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ABSTRACT

The challenge for complex systems specification is how to visually and precisely capture static, dynamic and real-time system properties in a highly structured way. In particular, requirement specifications for composite systems often involve capturing concurrent interactions between software control parts and physical system components/devices. The requirement specifications of such systems need to capture the structure and behavior of each individual physical/software components and their communications. In this paper, we investigate the links between the graphical notation UML and an integrated formal notation. We present an effective combination of UML and an integrated formal method for the requirement specification of a light control system.

INTRODUCTION

Requirements capture is a key activity in software and system engineering. The challenge for complex sys­tem requirement specification is how to precisely capture static, dynamic and real-time system properties in a highly structured way. In particular, composite systems (Feather, 1987) often involve concurrent interactions between software control parts and physical system components/devices. The requirement specifications of such sys­tems need to capture the structure and behavior of physical/software components and their communications. Formal methods are well known for their precision and expressiveness in specifying software and system requirements (Crow & Vito, 1998, Dandenne, Lamsweerde, & Fickas, 1993, Dubois, Yu, & Petit, 1998, Hesketh, et al, 1998, Leveson et al., 1994). However, formal specification techniques are not well integrated with existing industrial requirement analysis practices (Darimont, Heisel, & Souquieres, 1999) and have a significant barrier to entry. On the other hand, though graphical notations are easy to adopt, they lack formal semantics and have scale­up problems. Combinations of the two have been found successful (Grimm, 1998). To fight complexity, structured techniques (for example object-oriented methods) are also needed to properly partition the model into manageable individual components. 

Following the success of conceptual modeling in databases (e.g. ER (Chen, 1976) and NIAM (Nijssen & Halpin, 1989)), many object-oriented modeling methods have been developed during the 1990s. Now those methods and notations have been merged into, the Unified Modeling Language (UML) (Rumbaugh, Jacobson, & Booch, 1999). UML consists of various graphical notations which can capture the static system structure (class diagram), system component behavior (statechart diagram), system component interaction (collaboration and sequence diagram). The shortcomings of UML are: 

· There is no unified formal semantics for all those diagrams. There are a few approaches to formalize a subset of UML, e.g. (Evans & Clark, 1998, Kim & Carrington, 1999) concentrated on class diagram semantics. Therefore, the consistency between diagrams is problematic; and 

· There are limited capabilities for precisely modeling timed concurrency. For example, (in a new feature that has been added to the UML 1.3) synchronization between concurrent substates of a single statechart diagram can be captured using a synch state link. However there is no facility to precisely model synchronous interactions between states in two different statechart diagrams. 

If UML is combined with formal specification techniques, then its power can be further realized and enhanced. We believe that the best companions for UML are likely to be formal object-oriented methods. The two techniques are highly compatible and transparent to each other. One integrated formal object-oriented specification language is Timed Communicating Object Z (TCOZ) (Mahony & Dong, 1998). TCOZ combines the strengths of Object­Z (Duke, Rose, &Smith, 1995) in modeling complex data and state with the strengths of Timed CSP (Schneider & Davies, 1995) in modeling real-time concurrency. In addition to CSP's channel­based communication mechanism, in which messages represent discrete synchronizations between processes, TCOZ is extended with continuous­function interface mechanisms inspired by process control theory, the sensors and the actuators (Mahony & Dong, 1999). Therefore, a combination of UML and TCOZ would be a good solution to the requirement specification of timed reactive control systems. 

The key technique ideas in this approach are:

· Syntactically, UML/OCL (Object Constraint Language) is extended with TCOZ communication interface types --- chan, sensor and actuator. Upon that, TCOZ sub­expressions can be used (in the same role as OCL) in the statechart diagrams and collaboration diagrams. 

· Semantically, UML class diagrams are identified with the signatures of the TCOZ classes. The states of the UML statechart are identified with the TCOZ processes (operations) and the state transition links are identified with TCOZ events/guards. 

· Effectively, UML diagrams can be seen as the viewpoint visual projections from a unified formal TCOZ model. 

In this paper, we illustrate such an effective combination of UML and TCOZ through the requirement specification of a light control system (LCS). The specification/design processes of this approach are: 

1. Firstly, the UML use­case models (user­case and collaboration diagrams) are used to analyse LCS re­quirements so that main classes and operations will be identified (e.g. classification of the boundary and control classes). Communication links of the collaboration diagrams guide the design of communication interfaces of the TCOZ model (synchronization --- channel, synchronization --- sensor/actuator). 

2. Then, the UML class diagrams are used to capture the static structure of the LCS systems, in which class/object relationships can be captured. 

3. Based on UML class diagrams, detailed TCOZ formal models are constructed in a bottom­up style. The states, timing and concurrent interactions of the system objects are captured precisely in the TCOZ models. 

4. Finally, UML state diagrams are used to visualize the behaviors (process states and events) of essential components of the LCS system, which are closely associated with the behavior parts of the TCOZ model. 

The remainder of the paper is organized as follows. Section 2 briefly introduces the TCOZ notation. A glossary is attached in Appendix A. Section 3 presents a brief outline of LCS and the UML use case analysis models. Section 4 presents UML class/state diagrams with TCOZ models for LCS requirements. Section 5 concludes the paper.

TCOZ FEATURES

Timed Communicating Object Z (TCOZ) (Mahony & Dong, 1998) is essentially a blending of Object­Z (Duke et al., 1995) with Timed CSP (Scheneider & