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Abstract

In object-oriented systems, it is often the case that an object will have an
attribute whose value identifies (points or refers to) some other object in the
system so that the identified object can be sent messages. The association
between objects determined by the object references in a system will gener-
ally result in a complex structure whose design and specification is a crucial
part of the development and implementation of the system. The aim of this
paper is to look at ways of capturing formally object reference structures that
occur frequently in object-oriented systems. For example, consider a system
consisting of car and wheel objects where each car has attributes referencing
its wheel objects. If wheels are not shared between cars, distinct car objects
will reference distinct wheel objects. In this paper we distinguish such object
references by saying that a car object (directly) contains the wheel objects
it references. The nature of the contained object references as suggested by
this example is captured within a formal framework and incorporated into the
Object-7Z specification language. Object containment is then compared with
related ideas found in object-oriented programming languages. The distinc-
tion between object containment and the notion of object ownership (control)
is also discussed. Finally, a generalised notion of object containment is inves-
tigated.

1 Introduction

In object-oriented systems, references between objects are maintained so as to fa-
cilitate inter-object communication[Boo91, GR89, Mey88|. For example, consider a
banking system consisting of account objects, customer objects and bank objects. In
such a system, a customer object will have attributes whose values reference account
objects. These references enables customers to operate their accounts (e.g. to make
deposits, withdraws, etc.). If a bank permits shared accounts, several customers
may even reference the same account. In addition, an account object may well have
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an attribute whose value is a reference to a customer object, so that access to the
account can be authorised. Furthermore, a bank object will have attributes whose
values reference account objects, so that the bank can operate the accounts for the
purpose of adding charges or changing credit limits.

The association between objects determined by the object references in a system
will generally result in a complex structure whose design and specification is a cru-
cial part of the development and implementation of the system. The aim of this
paper is to look at ways of capturing formally object reference structures that occur
frequently in object-oriented systems.

As an example, suppose that in a banking system no account is shared between
banks. In this case it would follow that any account referenced by one bank is
distinct from any account referenced by a different bank. When giving a formal
specification of this banking system, such an important structural property of the
object references should be clearly captured by the specification, ideally as a global
system invariant.

As another example, consider a system consisting of car objects and wheel objects.
Each car will have attributes that reference its wheel objects. If wheels are not
shared between cars, distinct car objects will reference distinct wheel objects.

In this paper we formally investigate the general nature of the object references
implicit in the last two examples. The properties of such object references are
captured within a formal framework and incorporated into the object-Z[DKRS91,
Ros92] specification language as predicate rules (resembling in flavour the axioms of
combinatorial geometric structures such a s projective planes).

The example above of the car and its wheels suggests a notion of geographical
location (a car physically contains its wheels) and for this reason we refer to the
resulting object-references as containment, i.e. a car object is said to (directly)
contain the wheel objects it references. As the banking system illustrates, however,
the structure of object containment also arises in situations where the objects have
no relevant geographical location: it would be inappropriate to think of an account
object as being physically contained within a bank object, but nevertheless, because
distinct banks reference distinct accounts, a bank object is said to (directly) contain
the account objects it references. In the paper this notion of object containment is
precisely characterised by its (geometric) properties.

In general, some attributes of an object will reference contained objects, and other
attributes will not. For example, in addition to the references to its contained wheel
objects, a car object may well reference a person object corresponding to the owner
of the car. We would not expect the person reference to denote object containment
as a person may well own several cars. That is, in general an object ‘has a’ set of
references to other objects, only some of which may be ‘contained’ references in the
sense defined in this paper.

Various notions of object association, such as aggregation and composition, have
been discussed in the literature[CY91, Civ93, DT93, HS92, Lif93, Nie93, Ode92].
Our notion of containment has features in common with them, but is not identical to
any. A notion of containment is also defined by Kilov and Ross[KR94] in extended
Object-Z and used (as a hierarchical subordination) in a way different from the
treatment in this paper.



In this paper, the properties implied by object containment are modelled by a con-
straint relationship between objects. Two examples are presented in Section 2 to
demonstrate that this containment relationship can be captured explicitly in Object-
7 by predicates in the state invariant of a class. However, when a system is large and
complex, capturing the properties of the containment relationship explicitly in this
way is cumbersome. Therefore, in Section 3 an extension of the Object-7Z notation
is introduced to capture directly the geometric notion of object containment.

