
Generating MSCs from an Integrated Formal
Specification Language

Jin Song Dong1, Shengchao Qin2, and Jun Sun1�

1 School of Computing
National U. of Singapore

{dongjs,sunj}@comp.nus.eud.sg
2 Singapore-MIT Alliance
National U. of Singapore
qinsc@comp.nus.edu.sg

Abstract. The requirements capture of complex systems requires pow-
erful mechanisms for specifying system state, structure and interactive
behaviors. Integrated formal specification languages are well suited for
presenting more complete and coherent requirement models for complex
systems. Given an integrated model, one can project it into multiple
views for specialized analysis. Message Sequence Charts (MSCs) is a
popular graphical notation for presenting interactive viewpoints of a
system. In this paper, we investigate the semantic based transformation
from an integrated formal specification language TCOZ to MSCs. An
automated tool has also been developed for generating MSCs from
TCOZ models. Furthermore, by inserting operation constraints (as
assertions) into the generated MSCs, system testing requirements can
be obtained.

Keywords: Requirement Engineering, TCOZ, MSC

1 Introduction

Multi-viewpoints [3,21] are effective techniques for capturing complex system
requirements. Various formal notations are often used for presenting different
viewpoints for large and complex systems which may have intricate system states
and complex concurrent and interactive behaviors. The formal link and consis-
tency issues between the viewpoint models represented in different formalisms
remain as a challenging research topic. Recent investigations on linkings between
different formalisms [5,13,17,26,29,30,32] may provide some meta support to the
issues of viewpoints consistency. One such linked formalism is Timed Communi-
cating Object Z (TCOZ) [17] which builds on the strengths of Object-Z [11,25]
in modeling complex data and state with the strengths of TCSP [9] in modeling
process control and real-time interactions. TCOZ can be well suited for present-
ing more complete and coherent requirement models that comprehend various
� Author for correspondence, fax: +65 6779 4580, phone: +65 6874 4353

E. Boiten, J. Derrick, G. Smith (Eds.): IFM 2004, LNCS 2999, pp. 168–186, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 824.882] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Generating MSCs from an Integrated Formal Specification Language 169

viewpoints for complex systems. Given an integrated model, one can project
it into consistent multiple views for specialized analysis. In this paper, we are
interested in one particular viewpoint projection – the communication and inter-
action perspective. Message Sequence Charts (MSCs) [15] is a popular graphical
notation for presenting interactive viewpoints of a system. In this paper, we
investigate the semantic based transformation from TCOZ (trace models) to
MSCs (process models). By identifying a set of traces with MSCs, the cause and
effect relations between partial ordering events in concurrent systems [10] can
be captured. An automated tool has also been developed in Java for generating
MSCs from TCOZ models. Furthermore, by inserting class invariants and oper-
ation constraints (as assertions) into the generated MSCs (execution scenarios),
system testing requirements can be obtained.

Various attempts to combine formal specifications with graphical notations
have been explored [2,6,7,8,16,20,22]. Bolton and Davies [2] has given a process
semantics in CSP for UML activity diagrams. They use the process semantics
to demonstrate the consistency of the object model. Our approach is to auto-
matically generate MSCs based on its standard process semantics. Brooke and
Paige [4] have recently developed a tool-supported graphical notation for TCSP.
The difference between Brooke and Paige’s approach and ours is that we use
existing formal graphical notations instead of creating new ones. Ng and But-
ler [20] have developed a tool for visualizing CSP in UML for both the static
architecture and the dynamic behaviors. In our approach, we are particularly
interested in capturing dynamic interactions between objects.

The remainder of the paper is organized as follows. Section 2 briefly intro-
duces the technical background, the TCOZ notation and MSCs, both basic MSCs
(BMSCs) and high-level MSCs (HMSCs). Section 3 presents the link between
TCOZ and MSCs, both BMSCs and HMSCs, explains how to generate system
test requirements from TCOZ specifications. Section 4 presents an XML-based
automatic transformation tool built using Java. Section 5 concludes the paper.

