
32 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/04/$20.00 © 2004 IEEE

U B I Q U I T O U S S Y S T E M S O F T W A R E

Semantic Space:
An Infrastructure for
Smart Spaces

C
urrent pervasive computing research
tries to merge the material and digi-
tal worlds by incorporating physical
and computing entities into smart
spaces. Homes, workplaces, class-

rooms, vehicles, and other spaces use embedded
sensors, augmented appliances, stationary com-
puters, and mobile handheld devices to gather

information about users’ loca-
tions, companions, and other
aspects of their activities. Appli-
cations in such environments
must be context aware so that
they can adapt to rapidly chang-
ing conditions as users move
about in their environments.1,2

The dynamic nature of smart
spaces poses several challenges
in developing context-aware

applications. For example:

Rachel wishes to contact her friend Joey, so
she instructs her mobile phone to arrange a
call. Upon request, Joey’s mobile phone checks
the calendar and realizes he’s currently attend-
ing a seminar. The phone determines on his
behalf that he shouldn’t be interrupted and
schedules a call back when the seminar ends.
Soon after the seminar, Professor Geller asks
Joey to have a discussion in his office. Before
the phone reminds Joey of the missed call as
scheduled earlier, it wants to know whether
his current situation is suitable for receiving
the call. Based on contextual information
(Where are you? Who are you with? What is
the noise level? Is the door open or closed?)
gathered in the smart space, the phone infers

that Joey is in a conversation with his supervi-
sor and decides to postpone the call until he’s
available. A few minutes later, when the con-
versation ends and Joey leaves the office, the
phone finally reminds him of the missed call.

Building smart spaces relies on many different
technologies, some of which we discuss in the
“Related Work” sidebar. We focus here on three
key issues:

• Explicit representation. Raw context data ob-
tained from various sources comes in hetero-
geneous formats, and applications without
prior knowledge of the context representation
can’t use the data. So, an interoperable smart
space requires a way to explicitly represent con-
text meanings (or semantics) so that indepen-
dently developed applications can easily under-
stand them.

• Context querying. A smart space maintains
many contexts, and applications might need to
selectively access a subset of them. The smart
space should be able to answer expressive con-
text queries—for example, who is in the room
with Joey? When will the seminar he is attend-
ing or presenting end?

• Context reasoning. Higher-level contexts
(What is the user doing? What is the activity in
the room?) augment context-aware applica-
tions by providing summary descriptions about
a user’s state and surroundings. Although sen-
sors can’t recognize such contexts, they pro-
vide information that lets applications infer
basic contextual information.

Semantic Space is a pervasive computing infrastructure that exploits
Semantic Web technologies to support explicit representation, expressive
querying, and flexible reasoning of contexts in smart spaces.

Xiaohang Wang, Jin Song Dong,
ChungYau Chin, and Sanka
Ravipriya Hettiarachchi
National University of Singapore

Daqing Zhang
Institute for Infocomm Research,
Singapore

To address these issues, we developed
a context infrastructure called Semantic
Space. We were inspired by the Seman-
tic Web, which helps computers and peo-
ple work better together by giving con-
tent well-defined meanings.3 Using
standards to represent machine-inter-

pretable information (including RDF
(resource description framework)4 and
OWL (Web Ontology Language)5), the
Semantic Web offers a united approach
to knowledge management and infor-
mation processing. We explored OWL,
RDF and their supporting tools by build-

ing a pervasive computing infrastructure
with an ontology-based context model
and a context infrastructure.

The context model
Context presentation is an important

part of pervasive computing environ-

JULY–SEPTEMBER 2004 PERVASIVEcomputing 33

M any context-aware computing projects in the past decade

have studied feature-oriented approaches to context-aware

systems. AT&T Laboratories at Cambridge built a dense network of

location sensors to maintain a location model shared between users

and computing entities.1 Microsoft’s EasyLiving focuses on a smart

space that is aware of users’ presence and adjusts environment set-

tings to suit their needs.2 Hewlett Packard’s CoolTown provides

physical entities (people, places, and things) with “Web presence”

and lets users navigate from the physical world to the Web by pick-

ing up links to Web resources using various sensing technologies.3

Other relevant projects include Stanford University’s iRoom,4 the

Massachusetts Institute of Technology’s Oxygen,5 and Carnegie

Mellon University’s Aura,6 to name a few. These projects have

greatly contributed to smart space research by exploiting different

pervasive computing features.