The notion of object containment is also partially supported by some object-oriented
programming languages. Object containment in object-oriented programming lan-
guages such as Fiffel[Mey92] (expanded class type) and C+4[Str86] (object type) is
discussed and compared to our notion in Section 4.

In many object-oriented systems, object containment is closely related to object
ownership: an object will have exclusive control of any object it contains. However,
in this paper we view object containment as a purely geometric notion, quite distinct
from the issue of object ownership. An example in Section 5 illustrates this.

Objects may overlap or share contained objects, e.g. two rooms may share a wall
in a building. An object may also contain only part of another object, e.g. a street
may pass though and hence be partially contained by several suburbs. In Section 6
this generalised view of object containment is illustrated and formally captured in
Object-Z.

Finally, the geometry of object containment can be applied to simplify the speci-
fication of abstract recursive structures, such as trees and directed acyclic graphs.
Examples are presented in Section 7.

For those readers not familiar with Object-7Z, a glossary of the notation used in
this paper, together with a brief introduction to Object-Z is given in an appendix.

Further details are given in [DKRS91] and [Ros92].

2 Capturing the Properties of Containment

In this section the properties of object containment are stated precisely. The notion
of object containment informally introduced in the last section suggests a forest-
like geometric relationship between contained objects. As a motivating example, in
Figure 1 u, v, w,z,y and z denote objects where u directly contains w and =z, and
similarly w directly contains y and z, but u and v are not related by containment,
and neither are w and z. In this case object u indirectly contains y and z.

Figure 1 is based on an idea of geographical object location. However, object con-
tainment can arise in systems where the objects are not related geographically.
Nevertheless, the figure suggests two geometric ideas that characterise the general
notion of object containment?:

(1) an object cannot directly or indirectly contain itself; and

(2) an object cannot be directly contained within two distinct objects.

?In this paper, the term ‘geometry’ is used in a combinatorial sense. A geometric structure is
defined by the rules that determine whether or not one object ‘contains’ another. Like projective
geometries, no geographical notion of physical location is implied by the term.



O
Figure 1: The geometry of object containment

To capture these ideas formally, let O denote the universe of all object identities in

a system[DD93], and let
decon : 0« O

denote the relation whereby
0by dcon ob,

if and only if object 0b; has a reference to a directly contained object 0by;. Put
another way, dcon is the set of all those ordered pairs (0bq, 0by) of (identities of)
objects in the system where o0b; directly contains o0b,.

The first condition above requires that
Fob: O e ob dcon™ ob

where dcon™ is the transitive closure of dcon. The second condition requires that
deon™ € O + O

(i.e. the inverse of the relation deon) is a partial function.

In any system, the relation deon is not static; it will change dynamically if object
relocation i1s permitted, i.e. if there are operations in the system that affect the
containment geometry. This is discussed further in Section 3.4.

When specifying an object-oriented system using Object-Z, the above two properties
of object containment can be captured explicitly by class invariants, as is illustrated
in the following two examples.

2.1 Example: Terminal Location

Consider the situation where a campus consists of a set of buildings, with each
building containing a set of rooms and each room containing a (possibly empty) set
of terminals. A specification in Object-Z would be

Terminal Room

[details of state and operations
omitted]

ts : P Terminal

[details of operations omitted|




_ Building _ Campus

rs : P Room bs : P Building
Vry,rp:rse Vby,by: bs e
71 7£ Ty = b 7£ by =
rn.isNrls = O bi.rsNby.rs =@
Vory:birs; rp:by.rs e
[details of operations omitted] s Ny ls = O
[details of operations omitted]

The class invariant of the Building class captures the idea that no terminal can be
in two distinct rooms in a building. Similarly, the class invariant of the Campus
class captures the idea that no room can be in two distinct buildings of the campus.
Furthermore, despite the fact that the predicate of the Building class states that no
terminal can be in two distinct rooms, as this applies only to the rooms of a given
building it says nothing about rooms in distinct buildings. Hence the predicate

Vo :byrs; rp i by.rs @ rdisNimyls = O

needs to be conjoined to the predicate of the Campus class.