2 Overview of TCOZ and MSCs

2.1 Overview of TCOZ

TCOZ is a blending of Object-Z and TCSP. The basic structure of a TCOZ
document is the same as for Object-Z, consisting of a sequence of definitions,
including type and constant definitions in the usual Z style. TCOZ varies from
Object-Z in the structure of class definitions, which may include CSP channel
and processes definitions. Channels in TCOZ are defined as communication in-
terfaces between objects. All dynamic interactions between objects must take
place through channel communication mechanism. The true power of TCOZ
comes from the ability to make use of TCSP primitives in describing the pro-
cess aspects of an operation’s behavior. All operation definitions in TCOZ are
TCSP process definitions, with operation schemas identified with Timed CSP
processes. The data-related aspects of TCOZ are modeled using state bindings
and the process-related aspects are modeled using event traces and refusals [18].

170 J.S. Dong, S. Qin, and J. Sun

We take a simplified version of the Light Control System (LCS) [12] to il-
lustrate the features of TCOZ and as an example to demonstrate the projection
from TCOZ to MSCs. LCS is an intelligent control system. It can detect the
occupation of a building, then turn on or turn off the lights automatically. It is
able to tune illumination (in percentage) in the building according to the out-
side light level. A typical system behavior is that when a user enters a room:
a motion detector senses the presence of the person, the room controller reacts
by receiving the current daylight level and turning on the light group with ap-
propriate illumination setting (let satisfy represent the relationship between
daylight level and required illumination). When a user leaves a room (leaving it
empty): the detector senses no movement, the room controller waits for absent
time units and then turns off the light group. The occupant can directly turn
on/off the light by pushing the button.

Generating MSCs from an Integrated Formal Specification Language 171

Class Light is essentially an Object-Z class (passive class). Class
ControlledLight, a subclass of Light, extends Light class with process defini-
tions, ButtonPushing, DimChange and Main. A Main process indicates that
ControlledLight defines an active object, which has its own thread of control.
It is used to determine the behavior of objects of an active class after initial-
ization. button and dimmer are defined as channels connecting the light to the
environment and room controller.

A motion detector detects any movement in the room so to tell whether some
one is in and send proper signal on channel motion. � denotes a choice made by
the environment.

A room controller communicates with the motion detector and light by
declaring channels with same names as those in the respective classes. It takes
in signals from the motion detector and sends proper signal to the light. Its
behavior is captured by interrupt ∇ and timeout � operators. Finally, a light
control system is composed by a room controller, a motion detector and a light.

2.2 Overview of MSCs Language

The language MSCs is standardized by International Telecommunication Union
(ITU). It provides a mean for visualization of the interaction of system compo-
nents, either graphically or textually. The core of MSCs is called Basic Message

172 J.S. Dong, S. Qin, and J. Sun

m3

msc example1

i3i2i1

m2

m1

m0

a

Fig. 1. A BMSC Example

Sequence Charts (BMSCs), which concerns communications and actions only.
Then, additional basic concepts like process creation, termination, time han-
dling, incomplete message events and conditions are added. Later, more com-
plicated constructs are introduced. They are inline expressions, MSC reference
expressions and High-level Message Sequence Charts (HMSCs), which enrich
MSCs with intricate possibilities of describing complex systems.

A simple example of BMSCs is given as Figure 1. Each vertical line rep-
resents an active component (Z.120 terminology, an instance) in the system.
The frame (Z.120 terminology, parallel frame) represents the environment. In-
stances can interact with other instances or the environment by sending messages
(m0,m1,m2,m3). The square labeled with a is an action performed by instance
i2. The timing information is captured by the two rules below:

– For each message passing, the message output event precedes the correspond-
ing message input event.

– For each vertical line representing an instance, the time progresses from top
to bottom.

HMSCs can be constructed incrementally by referencing a MSC using its
name. MSCs can be combined vertically, horizontally or alternatively. Various
constructors for composing MSCs are: alt, seq, par, opt, exc and loop. Precise
semantics are developed for these key words, e.g., alt is defined as delayed choice,
denoted as ∓, and par are defined as delayed parallel composition, denoted as
||. Figure 2 is a simple example of HMSCs. Its semantics is captured by the
process expression (A ◦ C)� ◦ (A ◦ B), where � means unbounded recursion and
◦ means sequential composition.

Various semantic models are developed for MSCs. Examples are operational
semantics for MSCs based on process algebra [1,15], Petri nets [31], automata,
etc. The informal MSC semantics and formal process algebra semantics for
MSC [15] are adopted in this paper.

