth rule to discover all in-
stances of the property overlaps by using the strategy installAllOverlaps

below.
(defstep installAllOverlaps ()

(then
(lemma "rule_4")
(try (forward-chain -1) (installAllOverlaps) (delete -1))

)
"Finding and installing all overlaps property instances"
"Finding and installing all overlaps property instances"

)

Then we can apply the other three rules one by one by using strategies
similarly.

We apply the (grind) command, which proves the theorem. It means that
the schedule cannot satisfy the conjunction of all constraints. A closer look at
the ontology discovers that tasks t1 and t2 are related and yet overlapping. This
reasoning technique becomes more important when the ontology contains more
classes and more complicated properties.

Reasoning Beyond ORL. One example that OWL & ORL cannot deal with
is the concrete domains: it can only make assertions about linear (in)equalities
of cardinalities of property instances over integer. PVS, on the other hand, can
perform basic arithmetic operations and comparisons, which we believe could
improve the proof power beyond SW.

We illustrate the idea with the same schedule example. In the previous sec-
tion, we model time as discrete time points and their temporal relationship as
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an abstract precedes property. Now we can use the natural number domain to
model time. Correspondingly, the starts and ends properties would have to be
refined into functions from Task to natural number. Then the overlaps property
could be refined as follows.

overlaps_ax: theorem
FORALL (t1,t2:INDIVIDUAL):

member(t1,instances(Task)) AND
member(t2,instances(Task)) AND
starts(t1) < starts(t2) AND starts(t2) < ends(t1)

IMPLIES
overlaps(t1,t2)

The above is just a simple example property that ORL cannot specify. If
more constraints are to be put into the ontology, such as deadline for the whole
schedule (which requires addition over numbers) or axioms other than C (x ),
P(x , y), sameAs(x , y) and differentFrom(x , y) are to be put into rules, more
interesting properties would arise, which are also inexpressible in ORL.

6 Conclusion

Ensuring the correctness of shared ontologies is an important task in ontology
development as inconsistent ontologies may lead agents to draw erroneous con-
clusions. In our previous works [8, 20], we have attempted to use a combination
of SW and formal methods tools to reason about DAML+OIL/RDF ontolo-
gies. We used Alloy Analyzer (AA) [13], Z/EVES [18], RACER and OilEd [1] in
combination to check for properties of interest. Some properties are beyond the
modeling power of DAML+OIL. In this approach, the various tools were used
in a complementary way such that a balance of automation and expressiveness
is achieved. Moreover, the source of ontological errors can be traced in AA.

There are a few drawbacks to this approach. Firstly, AA does not scale up
very well and secondly, Z/EVES works interactively, as PVS theorem prover
does.

One part of the future works is to enhance the proof support for OWL and
ORL. The PVS reasoner will be more effective if the semantics include not
only essential functions but also sufficient supporting lemmas and theorems that
makes proof of trivial goals more automated.

PVS is a generic theorem prover. As a result, it lacks complete automation.
Hence, another part of the future works is to reduce user interactions as much
as possible so that the reasoning procedure can be more efficient. This can be
achieved by developing more advanced proof strategies.

Model-checking capabilities used for automatically verifying temporal prop-
erties of finite-state systems have recently been integrated into PVS. Hence PVS
could be used to model and reason behaviors of SW services such as DAML-S [6].

In conclusion, we presented the PVS semantics for the Semantic Web ontology
language OWL and its proposed extension ORL, the transformation process from
OWL ontologies to PVS specifications, and our approach of using PVS theorem
prover to reason ontology-related properties, sometimes beyond the modeling
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capabilities of ORL. Some of the advanced features such as proof strategy are
incorporated in our approach.

ORL is a newly proposed ontology language. To our knowledge, so far there
is no existing reasoning system that can support ORL prior to this work. The
high expressiveness of PVS language, its highly tunable proof strategies and
similarity between PVS sequents and ORL rules make PVS a natural reasoner
for ORL.
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