Clearly, capturing the properties of object containment explicitly in this way is
cumbersome, particular if the system is large and complex. We would like to be
able to give a global invariant that captures directly the condition that distinct
rooms anywhere contain distinct terminals, and distinct buildings anywhere contain
distinct rooms. The condition that distinct rooms contain distinct terminals, for
example, is not an internal invariant of the Room class, but rather an invariant of
any system containing room objects; nevertheless, it would be convenient to be able
to attach such global conditions directly to the Room class. A way of doing this is
given in Section 3.

2.2 Example: Russian Dolls

Object containment is sometimes an important property of recursive structures.
For example, consider the situation of Russian dolls. Each doll is either solid or
hollow, and each hollow doll contains another doll that is itself solid or hollow. The
fundamental property of this set of recursively embedded dolls is that no doll directly
or indirectly contains itself.

An object-oriented specification in Object-Z would be
Doll = Solid U Hollow

Solid _ Hollow
dolls : P Doll instde : Doll
dolls = & dolls : P Doll

dolls = {inside} U inside.dolls
self & dolls




The attribute inside identifies the doll directly contained within a hollow doll; the
attribute dolls denotes the set of all dolls directly or indirectly contained within a
doll. By specifying Doll to be the union® of the classes Solid and Hollow, the doll
identified by inside is either solid or hollow.

The predicate self € dolls of the class Hollow ensures that a doll does not directly
or indirectly contain itself. Note that self represents an object’s own identity (see

[DRI3] for details).

This specification takes an object-oriented view, modelling each doll as an object
with a unique identity. It could be argued that it is more complex than a functional
recursive specification using the 7 free type[Smi91]. However, when object contain-
ment is captured by global predicates in Section 3, the object-oriented specification
mimics in style the definition using free types.

3 Capturing the Geometry of Containment

In the examples in the last section, the properties of object containment were for-
mally captured in Object-Z by writing explicit class invariants. There are several
consequences of that approach:

e The invariants that result can be complex, particularly as object containment
is often a significant aspect of a system’s design.

e An appropriate invariant needs to be placed in each relevant class. As the
invariant is capturing the same concept of object containment in each case,
the specification can become repetitious.

e Only the properties that follow from object containment are being captured by
the invariant. The geometric notion as to which objects are actually contained
within a given object is not explicitly stated.

In this section, specific notation is introduced into Object-Z to capture directly the
geometric relationship of object containment. This notation enables the specifier
to state explicitly, as part of the class specification, which objects will be directly
contained within an object of that class.

To be precise, let each class have an implicitly declared attribute
deontain : PO

where the value of dcontain is the set of directly contained objects. Then in any
system the relation

deon : O « O
introduced in Section 2 is determined by

Vobi,o0by: Qe

oby dcon 0by & 0by € 0by.dcontain.

3The notion of class union is discussed in detail in [DD93].



The properties of the relation deon (as stated in Section 2) imply invariant conditions
on the system that need not be stated explicitly. In terms of the attribute dcontain
these conditions are:

Bs:seqO o
#s>1
Vi:l..#s—1es(i+1)¢€ s(i).dcontain
(1) = s(s) det)

(i.e. no object directly or indirectly contains itself)

Vobi,o0by: Qe
oby # oby = oby.dcontain N oby.dcontain = & [de2]

(i.e. no object is directly contained in two distinct objects). The two predicates del
and de2 are global invariants of any Object-7 specification.

3.1 Examples Revisited

With this notation the specification of both the terminal-location and Russian-dolls
systems is significantly simplified.

Terminal Location

Terminal _ Room
[details ]of state and operations ts P Terminal
omitted

dcontain = s

[details of operations omitted|

_ Building _ Campus
rs : P Room bs : P Building
dcontain = rs dcontain = bs
[details of operations omitted] [details of operations omitted|

Russian Dolls

Doll = Solid U Hollow

Solid Hollow
|7 dcontain = & instde : Doll
dcontain = {inside}




In both these examples, there are implicit class invariants that follow directly from
the properties of dcontain stated above. Indeed, from these properties the explicit
class invariants given in Sections 2.1 and 2.2 can be deduced.

The convention is adopted that no mention of dcontain need be made if there are
no contained objects. Therefore the predicate decontain = @ can be omitted from

the class Solid.