A few projects specifically address the scalability and flexibility

of context-aware applications by providing generic architectural

supports. The seminal work of Context Toolkit7 provides an object-

oriented architecture for rapid prototyping of context-aware appli-

cations. Context Toolkit gives developers a set of programming

abstractions that separate context acquisition from actual context

usage and reuse sensing and processing functionality. Jason Hong

and his colleagues8 proposed an open-infrastructure approach

that encapsulates underlying technologies into well-established

services that can be used as a foundation for building applications.

The European Smart-Its project proposed a generic layered archi-

tecture for sensor-based context computation, providing a pro-

gramming abstraction that separates layers for raw sensor data,

features extracted from sensors (cues), and abstract contexts

derived from cues.9,10

Our work resembles these projects in providing a reusable archi-

tecture to ease application development. However, previous work

doesn’t provide adequate support for organizing contexts in a for-

mal structured format. An independently developed application

can’t easily interpret contexts that have no explicitly represented

structure. Moreover, previous work provides no generic mechanism

for context querying and reasoning. Some models use only simple

matching mechanisms to support selective context access, and

developers must often perform low-level programming to develop

components that derive higher-level contexts.

Our work differs from and perhaps outperforms previous work

in several respects. Using the Semantic Web standards RDF and

OWL to define context ontologies provides a foundation for build-

ing interoperable smart spaces where computing entities can eas-

ily exchange and interpret contexts based on explicit context rep-

resentations. Using the Semantic Web technologies for knowledge

base, query, and inference, we developed the context infrastruc-

ture with a generic mechanism for querying contexts using a

declarative language and inferring higher-level contexts based on

rules. This facilitates developers’ work because they can realize

expressive context querying and flexible context reasoning with-

out programming.

REFERENCES

1. A. Harter et al., “The Anatomy of a Context-Aware Application,” Proc.
5th Ann. ACM/IEEE Int’l Conf. Mobile Computing and Networking (Mobi-
Com 99), ACM Press, 1999, pp. 59–68.

2. B. Brumitt et al., “EasyLiving: Technologies for Intelligent Environments,”
Proc. 2nd Int’l Symp. Handheld and Ubiquitous Computing (HUC 2000),
LNCS 1927, Springer-Verlag, 2000, pp. 12–29.

3. T. Kindberg et al., “People, Places, Things: Web Presence for the Real
World,” Proc. 3rd IEEE Workshop Mobile Computing Systems and Applica-
tions (WMCSA 2000), IEEE CS Press, 2000, p. 19.

4. B. Johanson, A. Fox, and T. Winograd, “The Interactive Workspaces Pro-
ject: Experience with Ubiquitous Computing Rooms,” IEEE Pervasive
Computing, vol. 1, no. 2, 2002, pp. 67–74.

5. M. Dertouzos, “The Future of Computing,” Scientific Am., Aug. 1999.

6. D. Garlan et al., “Project Aura: Towards Distraction-Free Pervasive Com-
puting,” IEEE Pervasive Computing, vol. 1, no. 2, 2002, pp. 22–31.

7. A.K. Dey, Providing Architectural Support for Building Context-Aware Appli-
cations, doctoral dissertation, Georgia Inst. Technology, 2000.

8. J.I. Hong and J.A. Landay, “An Infrastructure Approach to Context-
Aware Computing,” Human-Computer Interaction, vol. 16, nos. 2–4,
2001, p. 97.

9. H. Gellersen et al., “Multi-Sensor Context-Awareness in Mobile Devices
and Smart Artifacts,” Mobile Networks and Applications (MONET), vol. 7,
no.5, 2002, pp. 341–351.

10. H. Gellersen et al., “Physical Prototyping with Smart-Its,” IEEE Pervasive
Computing, vol. 3, no. 3, 2004, pp. 74–82.

Related Work

ments. Because context-aware applica-
tions must adapt to changing situations,
they need a detailed model of users’
activities and surroundings that lets
them share users’ perceptions of the real
world.6

An ontology approach to context
modeling

Within the domain of knowledge rep-
resentation, the term ontology refers to
the formal, explicit description of con-
cepts, which are often conceived as a set
of entities, relations, instances, functions,
and axioms.7 Among Semantic Web stan-
dards, OWL defines and instantiates Web
information ontologies that let Web
agents exchange and interpret informa-
tion based on a common vocabulary.
Using ontologies to model contexts in
pervasive computing environments offers
several advantages:

• By allowing pervasive computing enti-
ties to share a common understanding
of context structure, OWL ontologies
enable applications to interpret con-
texts based on their semantics.