Generating MSCs from an Integrated Formal Specification Language 173

CB

A

Fig. 2. A HMSC Example

3 Generate MSCs from TCOZ

MSCs is a simple graphical notation for capturing system components interac-
tion. The process semantics MSCs is closely associated with the untimed trace
aspects of the TCOZ semantics. Therefore, our first task is to build the untimed
trace model for TCOZ that filters out unrelated issues i.e. timed refusals.

3.1 Trace Model for TCOZ

Semantic models for TCOZ is the infinite timed-states model [18] which extends
the TCSP’s infinite timed-failure model. MSCs, on the other hand, can be re-
ferred as ’untimed’. It deliberately abstracts from the precise times when events
happen. Instead, MSC uses timers to capture basic timing information (timeout
or timer reset). The untimed trace model in this section is mainly based on the
trace models for CSP [14].

A TCOZ event may be either an update event, a simple synchronization, a
channel communication, or a termination event.

U == [v:
∏

; d: VAL]
S == [c: Σ]
C == [c: Σ; d: VAL]
Σ == update〈〈U〉〉|sync〈〈S〉〉|com〈〈C〉〉|�

To make use of the timer constructs in MSC, we extend TCOZ event with
a special event wait(d), where d can be any real number. Basically, this event
delays a process by time d. To filter out the unnecessary timing information, we
simplify semantic functions for each TCOZ process expression. Given [Σ] rep-
resenting events, [ZE] representing Z expressions, [ZS] representing Z schemas,
[NAME] representing all valid character strings, a TCOZ process expression is
defined as [19]:

174 J.S. Dong, S. Qin, and J. Sun

Table 1. Simplified Trace Model of TCOZ based on [19]

A trace is defined as a sequence of events. Given a set of events (Σ), Σ∗

denotes all possible traces can be composed by events in Σ. Function � filters
out a set of events from a trace.

We define a function H : TZE → P Trace, which returns the set of all
possible traces given a TCOZ process expression. Table 1 illustrates the detailed
definition for the function H, which defines how to compute the set of all possible
traces for a TCOZ process expression inductively. The definition of the function
H is based on the denotational semantics of CSP [14,24].

Stop means deadlock and performs no events (Tr-1), while Chaos can per-
form any event (Tr-2). Wait ZE delays a process by ze time unit (Tr-3). The
state-guard, is used to block or enable execution of an operation on the basis

Generating MSCs from an Integrated Formal Specification Language 175

of an object’s local state (the instance’s state) (Tr-4). In general, state-guard
can be complex. In our trace model, it is treated as non-deterministic choice,
which may introduce unexpected traces. This is not a problem for our work.
Tr-5 captures the case that a process expression is guarded by some channel
communication event. The only way to proceed is to perform the communica-
tion. Tr-6 covers both internal choice (P � Q) and external choice (P�Q). For
internal choice, the choice is made upon the internal state of the system. While
for external choice, the choice is made by the environment. From the system
interactive (MSC) viewpoint, this distinction is irrelevant. Tr-7 captures that Q
interrupts P . Tr-8 expresses that the two processes synchronize on all events.
Tr-9 expresses that two processes run completely independently. Tr-10 expresses
a general case of Tr-8 and Tr-9, i.e., instead of synchronizing all (or none) of the
events, only events in the set X are synchronized.

Tr-11 expresses sequential composition of process expressions. TZE2 can only
take control after TZE1 successfully terminates. This definition of sequential
composition is known as strong sequential composition [1]. The trace model for
recursion (Tr-12) is a fixed point definition. The trace function for Skip, �{t},
↙ {t} can be derived using the following laws.

Skip =̂� → Stop
TZE1 �{t}TZE2 = TZE1�(Wait t; TZE2)
TZE1 ↙ {t}TZE2 = TZE1�(Wait t; TZE2)

Example: The set of traces for a process expression can be efficiently identified
by applying function H recursively. We take the process ButtonPushing as an
example.

176 J.S. Dong, S. Qin, and J. Sun

3.2 Link Traces with BMSCs

Given one active object, we can identify the set of possible traces by applying the
H function to the Main process. A trace can be transformed to a BMSC by iden-
tifying update events in TCOZ with MSC atomic local actions and identifying
channel communications in TCOZ with message passing in MSCs.