3.2 A Notational Simplification

If the role of an attribute is to always identify directly contained objects, this can
be indicated when the attribute is declared by appending a subscript ‘g’ to the
appropriate type. This removes the necessity to write an explicit predicate involving
dcontain. For example, adopting this syntactic convention, the relevant classes in
the specification of the terminal location system become

Room Building Campus

ts : P Terminalg rs : P Roomg bs : P Buildingg

while the specification of the Russian-dolls system become

Doll = Solid U Hollow

o Solid Hollow

instde = Dollg

The subscript ‘g’ is appended to the type of the attribute rather then the attribute
itself because the attribute may identify a complex data structure rather than an
object reference. For example, the declaration

ts : P Terminalg

in the Room class declares {s to be a set, not an object reference. From its type, ts is
a set of references to objects of class Terminal; the g implies these references are to
contained objects. Type declarations involving g can be converted into declarations
that directly use the attribute dcontain instead; for instance:

X X
as: PAg as:PA
bl : seq Bg bl : seq B
cf 1N+ Cg ef N+ C
dl, dg : D@ dl, dg : D
e: F e: F
fs:PF fs:PF
) ) deontain = as U (ran bl)
is a syntactic shorthand for — U (ran ¢f) U {dy, dy)




Notice that a syntactic simplification using g cannot always be applied, e.g. suppose
A is some class and Y is a class defined by

Y

sa:PA

dcontain C sa

[other details omitted]

The declaration sa : P Ag would not be a correct simplification in this case. However
this situation, when the value of deontain is not explicitly determined, does not often
arise when modelling real systems.

3.3 Indirectly Contained Objects

Although the introduction of the attribute dcontain is sufficient to capture the
above properties of containment, it is often useful to explicitly identify all those
objects that a given object directly or indirectly contains. For example, considering
the terminal-location system, suppose an operation exists to output the number of
terminals which are contained in the campus. The Campus class would then be

— Campus

_ Numberof Terminals
bs : P Buildingg num!: N

num! = #{t : Terminal | (b : bs o
dr:brset € r.ts)}

The predicate of the operation NumberofTerminals can be captured more easily if
each class has an implicitly declared attribute

contain : PO,

where the value of contain is the set of directly or indirectly contained objects, i.e.
in terms of the relation dcon introduced in Section 2,

YVoi,0, : O @0y € 0g.contain & o0y decon™ o;.
To be precise, every class has an implicit class invariant

contain = {ob: 0 |Is:seq, O o
s(1) € deontain

s(#s) = ob
Vi:l..#s—1es(i+1) € s(i).decontain}.

The predicate of the operation NumberofTerminals can now be written as
num! = #(contain N Terminal).

Notice that in terms of the attribute contain, the global invariant del becomes

Yob:0 e ob & ob.contain.



3.4 Object Relocation

The geometry of object containment of a system is dynamic because a contained
object can relocate from one container to another in the system. For example,
considering again the terminal-location system, suppose operations exist to add a
terminal to a room, to remove a terminal from a room and to transfer a terminal
from one room to another inside a building. The appropriate part of the system
specification would then become

__ Room
ts : P Terminalg
_Add _Remove
Al(ts) A(ts)
t? : Terminal t? : Terminal
17 ts Nts' =ts U {7} tTets Nts' =ts — {17}
__ Building
rs : P Roomg
_SelectRoom _Select2 Rooms
r?: Room r?, 57 1 Room
r? € rs mT £t A{r?,ntt Crs

Add = SelectRoom e r?.Add
Remove = SelectRoom e r?. Remove
Transfer = Select2 Rooms e 7. Remove || r27.Add

It is to be understood that the A-list of the operations Add and Remowve in the
Room class implicitly includes the attributes dcontain and contain as these values
are subject to change whenever the value of the state variable {s changes®.

Notice that the implicit conditions implied by the geometry of object containment
will be maintained at all times®. For instance, it will be the case, even although
it has not been stated explicitly within the Add operation schema that the new
terminal added to the room is not already in any other room on the campus.

In some cases, a contained object may be a fixed component of its containing object,
i.e. object relocation may not be possible. For example, a room is usually a fixed
component of a building. This i1s implicitly captured by having no operation that
can change the attribute rs in the class Building.

*In effect, the attributes dcontain and contain are dependent attributes implicitly occurring in
every A-list (for details see [DR93]).