• Ontologies’ hierarchical structure lets
developers reuse domain ontologies

(for example, of people, devices, and
activities) in describing contexts and
build a practical context model with-
out starting from scratch.

• Because contexts described in ontolo-
gies have explicit semantic represen-
tations, Semantic Web tools such as
federated query, reasoning, and knowl-
edge bases can support context inter-
pretation. Incorporating these tools
into smart spaces facilitates context
management and interpretation.

Designing the context model
Smart spaces cover a range of envi-

ronment types such as homes, offices,
workplaces, classrooms, and vehicles.
Rather than try to completely model all
contexts in different kinds of smart
spaces, we define an upper-level context
ontology (ULCO) to provide a set of
basic concepts common across different
environments.8 Among various contexts,
we identify three classes of real-world
objects (user, location, and computing
entity) and one class of conceptual
objects (activity) that characterize smart
spaces. Linked together, these objects
form the skeleton of a contextual envi-
ronment. They also provide primary

indices into other associated contexts.
For example, given a location, we can
acquire related contexts such as noise,
weather, and the number of people inside
if we model these objects as top-level
classes in ULCO.

Knowledge reuse is one important
advantage of ontologies.9 We integrated
consensus domain ontologies such as
friend-of-a-friend (FOAF, http://xmlns.
com/foaf/0.1), RCAL Calendar (www.
daml.ri.cmu.edu/Cal), and FIPA Device
Ontology (www.fipa.org/specs/fipa00091/
XC00091D.html) into ULCO to model
user, activity, and device contexts, respec-
tively. These well-defined ontologies pro-
vide generic vocabularies that suit con-
text ontologies’ requirements—we need
only add additional properties useful to
smart spaces. For example, FOAF defines
simple relationships between people
(that is, friendOf), but we extend it to sup-
port richer properties such as supervisorOf,
studentOf, and colleagueOf.

To let developers customize the con-
text model for a particular smart space,
we designed it to complement the classes
defined in ULCO. A new application
that needs additional classes can obtain
them by inheritance from the ULCO
classes, forming an extended context
ontology, as Figure 1 shows. This lets
developers easily build detailed context
models for new smart spaces. Moreover,
by providing shared terms and defini-
tions, an ULCO supports better inter-
operability between extended context
ontologies.

Marking up real-world contexts
Our model represents contexts as on-

tology instances and associated proper-
ties (context markups) that applications
can easily interpret. Real-world contexts
often originate from diverse sources,
leading to dissimilar approaches to gen-
erating context markups. For example,
in the smart phone scenario, some con-
texts (such as a person’s name, relation-

34 PERVASIVEcomputing www.computer.org/pervasive

U B I Q U I T O U S S Y S T E M S O F T W A R E

Figure 1. An upper-level context ontology
and extended context ontologies.Context EntityC

ActivityC

ComputingEntityC

LocationC

UserC

BuildingC

PassagewayC

RoomC

C City

DistrictC

RegionC

 . . .C

 . . .C

AdHocActivityC

ScheduledActivityC

AgentC

ApplicationC

DeviceC

NetworkC

IndoorLocationC

OutdoorLocationC

 . . .C

RoomC

Room_HomeC

BathRoomC

Bedroom

MasterBedroom

C

DiningRoomC

KitchenC

LivingRoomC

ReadingRoomC

StoreRoomC

C

GuestBedroomC

ChildrenBedroomC

RoomC

Room_OfficeC

LabRoomC

MeetingRoomC

OfficeRoomC

PantryC

PrintingRoomC

WashRoom

. . .

. . .

C

LoungeC

AdHocActivityC

AdHocDiscussionC

 . . .C
TakingPhoneC

ScheduledActivityC

InterviewC

SeminarC

WeeklyDiscussionC

 . . .C

12R Workplace

12R Smart Home Prototype

Extended context ontologiesUpper-level context ontology

ships, and scheduled seminar time) have
relatively slow change rates, and users
often supply the information. Users also
usually generate markups of these con-
texts. Our JavaScript application lets
users create online profiles based on the
ontology class User. The following exam-
ple shows the context markup that
describes RossGeller. (Throughout the arti-
cle, we assume www.i2r.a-star.edu.sg/SemanticSpace#
as the default base namespace.)