In the previous subsection, a TCOZ event is defined as either an update event,
a simple synchronization, a channel communication, or a termination event, or
a Wait(d) event.

– Update events are distinguished from the others in the way that they do not
require the cooperation of the environment or other processes. They perform
on a single instance. A MSC local action is defined as an orderable single
instance event requiring no cooperation from environment. Update events
are identified with local actions in MSCs.

– Synchronization and channel communication do require cooperation either
from environment or other processes. Channel communications in TCOZ are
identified with message passings in MSCs.
MSCs support both synchronous and asynchronous message passing, chan-
nel communication in TCOZ is identified with synchronous message passing
(message passing with a 0-capacity buffer).

– The special wait event in TCOZ is identified with the timer event in MSCs.
In particular, it is identified with a timer set event in MSCs and consequently
associated with a timeout or reset event.

Example: Figure 3 (the generated BMSC from TCOZ by applying H function)
represents a possible scenario of the process ControlledLight. Initially the light
is off. Starting with Main, the process DimChange is executed. A message
input event dimmer?n takes place. At that moment on is false, no action is
taken. Process ButtonPushing is then activated by a message input event from
channel button. Action TurningOn is invoked. After that, no event occurs.

3.3 Project TCOZ Specifications to HMSCs

Due to unbounded recursion (iteration) and non-determinism, possible traces
(and generated BMSCs) for some systems could be numerous or even infinite1.
HMSCs offer various constructive operators to compose MSCs in a hierarchical,
iterating and nondeterministic way. In this section, we link TCOZ specification
with HMSCs by identifying various operators in TCOZ with constructs in HM-
SCs.

The body of a TCOZ class is essentially a system of simultaneous equations
defining a collection of operations (processes). Each equation consists of a name
[NAME] and a TCOZ process expression.
1 For LCS, 600+ traces are generated if we unfold recursions 5 times.

Generating MSCs from an Integrated Formal Specification Language 177

i1

msc ControlledLight

dimmer?n

button?1

TurningOn

Fig. 3. BMSC: ControlledLight

A TCOZ class is identified with a MSC document2. A TCOZ process ex-
pression is identified with a MSC. If a TCOZ process invokes other process
expressions (by name), the process expression name will be identified with a
MSC reference. A MSC reference expression is defined as the following,

Given a MSC reference expression, Function G : MRE → P Trace returns
a set of traces capturing all possible behaviors of the process. In [15], seman-
tics of various constructs of MSCs are specified by sets of deduction rules. A
deduction rule is of the form H

C where H is a set of premises and C is the con-
clusion. Each individual premise and conclusion are of the form s

a→ s′ or s ↓
for arbitrary s, s′ ∈ MRE and a ∈ A, where A denotes all events represented
by atomic actions in MSCs, for example, message input, message output, local
action and timer events. Following those deduction rules, the trace models G can
be constructed.

A projection function P from TCOZ process expression to MSC reference
expression can be established when the set of possible traces for the TCOZ
process expressions is identical with those for the MSC reference expressions.

STOP and SKIP. In TCOZ, Stop means deadlock and no communications.
Skip performs no action except for successful termination. The two basic con-
stants, denoted as δ and ε, also play the same role in the process semantics for
2 A MSC document consists a set of MSCs.

178 J.S. Dong, S. Qin, and J. Sun

TurningOff

TurningOn

alt

button?1

j1

msc ButtonPushing

dim>0

dim=0

Fig. 4. Transformation: Choice

MSCs. No deduction rule is associated with δ. The rule associated with ε is ε ↓,
meaning successful termination.

G(δ) = {〈〉}
G(ε) = {〈�〉} ∪ {〈〉}

Graphically, Skip is mapped to a MSC containing no event.

Choice. In [15], a structural operation delayed choice is denoted by ∓. Its
semantics is expressed in the following rules:

The rules DC1 and DC2 express that the delayed choice of the two processes
has the option to terminate if and only if at least one of the alternatives has this
option. DC3 and DC4 express that the delayed choice will behave as one of the
options given that some initial event of this option takes place. DC5 captures
the idea that in case both of the alternatives are enabled, the choice is delayed.