°In Z and Object-Z the state invariant must hold before and after each operation.
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4 Containment in Programming Languages

Some object-oriented programming languages support a view of object containment.
In Eiffel, for instance, if the type of an attribute is an expanded class, the value of
the attribute will be an actual object rather than an object reference. In effect, an
attribute of expanded class type denotes a contained object. A consequence of this
is that although the internal values of a contained object can be updated directly,
relocation is not possible: the contained object is treated as a fixed component.
Furthermore, both value semantics and reference semantics for objects needs to be
defined. This contrasts with the approach adopted in this paper where reference
semantics for objects is uniformly maintained. Not only does this simplify the
Object-Z semantics, but it permits the relocation of contained objects.

To illustrate this distinction, consider a car that contains four wheel objects and
references an owner object. In Eiffel this would be ©

class Car feature
wl, w2, w3, w4 :expanded class Wheel
owner: Person

end - - class Car

while in Object-Z it would be
— Car

wl, w2, w3, wd : Wheelg
owner : Person

#{wl, w2, w3, wi} =4

The Car class invariant states that the four wheels are distinct.

Pictorially, the Eiffel and Object-Z models are given in Figure 2, where a dotted or
solid arrow denotes an object reference, with the solid arrow denoting a reference
corresponding to containment. In Object-Z, operations can be specified to allow a
wheel of a car to be switched to a different position or even replaced. However, in
Eiffel the use of the expanded class type means that such operations are not possible.

The value semantics of the Eiffel exzpanded class type also ensures that no aliasing”
is possible for any object of such a class. If the source (right hand side) of an
assignment is an object of expanded class type then the value of the source object is
copied to the target; a reference to the source object is not copied. A consequence
is that, in Eiffel, an object is the unique client of any object of expanded class type
it contains; in effect, a client has exclusive control of its contained objects. This
provides for aliasing protection, although with this approach the notions of control
and containment are not distinguished; this issue is discussed further in Section 5.

5A similar example can be found in [Mey92].
“Aliasing occurs when an object can be accessed in more than one way, see [dCLF93, Hog91,
Mey88].
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Eiffel model Person

wl w3
W2 O owner w4
Car
N\ J
Object-Z model Person
4 N

Ow1 w3

O owner

w2 w4
Car

Figure 2: Containment in Eiffel and Object-Z

C++ has a notion of object containment similar to that of Eiffel except it makes
object containment the default class type and containment does not imply unique
control; i.e. C++ does not allow the relocation of a contained object from one
container to another, but it does allow a contained object to be referenced by objects
other than its containing object. In C++, the car example would be

class Car {

Wheel wl,w2,w3, w4

*

Person *owner

5 Containment and Control

In object-oriented systems it is sometimes the case that a contained object is actually
owned by the containing object, i.e. the containing object has exclusive control of

12



the contained object, e.g. as in Eiffel. However, the notions of containment and
control are in general quite distinct and should not be confused in system modelling:
containment is concerned with the relative geometry of objects; control is concerned
with access, i.e. the right of one object to send a message to another object. Often
within object-oriented systems the case arises when one object contained within
another can be sent messages by a third object elsewhere in the system. This is
illustrated in the following example.

5.1 Example: A Banking System

A banking system consists of account objects, customer objects and bank objects.
An account has a balance, a limit below which the balance must not fall and a set
of owners who can operate the account by making deposits or withdraws. Each
account is contained within a bank (i.e. an account is referenced by a unique bank)
which is able to change the limit of the account. We shall suppose that an account
may be shared between customers. In Object-Z this becomes

__ Account

bal, lim : Z

owners : P Customer

bal > lim A owners # @

Deposit _—_Withdraw_____ChangeLimit
A(bal) A(bal) A(lim)
n?: N n?: N n?: N
bal' = bal + n? bal' = bal — n? lim' = n?
_ Customer

accs : P Account

Ya: accs o self € a.owners

Deposilt = [a : aces]  a.Deposit
Withdraw = [a : aces] o a. Withdraw

Bank

accs : P Accounlg

ChangeLimit = [a : accs] o a.ChangeLimit

A banking system consists of a set of banks and a set of customers.

13



— BankingSystem

banks : P Bank

customers : P Customer

U{b : banks & b.aces} = |J{c : customers o c.accs}

Deposilt = [c¢ : customers] o ¢.Deposit
Withdraw = [c : customers] o ¢. Withdraw

ChangeLimit = [b : banks] e b.ChangeLimit

The state invariant of this class ensures that the accounts contained in banks are

precisely those accounts owned by customers.