<User rdf:about=”RossGeller”>
<name>Ross Geller</name>
<mbox>ross@i2r.a-star.edu.sg</mbox>
<homepage rdf:resource=”www.i2r.

a-star.edu.sg/~ross”/>
<office rdf:resource=”#Room209”/>
<officePhone>1234</officePhone>
<mobilePhone>6789</mobilePhone>
<supervisorOfrdf:resource=

”#JoeyTribbiani”/>
<! —More properties not shown in this

example—>
</User>

Hardware and software sources usu-
ally provide other contexts such as loca-
tion, current time, noise level, or door
status. Automated programs must mark
up these contexts because they change
frequently. Consider the RFID (radio fre-
quency identification) indoor location
system that tracks users’ location by
detecting the presence of body-worn
tags. When Ross Geller enters Room
209, the RFID sensor detects his pres-
ence and composes the following con-
text markup:

<User rdf:about=”#RossGeller”> <locatedIn
rdf:about=”#Room209”/> </User>

Each OWL instance has a unique URI,
and context markups can link to external
definitions through these URIs. For
example, the URI www.i2r.a-star.edu.sg/
SemanticSpace#RossGeller refers to the user we
just defined, and the URI www.i2r.a-star.edu.sg/

SemanticSpace#Room209 refers to a specific
room defined elsewhere in the system.

The Semantic Space
infrastructure

By representing contexts as easily inter-
preted semantic markups, the Semantic
Space context infrastructure lets appli-
cations retrieve contexts using declara-
tive queries and supports the inference
of higher-level contexts from basic con-
texts. One such infrastructure is main-
tained in each smart space, which the
physical space often bounds in a nonre-
strictive way. For example, we can join
two or more rooms to form a smart
space or split a single room into multiple
smart spaces.

The context infrastructure consists of
several collaborating components: wrap-
pers, an aggregator, a knowledge base,
a query engine, and a reasoner (see Fig-
ure 2).

Context wrappers
Context wrappers obtain raw context

information from various sources such
as hardware sensors and software pro-
grams and transform them into context
markups. Some context wrappers, in-
cluding the location context wrapper, the
environment context wrapper (which

gathers environmental information such
as temperature, noise, and light from
embedded sensors), and the door status
context wrapper (which reports the open
or closed status of doors in each room),
work with the hardware sensors de-
ployed in our prototypical smart space.
Software-based context wrappers include
the activity context wrapper, which
extracts schedule information from Out-
look Web Access; the device context
wrapper, which monitors the status of
different networked devices (such as
voice over IP or mobile phones); the
application context wrapper, which mon-
itors the status (idle, busy, closed) of
applications such as JBuilder, Microsoft
Word, and RealPlayer from their CPU
usage; and the weather context wrapper,
which periodically queries a Weather Web
Service (www.xmethods.com) to gather
local weather information.

All context wrappers are self-config-
uring components that support a unified
interface for acquiring contexts from
sensors and providing context markups
to consumers (applications and the con-
text aggregator). We implemented these
wrappers as Universal Plug and Play
(www.upnp.org) services that can dy-
namically join a smart space, obtain IP
addresses, and multicast their presence

JULY–SEPTEMBER 2004 PERVASIVEcomputing 35

Context
knowledge

base

Semantic SpaceSmart space Semantic Web

Outlook Web
Access Service

Weather Web Services

Context-aware
application

Context
query
engine

Context
reasoner

Context
aggregator

Device
context
wrapper

Environment
context
wrapper

Location
context
wrapper

Semantic annotations
(user profile,

restaurant menus)

Activity
context
wrapper

Weather
context
wrapper

April
S M T WT F S

Figure 2. The Semantic Space context
infrastructure.

for others to discover. Context wrappers
use the UPnP general event notification
architecture (GENA) to publish context
changes as events to which consumers
can subscribe.

Context aggregator
This component discovers context

wrappers and gathers context markups
from them. We implemented the context
aggregator as a UPnP control point that
inherits the capability to discover con-
text wrappers and subscribe to context
events. Once a new context wrapper is
attached to the smart space, the context
aggregator will discover it, register it in
the service directory, and obtain context
markups from it. It asserts gathered con-
text markups into the context knowl-
edge base, which it updates whenever a
context event occurs.