We can verify that the set of possible traces of x ∓ y is the union of traces of
x and y, i.e., G(x∓y) = G(x)∪G(y). Assume s ∈ G(x∓y), if head(s) is an event
that can be performed by process x and not by process y, DC3 applies, the set of
all such traces is {〈head(s)〉 u|u ∈ G(x′)}, which is a subset of G(x). If head(s)
is an event that can be performed by y and not by x, rule DC4 applies, following

Generating MSCs from an Integrated Formal Specification Language 179

msc OnAgain
j0

T(t)

alt

Off

On

Fig. 5. Transformation: Timeout

the same argument, we can verify that the set of such traces is a subset of G(y).
If head(s) can be performed by both x and y, DC5 applies, the set of possible
traces is {〈head(s)〉 u|u ∈ G(x′ ∓ y′)}, which is a subset of G(x) ∪ G(y). Since s
is an arbitrary trace in the set G(x∓ y), we conclude that G(x∓ y) is a subset of
G(x) ∪ G(y). By the similar construction, we can conclude that for any trace in
G(x) ∪ G(y), it is also in G(x ∓ y). This completes the construction of the choice
operator. In term, other mappings can be formulated in a similar way.

Figure 4 illustrates how the transformation is done graphically for the process
ButtonPushing in ControlledLight class. Keyword alt (short for alternative)
is used to denote delayed choice graphically.

Timeout. In TCOZ, P � {t}Q = P� (Wait t; Q). By identifying external
choice with MSC delayed choice and Wait t with timer events, timeout can be
identified with MSCs constructed by a delayed choice between P and Q with a
timeout event as the initial event of Q. In the room controller model of the LCS
example, given process OnAgain=̂(motion?1 → On) � {t} Off, it is transformed
to the MSC in Figure 5.

Interleaving. Delayed parallel composition, denoted by || in MSC, is rewritten
as ||m to avoid confusion. Delayed parallel composition defines the interleav-
ing operator, i.e., no synchronization is required and processes can interleave
freely3. Interleaving in TCOZ (|||) is identified with delayed parallel composi-
tion in MSCs.

G(P ||mQ) =
⋃{s||| t |s ∈ G(P) ∧ t ∈ G(Q)}

Synchronization. In TCOZ, all dynamic interactions between active objects
must take place through the CSP channel communication mechanism. All syn-
chronization is done by message passing through channels.
3 Refer to [15] for detailed definition of delayed parallel composition.

180 J.S. Dong, S. Qin, and J. Sun

motion!0

motion!1

md?NoMove

md?Move

md?NoMove odsensor?n

dimmer!0

dimmer!dim

m r

t(1)

Adjust

Fig. 6. Transformation: Synchronization

No synchronization construct is defined in MSCs. Graphically, given two
synchronizing MSCs (P and Q), the composed MSC is constructed by putting
the MSCs in the same parallel frame and connecting corresponding message
output and message input events. By adopting the view that message passing
are synchronized, the newly constructed MSC represents the set of traces as

⋃{s ‖ [X]t|s ∈ G(P) ∧ t ∈ G(Q)}
where X denotes all events on the sharing channel.

In the LCS class, active object m (motion detector) shares the channel
motion with the active object r (room controller). A possible trace for m would
be

〈md?NoMove, wait 1, md?Move, motion!1, md?NoMove, motion!0, · · · 〉
A matching trace for r must contain the same events on channel motion. For
example, a matching sequence would be

〈dimmer!0, motion?1, odsensor?n, olight := n, dimmer!dim, motion?0, · · · 〉
The interaction can be visualized as Figure 6.

By constructing the composed MSCs as above, we can make use of the full
power of MSC’s partial ordering property. That is, to leave the order of single
instance events from different instances unspecified. Thus, one MSC is capable
of representing a set of scenarios.

Sequential Composition. Sequential composition in TCOZ is best described
as strong sequential composition. Strong sequential composition of two pro-
cesses x and y behaves like process x and upon termination of x it starts behaving
like process y. No action from process y can be executed before x has the option

Generating MSCs from an Integrated Formal Specification Language 181

OnAgain

msc On
j1

motion?0

exc

Regular

Fig. 7. Transformation: Interrupt

to terminate. In [15], a different approach, named weak sequential composition,
denoted as ◦ is adopted to compose two MSCs vertically. The weak sequential
composition allows the execution of actions from y before x has the option to
terminate.