Banking System

banks customers

- - e =

customer

? L
banl; v

accounts

" customer .

customer

Figure 3: A banking system

Because accounts are contained in banks, the set of accounts is partitioned between
the banks, 1.e. each account is uniquely associated with a bank. However, customers
control the balance of accounts owned by them, while the banks control only the
limit of the accounts they contain. The object-reference structure of this banking
system is illustrated in Figure 3 (where a dotted or solid arrow denotes an object

14



reference, with the solid arrow denoting a reference corresponding to containment).

6 Modelling Shared Containment

The geometric notion of object containment considered so far in this paper has been
that of unique containment, i.e. an object cannot be directly contained within two
distinct objects. However, this is not the only containment geometry found within
real systems. In general, objects may overlap and share contained objects, e.g. two
rooms may share a wall in a building. Furthermore, in some systems an object
may contain only part of another object, e.g. a street may be located in several
suburbs and hence is partially contained by each of the suburbs that share it. That

is, property (2) in the early part of Section 2 holds for unique containment, but not
for a more general notion of shared containment.

The geometric complexities that arise with this notion of shared containment are
illustrated in Figure 4. In that figure, object s is directly, but only partially, con-
tained and shared by the three objects ¢, r and t. On the other hand, ¢ is directly
and uniquely contained by r. Also, s is indirectly (via ¢) partially contained by r.
The graph on the right hand side of Figure 4 captures the geometric relationships
between objects ¢,r,s and ¢, where a dashed (not dotted) arrow denotes direct
shared containment and a solid arrow denotes direct unique containment.

Figure 4: The geometry of shared containment

Figure 4 suggests three ideas implicit in the notion of shared and unique contain-
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ment:

(1) an object cannot directly or indirectly contain itself, regardless of whether the
containment is shared or unique;

2) an object cannot be directly uniquely contained within two distinct objects
] y quely ]
(as in Section 2); and

(3) for any object, its set of directly contained but sharable objects is disjoint from
its set of directly uniquely contained objects.

To capture these ideas formally, let
sdcon : O « O

denote the relation of direct but sharable containment, i.e.
oby sdcon ob,

if and only if object ob; directly contains but may share object 0by. Let DC' (direct
containment) denote the relation

DC:0«< QO

defined to be the union of the two relations dcon (as defined in Section 2) and sdcon,
ie.

DC = decon U sdcon.
The three conditions above respectively require that

Fob: Qe ob DCT 0b,
deon™ € O + O,
dcon N sdecon = @.

The notion of shared containment can be incorporated into Object-Z in much the
same way that unique containment was modelled in Section 3. Briefly, let every
class have two implicit attributes

sdcontain, scontain : PO

where sdcontain denotes the set of directly contained but sharable objects, while
scontain denotes the directly and indirectly contained but sharable objects. Each
class has an implicit invariant

scontain = {ob : O |
ob & contain
ds:seq; O o
s(1) € (deontain U sdcontain)
s(#s) = ob
Vi:l..#s—1es(i+1)€ (s(i).deontain U s(i).sdcontain)}

16



In terms of the attributes dcontain, contain, sdcontain and scontain, the above con-
ditions on the relations dcon and sdcon imply the following predicates are implicit
invariants of any system:

Bob : Qe ob € (ob.contain U ob.sconlain),
Y o1,09 : O @ 0y # 03 = o0y.dcontain N oy.dcontain = O,
Vob:Q e ob.dcontain N ob.sdcontain = &.

6.1 Example: Walls, Rooms and Buildings

Consider once again a campus consisting of buildings and rooms where each room
in a building has a set of walls each of which may be shared with some other room.
Furthermore, suppose that in the campus the buildings are physically separated so
that no wall is shared between different buildings. An Object-Z specification of the
campus would include the classes

~ Wall _ Building
rs : P Roomg
_ Room ws : P Wallg
ws : P Wallg U{r:rserws} C ws

where the notation ‘g, like the notation ‘g’ introduced in Section 3.2, is a syntactic
simplification identifying the directly contained but sharable objects. Without this
simplification the state schema of the Room class would have been

ws : P Wall

sdeontain = ws

This specification captures explicitly the geometric view that a building uniquely
contains both its rooms and its walls, even although these walls may be shared
between the rooms. Notice that this specification does not demand that each wall
be shared between rooms; rather, it simply indicates that each wall is possibly shared

(i.e. is sharable).