Context knowledge base
Residing in each smart space, CKBs

provide persistent context knowledge
storage. A CKB stores the extended con-
text ontology for that particular space
and the context markups that are given
by users or gathered from context wrap-
pers. The CKB links the context ontol-
ogy and markups in a single semantic
model and provides interfaces for the
context query engine and context rea-
soner to manipulate correlated contexts.

Contexts in smart spaces display very
high change rates, so the aggregator must
regularly update the CKB with fresh con-
texts. The scope of contexts that the CKB
manages also changes depending on the
availability of wrappers. Developers can
add a new wrapper to expand the scope
of contexts in a smart space or remove
an existing wrapper when the contexts it
provides are no longer needed. The
aggregator monitors the wrappers’ avail-
ability and manages the scope of contexts
in the CKB. When a context wrapper
joins the smart space, the context aggre-

gator adds the provided contexts to the
CKB, and when the wrapper leaves, the
aggregator deletes the contexts it supplied
to avoid stale information.

Context query engine
The context query engine provides an

abstract interface for applications to
extract desired contexts from the CKB. To
support expressive queries, we adopted
the RDF Data Query Language10 as the
context query language. RDQL supports
querying over semantic models based on
triple (<subject, predicate, object>) patterns. This
lets applications selectively access con-
texts using declarative statements. The
following self-explanatory query state-
ment asks, When will the ongoing sem-
inar where Ross Geller is either an
attendee or a speaker be over?

SELECT ?event, ?t2
WHERE (?event, <rdf:type>, <Seminar>),

(?event, ?relation, <RossGeller>),
(?event, <startDateTime>, ?t1),
(?event, <endDateTime>, ?t2)

AND (t1 < currentDateTime() && t2 >
currentDaytime()) &&

(?relation <eq> <attendee> || ?relation <eq>
<speaker>)

Context reasoner
This component infers abstract,

higher-level contexts from basic sensed
contexts. Semantic Space explicitly rep-
resents all contexts such that general-
purpose reasoning engines can directly
process them, making it easy for devel-
opers to realize application-specific infer-
ences simply by defining heuristic rules.

Application-specific rules might gen-
erate conflicting results, but the reasoner
doesn’t assert inferred contexts into the
CKB, thus avoiding conflict in a single
model. When the application needs cer-
tain higher-level contexts, it submits a
set of rules to the context reasoner, which
applies them to infer higher-level con-

36 PERVASIVEcomputing www.computer.org/pervasive

U B I Q U I T O U S S Y S T E M S O F T W A R E

Figure 3. Sample rules that infer a user’s
likely situation based on context, activity,
location, and computing entity.

type(?user, User), type(?event, Meeting), location(?event, ?room), locatedIn(?user, ?room),
startDateTime(?event, ?t1),
endDateTime(?event, ?t2), lessThan(?t1, currentDateTime()),
greaterThan(?t2, currentDateTime())
=>situation(?user, AtMeeting)

type(?user, User), type(?phone, Phone), owner(?phone, ?user), status(?phone, ?busy)
=>situation(?user, TakingPhoneCall)

type(?user, User), type(?app, MicrosoftWord), registeredUser(?app, ?user), status(?app, ?busy)
=>situation(?user, AtWriting)

type(?user, User), type(?app, JBuilder), registeredUser(?app, ?user), status(?app, ?busy)
=>situation(?user, AtProgramming)

type(?user, User), locatedIn(?user, I2RCanteen), greaterThan(currentTime(), 12:00:00),
lessThan(currentTime(), 13:30:00)

=>situation(?user, AtLunch)

type(?user, User), type(?room, Washroom), locatedIn(?user, Washroom)
=>situation(?user, UsingWashroom)

type(?user, User), studentOf(?user, ?user2), office(?user2, ?room), locatedIn(?user, ?room),
locatedIn(?user2, ?room),

doorStatus(?room, closed), noiseLevel(?room, ?x), greaterThan(?x, 60)
=>situation(?user, MeetingSupervisor)

texts on the application’s behalf, then
returns newly inferred contexts without
storing them in the CKB.