All synchronizations in TCOZ are taken through channels, the ordering in-
formation of local actions from different instances are irrelevant. On the other
hand, in case two MSCs only involve events on the same process, The weak
sequential composition and the strong sequential composition are the same.
Sequential composition in TCOZ is identified with sequential composition in
MSCs.

Graphically, sequential composition of MSCs on the same instances is cap-
tured by putting the MSCs one below the other.

Interrupt. MSCs have a key word exc for representing exceptions, however
there is no formal rules defined in [15]. We define the rules for exc (the symbol
∇m is used instead) as follows.

In the process X�Y (Y has an initial event e), any time e takes place, X is
interrupted and control transfers to Y . Interrupt in TCOZ is identified with ∇m

in MSCs with e as the initial event of the interrupting process. For example, in
RoomController,

On=̂Regular�motion?0 → OnAgain

can be transformed to MSC as in Figure 7.
Besides the projection links above, the rest constructs in TCOZ can be trans-

formed to constructs in MSCs in obvious ways. TCOZ recursion can be resolved
as iteration and interpreted by a sequence of sequential composition, which can

182 J.S. Dong, S. Qin, and J. Sun

be generalized as the iteration operator �. TCOZ state−guard is identified with
condition in MSCs.

3.4 Generate Test Requirements

Test requirements can be used to develop test cases, test oracles and test drivers
in a system development. Specification based testing can play an important role
in software engineering [23,27]. TCOZ specification based testing can be based
on the generated MSCs (execution scenarios). Our goal is to support automatic
generation of test requirements.

Four steps are essential, which are all based on the MSCs generated.

– Starting with a HMSC, one can expand the HMSC into a set of BMSCs. In
the recursion case, at least one iteration should be covered by the expanded
BMSCs.

– Upon creation of an instance, TCOZ class initial state condition is instru-
mented as an assertion at the start of the BMSC.

– For each instance in the system, TCOZ class invariants are instrumented as
assertions before and after each action on the BMSC instance.

– The pre/post-conditions of TCOZ operations is transformed to assertions at
the entry/exit of the corresponding MSC actions.

We will illustrate these steps by taking the ControlledLight class as an ex-
ample. First, we resolve the unbound recursion in Main process by performing
it once. From Figure 4, we identify two event sequences from both DimChange
and ButtonPushing because of the delayed choice operator. The testing require-
ments for ControlledLight is captured by Figure 8 (an expanded BMSC with
Assertions). Assertions are placed in the dash line square-boxes. The event se-
quence for DimChange containing Skip is dropped since Skip represents an
empty sequence of events.

4 Automation

The translation process can be automated by employing XML/XSL technol-
ogy. In our previous work [28], a XML interchange format ZML for Z family
languages, i.e., Z/Object-Z/TCOZ, has been defined using XML Schema. MSC
also offer a standard text representation for the graphical notations. In this work,
an automatic transformation tool is developed in Java to project TCOZ models
(in ZML) into MSCs (in standard text format).

Building on the strength of ZML, our tool makes use of XML parser Xerces
to extract information from TCOZ specifications. For example, the following is
a part of the ControlledLight class model in ZML.

<classDef>
<name>ControlledLight</name>
<inheritedClass><name>Light</name></inheritedClass>
<state>...</state>
<operation>

Generating MSCs from an Integrated Formal Specification Language 183

dim=100, on=true

dim=0, on=false

alt

dim=n, on=true

alt

dim=0

TurningOn

dim>0

TurningOff

on

dim:=n

dimmer?n

button?1

dim=0, on = false

Fig. 8. Test Requirements

<name>Main</name>
<processExpr>

<mu>N</mu>
<processExpr>

<processExpr>
<simpleProExp>ButtonPushing</simpleProExp>

</processExpr>
<proConnSym>externalChoice</proConnSym>
<processExpr>

<simpleProExp>DimChange</simpleProExp>
</processExpr>

</processExpr>
</processExpr>

</operation>
</classDef>

The automatic transformation is achieved by first implementing a ZML
parser, which will take in a specification model in ZML and build a virtual
model in the memory. This ZML parser can be reused for other projection tools
(e.g. the transformation from TCOZ to Timed Automata for timing analysis).