6.2 Example: Buildings, Streets and Suburbs

It is possible for an object within a system to both uniquely contain some objects
and sharably contain others. For instance, consider a town consisting of suburbs,
streets and buildings. An Object-Z specification of the town would include the

classes
_ Building Suburb
bs : P Buildingg
_ Street ss 1 [P Streelg

17



This specification captures explicitly the geometric view that building are unique
contained within suburbs, whereas streets may be contained but shared between
suburbs.

6.3 Other Containment Geometries

Although the geometric notion of unique containment, and to a lesser extent that
of shared containment, captures, in our experience, the geometry most commonly
occurring in real systems, other geometries of object containment are possible. For
example, consider the situation illustrated in Figure 5 where object m partially
contains object n while at the same time n partially contains m.

b
-
1
I
4
|

-

£
e
-

e

Figure 5: The geometry of circular partial containment

Although it would be possible to introduce specific notation to formally capture
such geometries in Object-Z, as such structures only occur quite rarely in practice it
is adequate to capture the properties implied by such geometries explicitly as class
invariants (as in Section 2) when the need arises. An example is given in Section 7,
when modelling the abstract structure of a doubly-linked list.

7 Containment in Abstract Structures

The object references that exist in object-oriented models of abstract recursive struc-
tures such as trees or directed acyclic graphs (DAGs) often satisfy the combinatorial
properties of object containment, and hence the geometry of object containment can
be applied directly when constructing object-oriented models for such structures. As
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an illustration, consider the following (partial) Object-Z specifications of a tree node
and a DAG node where T is a generic type.

TreeNode[ T] DAGnode[T]
value : T value : T
subnodes : P TreeNode[T]g subnodes : P DAGnode[ T

Each node in the tree (or the DAG) has associated with it a value of type 7" and a
(possibly empty) set of subnodes.

The use of object containment in the above examples guarantees a tree (or a DAG)
structure without the need to state explicitly as invariants the properties of such a
structure®.

The notions of unique and shared containment are particularly suitable for modelling
acyclic abstract structures, but inadequate for cyclic structures. For instance, an
Object-Z specification of a node in a doubly-linked list would include

— DLLnode[T)]

value : T

next, prev : DLLnode[T]

next.prev = self = prev.next

where the doubly-linked property is captured by an explicit invariant. As an exam-
ple, consider two instances of the DLLnode[T] class linked together, i.e. where each
one is the next (and prev) of the other. The (circular) object references between
the two instances (nodes) can be viewed as an abstract realisation of the geometry
illustrated in Figure 5.

8 Conclusions

In this paper, the notion of object containment was captured within a formal frame-
work, first by predicates incorporating the properties of containment within class
invariants, and then by extending the Object-Z notation to capture the geometry
of object containment directly. The advantage of this extension is that the prop-
erties of containment follow implicitly and do not need to be stated explicitly by
invariants. Within this formal framework

e reference semantics for objects is sufficient: the introduction of value semantics
(e.g. the expanded class type of Eiffel) is not needed to capture containment;

e there is a clear distinction between object containment and object control: it
is possible to model systems where messages are sent to a contained object by
objects other than the containing object; and

8The specifications of similar abstract structures but without using the containment notion can

be found in [DD94, DR93].
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e relocation of contained objects is possible without compromising the underly-
ing geometry: the structure of containment is maintained implicitly.

The notion of object containment is particularly useful not only to explicitly capture
geometric ideas of object location, but also to specify abstract acyclic structures.

Possible future research will be to use the presented formal framework to capture
other important common object associations (see [KR94]).
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Appendix: Glossary of Notation

Sets, Functions and Relations

N The set of natural numbers, i.e. {0,1,2,...}
%] The empty set
PX Powerset: the set of all subsets of X
#X Size (number of members) of a finite set
{D et} The set of values of the term ¢ for the variables declared in D,
e.g. {n : N e 2« n} is the set of even natural numbers
Us Distributed union of a set of sets,
eg. if SEPPX then US={z:X|ds:Sexcs}
X xY Cartesian product: the set of ordered pairs
X Y The set of all relations from X to Y;
a relation from X to Y is a subset of X x Y
T Ry z is related by the relation R to y, ie. (z,y) € R
X =Y The set of partial functions from X to Y;
the domain of the function is not necessarily all of X
R* The transitive closure of relation R,
i.e. a pair (21, x,) is in the relation RT if and only if
there exists a finite sequence 1, 9, ..., z,, where n > 2,

such that (21, 2;) € R, (22,23) € R, ... and (2,_1,2,) € R

Object-Z Overview

Object-7 is an extension of the 7 formal specification language to accommodate
object orientation. The main reason for this extension is to improve the clarity of
large specifications through enhanced structuring.