Our current system uses the Jena2
generic rule engine11 to perform for-
ward-chaining reasoning over the CKB.
Developers can write rules for a partic-
ular application based on its needs. For
example, the rules in Figure 3, related to
the original scenario we presented, infer
a user’s likely situation based on context
(such as identity and relationships with
others), activity (such as type and time
interval), location (such as location,
office location, and others at the same
location), and computing entity (such as
status and ownership). The first rule
examines whether a given person is cur-
rently engaged in a meeting on the basis
of location and schedule—if he’s in the
meeting location and the current time
(returned by currentDateTime()) is within the
meeting’s scheduled interval, he’s likely
to be at the meeting.

Implementation and evaluation
Using our workspace in the Institute

for Infocomm Research (I2R) building
as a test bed, we built a prototype of our
context infrastructure. We defined the
ULCO using OWL, based on which we
developed an extended context ontology
for our workplace. We implemented the
CKB, context reasoner, and context
query engine using the Jena2 Semantic
Web Toolkit, and the discovery and event
notification mechanism using Siemens
UPnP SDK v1.01.

In addition to the general infrastruc-
ture, we provided context wrappers for
sensing and markup of various contexts
including location, schedule, tempera-
ture, noise, light, door status, device sta-
tus, and application status. Figure 4a
shows some of the networked sensors
and devices we used to provide context

information. Figure 4b shows the indoor
location system we developed using Ti-
RFID Serial 2000.

Pervasive computing systems prove
difficult to evaluate because they often
stress new functionality and usability
over pure performance. We believe our
infrastructure’s most important aspect is
what it enables: representing contexts as
semantic markups that applications can
easily interpret, retrieving contexts using
declarative queries, and supporting the
inference of higher-level contexts from
basic sensed contexts. Encapsulating
these features into the API helps devel-
opers build applications that would oth-
erwise be difficult to build.

We evaluated Semantic Space in two
phases. First, we evaluated the infra-
structure by building a real-world appli-
cation using it. We then measured the
resulting system’s performance.

Application development
The widespread use of mobile phones

raises social problems when, for example,
phones ring during meetings or important
conversations. Users often have to change
phone settings according to their cir-
cumstances to avoid inappropriate usage.
And frequent interactions with mobile
phones impose significant user distrac-
tions. To solve this problem, we devel-
oped a context-aware application, Situ-
AwarePhone (see Figure 4c), that adapts
mobile phones to changing situations
while minimizing user distractions.

As described earlier, when SituAware-

Phone receives an incoming call, it first
infers the user’s situation using a set of
rules, then automatically adapts its
response mode (for example, adjust vol-
ume, set vibration, schedule a call back,
send message, or forward to voice mail-
box). SituAwarePhone also queries the
smart space for various contexts that
help in adaptation. For example, it asks
for the end time of the seminar the owner
is engaged in to schedule a callback, or
it takes account of the caller’s identity
and identities of other people in a con-
versation to decide whether to let the call
interrupt it.

In a smart space, the context infra-
structure supports the entire process of
gathering contexts from sources, man-
aging contexts using the knowledge
base, handling application queries, and
reasoning about contexts based on rules.
The infrastructure’s simple client-side
API lets applications access its function-
alities while hiding the complexity of
underlying context processing. Applica-
tions can use the following API methods
to deal with contexts:

SemanticSpace(String ServerURL) throws
InstantiationException;

//Instantiate a client object of the context
infrastructure

RDFModel
SemanticSpace.ContextQueryEngine(String Query)

throws QueryException;
//Query contexts from the context infrastructure

using the statement defined in Query

JULY–SEPTEMBER 2004 PERVASIVEcomputing 37

Figure 4. Building a prototype:
(a) Networked sensors and devices;
(b) the RFID indoor location system; and
(c) a snapshot of SituAwarePhone, the
GUI for configuring the response mode
in each situation.

Bluetooth
phone

VolP
phone

Bluetooth and WLAN
access point

Body-worn tag

Environmental sensors

Door
sensor

RFID reader

(a) (b) (c)

38 PERVASIVEcomputing www.computer.org/pervasive

U B I Q U I T O U S S Y S T E M S O F T W A R E

RDFModel SemanticSpace.ContextReasoner(String
RuleSet) throws ReasoningException

//Request Context Reasoner to perform
inference using the rules defined in RuleSet

Using the client-side API, we built Situ-
AwarePhone on top of the SonyEricsson
P900 mobile phone (Figure 4c). The
implementation amounts to approxi-
mately 800 lines of Java code, most of
which deals with the MIDlet GUI and
different response modes. Only about 20
lines of application-side code deal with
contexts (to import libraries, issue queries,
perform reasoning, parse returned mod-
els, and handle exceptions). This exam-
ple shows how the context infrastructure
can greatly ease the development of con-
text-aware applications.