184 J.S. Dong, S. Qin, and J. Sun

A trace generation module is built to automatically generate all possible
traces for a specification model, each trace can be transformed to a BMSC by
syntax rewriting. In the case of unbounded recursion, users may provide the
expected number of iterations.

An MSC interface is built according to the MSC document structure, e.g.,
each MSC document contains multiple MSCs and each MSC contains one or
more instances and etc. A transformation module is built to get information
from the ZML parser, apply the right transformation rules (specified in Sec-
tion 3) and feed the outcome of the transformation to the MSC interface. The
transformation rules are used as a design document and guide the construction
of various transformation algorithms in the implementation.

The outcome of our transformation tool is Z.120 standard text representa-
tion of MSCs, which is ready to be taken as inputs for various tool support
for MSCs. For example, the above XML representation of Main operation in
ControlledLight is transformed to a HMSC as:

msc ControlledLight;
instance i1;

loop begin;
alt begin;

reference ButtonPushing;
alt;

reference DimChange;
alt end;
loop end;

endinstance;
endmsc;

Reuse for Timed Viewpoint Projection

The same strategy can be applied for implementing various transformation tools.
For example, for the timing analysis purpose, a TCOZ specification can be trans-
formed into Timed Automata (we are currently building this tool), the same ZML
parser can be reused and we only need to build a Timed Automata interface and
a new transformation module.

5 Conclusion

In this paper, we investigate the semantic based transformation from TCOZ
to MSCs and present a tool to automatically generate MSCs from the TCOZ
specifications.

An untimed trace model for TCOZ is introduced to focus on the interaction
viewpoints. Each possible trace is identified with a BMSC by linking TCOZ
update events as MSC local actions and channel communication as synchronous
message-passing. The projection from TCOZ to HMSCs is constructed based on
linking the trace semantic models of TCOZ constructs with the process semantics
of HMSC constructs.

By inserting appropriate TCOZ specification constraints (as assertions) into
the generated MSCs, we further explore ways of generating system test require-
ments from TCOZ.

Generating MSCs from an Integrated Formal Specification Language 185

Acknowledgments. This work is supported by the A*STAR research grant
Formal Design Techniques for Reactive Embedded Systems

References

1. J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts in
Theoretical Computer Science, 18(1), 1990.

2. C. Bolton and J. Davies. Activity Graphs and Processes. In W. Grieskamp, T. San-
ten, and W. Stoddart, editors, Proceedings of IFM 2000, pages 77–96. Springer,
2000.

3. H. Bowman, M.W.A. Steen, E.A. Boiten, and J. Derrick. A Formal Framework for
Viewpoint Consistency. Formal Methods in System Design, 21:111–166, September
2002.

4. P. J. Brooke and R. F. Paige. The Design of a Tool-Supported Graphical Notation
for Timed CSP. In M. J. Butler, L. Petre, and K. Sere, editors, Proc. Integrated
Formal Methods 2002 (IFM’02).

5. M. Butler. csp2B: A Practical Approach To Combining CSP and B. In J. Wing,
J. Woodcock, and J. Davies, editors, FM’99: World Congress on Formal Methods,
Lect. Notes in Comput. Sci., Toulouse, France, September 1999. Springer-Verlag.

6. C-A. Chen, S. Kalvala, and J. Sinclair. Generating b specifications from message
sequence charts. In St.Eve Workshop, September 2003.

7. A. Coombes and J. A. McDermid. Using Diagrams to Give a Formal Specification
of Timing Constraints in Z. In Z User Workshop, pages 119–130, 1992.

8. J. Davies and C. Crichton. Using State Diagrams to Describe Concurrent Be-
haviour. In ICFEM 2003, LNCS 2885, pages 105–125, 2003.

9. J. Davies and S. Schneider. A Brief History of Timed CSP. Theoretical Computer
Science, 138, 1995.

10. Marcio S. Dias and Debra J. Richardson. Identifying Cause and Effect Relations
between Events in Concurrent Event-Based Componenents. In J. Richardson,
W. Emmerich, and D. Wile, editors, The 17th IEEE International Conference on
Automated Software Engineering (ASE’02), 2002.

11. R. Duke and G. Rose. Formal Object Oriented Specification Using Object-Z. Cor-
nerstones of Computing Series. Macmillan, March 2000.