Classes

A class is a template for objects of that class: for each such object, its states are
instances of the class’ state schema and its individual state transitions conform to
individual operations of the class. An object is said to be an instance of a class and
to evolve according to the definitions of its class.

Syntactically, a class definition is a named box, optionally with generic parame-
ters. In this box the constituents of the class are defined and related. The main
constituents are: a state schema, an initial state schema and operation schemas.

ClassName[generic paramelers|

state schema
initial state schema

operation schemas
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A generic stack example

Consider the following specification of the generic class Stack.

—_Stack[T]
INIT

items : seq T liitems = ()

#Hitems < 100
_ Push _Pop

A(items) A(items)

item? T item! : T

#Hitems < 100 items # ()

items’ = (item?) ™ items items = (item!) 7 ilems’

The state schema is nameless and contains declarations (the attributes) above the
short dividing line and a predicate (class invariant) below the line. In this example,
it has one attribute items denoting a sequence of elements of the generic type T.
The class invariant stipulates that the size of the sequence cannot exceed 100.

The initial state schema is distinguished by the keyword Inrr. The state schema is
implicitly included in the initial state schema. In this example, an initialised stack
contains no elements of T (i.e. items is the empty sequence).

The remaining two schemas are operation schemas. Operation schemas have a A-
list of those attributes whose values may change. By convention, no A-list means
no attribute changes value. FEvery operation schema implicitly includes the state
schema in un-primed form (the state before the operation) and primed form (the
state after the operation). Hence the class invariant holds at all times: in each
possible initial state and before and after each operation.

In this example, operation Push prepends a given input item? to the existing se-
quence of items provided the stack has not already reached its maximum size (an
identifier ending in ‘?” denotes an input). Operation Pop outputs a value item!
defined as the head of sequence items and reduces items to the tail of its original
value (an identifier ending in ‘!” denotes an output).

Instantiation

Objects may have object references as attributes, i.e. conceptually, an object may
have constituent objects. Such references may either be individually named or occur
in aggregates. For example, the declaration ¢ : (' declares ¢ to be a reference to an
object of the class described by C'. A declaration ¢, d : (' need not mean that ¢ and
d reference distinct objects. If the intention is that they do so at all times, then the
predicate ¢ # d would be included in the class invariant.

The term c.att denotes the value of attribute att of the object referenced by ¢, and
¢.Op denotes the evolution of the object according to the definition of Op in the
class C.
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Stack Aggregation Example

Suppose we want to model an aggregate of stacks with operations to push an item
onto, or pop an item off, any stack in the aggregation, and to transfer an item from
one stack to another.

—Stacks[T]
_INrT
stacks : P Stack[T] Vs : stacks e s.INIT
_SelectStack _Select TwoStacks
s7: Stack[T] $17, 827 Stack[T)|
s? € stacks 517 # 597
{517, 8,7} C stacks

Push = SelectStack e s?.Push
Pop = SelectStack o s7.Pop
Transfer = Select TwoStacks e ($17.Pop || s2?.Push)

The declaration stacks : P Stack[T] models an aggregate of stack objects.

Evolution of a constituent stack object in the aggregate is effected by defining a se-
lection environment such as SelectStack that selects a stack; the operations Push and
Pop are then applied to the chosen object. (The notation schema; o schemas; means
that variables declared in the signature of schema; are accessible when interpreting
schemas.)

Two stack objects of the aggregate may be selected by Select TwoStacks to undergo
an evolutionary step concurrently. The parallel operator, ‘||, used in the definition
of Transfer achieves inter-object communication: the operator conjoins operation
schemas but also identifies (equates) and hides inputs and outputs having the same
type and basename (i.e. apart from ‘?” or ‘I’).

Further details on Object-Z are given in [DKRS91] and [Ros92].
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