Performance
We evaluated system performance by

measuring context querying and rea-

soning response times on a 2.4-GHz Pen-
tium 4 workstation with 1.0 Gbyte of
RAM running Redhat 9.0. We used five
context data sets to test the system’s scal-
ability. Among these, the one with 3,000
triples (or 600 OWL classes and in-
stances) is the real data set used in our
prototypical smart space, while the other
four are synthetic data sets with unique
classes and instances.

We used the complex query statement
described earlier to measure context-
querying performance, varying the num-
ber of matched results from 1 to 10. Fig-
ure 5a shows the results—we expected
the response time to be loosely propor-
tional to the size of the context data set
and the number of matched results,
which the experiment corroborated. We
then used four rule sets to test the con-
text reasoner’s performance, starting
with SituAwarePhone’s 10-rule set and
using it to create others with increasing

numbers of rules. The results (Figure 5b)
show that rule-based reasoning is com-
putationally intensive and the response
time largely depends on the size of the
data set and rule set applied.

As the smart space’s scale increases,
the reasoning response time will be
human perceivable. However, our per-
formance evaluation suggests that, in
practice, rule-based context reasoning
works for a useful set of pervasive com-
puting applications. Taking SituAware-
Phone as an example, before the mobile
phone responses to an incoming call, it
must reason about the callee’s situation.
Context reasoning causes a perceivable
delay (about one second), which some-
times matters to users. For example, the
callee might wish to answer the call from
his supervisor as soon as possible, and
the caller always expects a quick response.
But most of our invited evaluators, both
as callers and callees, found SituAware-
Phone’s response time acceptable. We
also believe the context infrastructure
can support many applications (such as
home control, meeting assistant, and city
guide) in pervasive computing environ-
ments as long as their real-time require-
ments are not stringent.

S
emantic Space represents our
early efforts to incorporate Se-
mantic Web technologies into
pervasive computing environ-

ments. Semantic Web technologies have
helped developers build smart spaces by
providing support for explicit context
representation, expressive context query-
ing, and flexible context reasoning.

We envision several enhancements to
our infrastructure. Currently, the smart
space uses the local-area-network dis-
covery protocol UPnP to dynamically
locate and access context wrappers. In
practical deployment, multiple smart
spaces that belong to different users or
parties with private contexts might share

(a)
1,000

300

250

200

150

100

50

0
3,000 5,000

Size of context knowledge base (number of triples)

10 matches
5 matches
1 match

7,000 9,000

Qu
er

y
re

sp
on

se
 ti

m
e

(m
s)

(b)
1,000

2,500

2,000

1,500

1,000

500

3,000 5,000
Size of context knowledge base (number of triples)

7,000 9,000

Re
as

on
in

g
re

sp
on

se
 ti

m
e

(m
s)

10 rules
20 rules
30 rules
40 rules

Figure 5. Query performance (a) and
reasoning performance (b).

JULY–SEPTEMBER 2004 PERVASIVEcomputing 39

the same local network. This presents
many opportunities for context misuse
from both fraudulent context sources and
misbehaving applications. To address pri-
vacy concerns, we’ll incorporate endpoint
authentication into the context discovery
process.12 Each infrastructure component
is associated with a URI and public-key
certificate, which can be used to prove its
identity to all other components. Smart
spaces can specify both the context wrap-
pers they trust and those they have access
to, thus restricting access of private con-
texts to appropriate components.

We also plan to provide support for
uncertain contexts, because source-based
contexts aren’t always precise. Using the
OWL ontology’s probabilistic exten-
sion,13 we’re working on extending con-
text ontologies to capture uncertainty and
give smart spaces the ability to handle it.
Enhanced context ontologies will support
probabilistic querying with respect to con-
text quality and the reasoning of uncer-
tain contexts using such mechanisms as
probabilistic logic, Bayesian networks,
and fuzzy logic.

REFERENCES
1. W.N. Schilit, A Context-Aware Systems

Architecture for Mobile Distributed Com-
puting, doctoral dissertation, Columbia
Univ., 1995.

2. A.K. Dey, Providing Architectural Support
for Building Context-Aware Applications,
doctoral dissertation, Georgia Inst. Tech-
nology, 2000.