12. R. L. Feldmann, J. Munch, S. Queins, S. Vorwieger, and G. Zimmermann. Baselin-
ing a Doman-Specific Software Development Process. Tech Report SFB501 TR-
02/99, University of Kaiserslautern, 1999.

13. C. Fischer and H. Wehrheim. Model-Checking CSP-OZ Specifications with FDR.
In K. Araki, A. Galloway, and K. Taguchi, editors, IFM’99: Integrated Formal
Methods, York, UK. Springer-Verlag, June 1999.

14. C.A.R. Hoare. Communicating Sequential Processes. International Series in Com-
puter Science. Prentice-Hall, 1985.

15. ITU. Message Sequence Chart(MSC), Nov 1999. Series Z: Languages and general
software aspects for telecommunication systems.

16. Shaoying Liu, A. Jeff Offutt, Chris Ho-Stuart, Yong Sun, and Mitsuru Ohba. Sofl:
A formal engineering methodology for industrial applications. pages 24–45, 1998.

17. B. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Transactions
on Software Engineering, 26(2):150–177, February 2000.

18. B. Mahony and J. S. Dong. Deep Semantic Links of TCSP and Object-Z: TCOZ
Approach. Formal Aspects of Computing, 13(2):142–160, 2002.

186 J.S. Dong, S. Qin, and J. Sun

19. B. Mahony and J. S. Dong. Deep Semantic Links of TCSP and Object-Z: TCOZ
Approach. Formal Aspects of Computing, 13(1):142–160, 2002.

20. M. Y. Ng and M. Butler. Tool Support for Visualizing CSP in UML. In C. George
and H. Miao, editors, International Conference on Formal Engineering Methods
(ICFEM’02), pages 287–298. LNCS, Springer-Verlag, October 2002.

21. B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework for Expressing the
Relationships Between Multiple Views in Requirement Specifications. IEEE Trans.
Software Eng., 20(10):760–773, October 1994.

22. L. Petre and K. Sere. Developing Control Systems Components. In W. Grieskamp,
T. Santen, and B. Stoddart, editors, IFM’00: Integrated Formal Methods,, Lect.
Notes in Comput. Sci. Springer-Verlag, October 2000.

23. D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-Based Test Oracles
for Reactive Systems. In International Conference on Software Engineering, pages
105–118, 1992.

24. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
25. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.

Kluwer Academic Publishers, 2000.
26. G. Smith and J. Derrick. Specification, Refinement and Verification of Concurrent

Systems - an Integration of Object-Z and CSP. Formal Methods in System Design,
18:249–284, 2001.

27. P. Stocks and D. Carrington. A Framework for Specification-based Testing. IEEE
Trans. Software Eng., 22(11):777–793, 1996.

28. J. Sun, J. S. Dong, J. Liu, and H. Wang. A Formal Object Approach to the Design
of ZML. Annals of Software Engineering, 13:329–356, 2002.

29. K. Taguchi and K. Araki. The State-Based CCS Semantics for Concurrent Z
Specification. In M. Hinchey and S. Liu, editors, the IEEE International Conference
on Formal Engineering Methods (ICFEM’97), pages 283–292, Hiroshima, Japan,
November 1997. IEEE Press.

30. H. Treharne and S. Schneider. Using a Process Algebra to Control B Operations.
In K. Araki, A. Galloway, and K. Taguchi, editors, IFM’99: Integrated Formal
Methods, York, UK. Springer-Verlag, June 1999.

31. K.M. van Hee. Information Systems Engineering: A Formal Approach. Cambridge
University Press, Cambridge, 1994.

32. J. Woodcock and A. Cavalcanti. The Steam Boiler in a Unified Theory of Z
and CSP. In J. He, Y. Li, and G. Lowe, editors, The 8th Asia-Pacific Software
Engineering Conference (APSEC’01), pages 291–298. IEEE Press, 2001.

	Introduction
	Overview of TCOZ and MSCs
	Overview of TCOZ
	Overview of MSCs Language

	Generate MSCs from TCOZ
	Trace Model for TCOZ
	Link Traces with BMSCs
	Project TCOZ Specifications to HMSCs
	Generate Test Requirements

	Automation
	Conclusion