3. T. Berners-Lee et al., “The Semantic Web,”
Scientific Am., May 2001.

4. G. Klyne and J.J. Carroll, eds., “Resource
Description Framework (RDF): Concepts
and Abstract Syntax,” W3C Recommen-
dation, 2004.

5. D.L. McGuinness and F. van Harmelen,
“OWL Web Ontology Language Overview,”
W3C Recommendation, 2004.

6. K. Henricksen, J. Indulska, and A. Rako-
tonirainy, “Modeling Context Information
in Pervasive Computing Systems,” Proc. 1st
Int’l Conf. Pervasive Computing (Pervasive

2002), LNCS 2414, Springer-Verlag, 2002,
pp. 167–180.

7. T. Gruber, “A Translation Approach to
Portable Ontology Specifications,” Knowl-
edge Acquisition, vol. 5, no. 2, 1993, pp.
199–220.

8. X. Wang et al., “Ontology-Based Context
Modeling and Reasoning Using OWL,”
Proc. 2nd IEEE Conf. Pervasive Comput-
ing and Communications (PerCom 2004)
Workshop on Context Modeling and Rea-
soning, IEEE CS Press, 2004, pp. 18–22.

9. Y. Ding and D. Fensel, “Ontology Library
Systems: The Key for Successful Ontology
Reuse,” Proc. 1st Semantic Web Working
Symp. (SWWS 01), Stanford Univ. Press,
2001, pp. 93–112.

10. L. Miller, A. Seaborne, and A. Reggiori,
“Three Implementations of SquishQL, a
Simple RDF Query Language,” Proc. 1st

Int’l Semantic Web Conf. (ISWC 2002),
LNCS 2342, Springer-Verlag, 2002, pp.
423–435.

11. J.J. Carroll et al., Jena: Implementing the
Semantic Web Recommendations, tech.
report HPL-2003-146, Hewlett Packard
Laboratories Bristol, 2003.

12. S.E. Czerwinski et al., “An Architecture for
a Secure Service Discovery Service,” Proc.
5th Ann. ACM/IEEE Int’l Conf. Mobile
Computing and Networking (MobiCom
99), ACM Press, 1999, pp. 24–35.

13. Z. Ding and Y. Peng, “A Probabilistic
Extension to Ontology Language OWL,”
Proc. 37th Hawaii Int’l Conf. System Sci-
ences (HICSS 04), IEEE CS Press, 2004.

For more information on this or any other comput-
ing topic, please visit our Digital Library at www.
computer.org/publications/dlib.

the AUTHORS

Xiaohang Wang is a graduate student at the National University of Singapore. His
research interests include pervasive and context-aware computing, the Semantic
Web, and home networking. He received his BS in computer science from Huazhong
University of Science and Technology, China. Contact him at the Institute for Info-
comm Research, MailBox #B097, 21 Heng Mui Keng Terrace, Singapore 119613;
xwang@i2r.a-star.edu.sg.

Daqing Zhang is head of the Context-Aware Systems Department at the Institute
for Infocomm Research, where he leads research in connected-home and context-
aware systems. His research interests include pervasive computing, service-oriented
computing, context-aware systems, and home networking. He received his PhD
from University of Rome La Sapienza and University of L’Aquila, Italy. Contact him at
the Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613;
daqing@i2r.a-star.edu.sg.

Jin Song Dong is a faculty member at the National University of Singapore. His
research interests include formal methods, Web-based software design, and pro-
gramming-language semantics. He received his PhD in computing from the Univer-
sity of Queensland. Contact him at 10 Kent Ridge Crescent, Singapore 119260;
dongjs@comp.nus.edu.sg.

ChungYau Chin is a graduate student in the Department of Electrical and Com-
puter Engineering at the National University of Singapore. His research interests
include pervasive computing, context-aware systems, service discovery, the Seman-
tic Web, and networking. He received his BEng in computer engineering from the
National University of Singapore. Contact him at 4 Amber Rd., Amber Tower #03-
04, Singapore 439852; chungyau.chin@nus.edu.sg.

Sanka Ravipriya Hettiarachchi is an undergraduate student in the Department of
Electrical and Computer Engineering, National University of Singapore. His research
interests include context-aware systems mobile computing, and smart-phone appli-
cation development. Contact him at #14-249, Block 508, West Coast Dr., Singapore
120580; eng12004@nus.edu.sg.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

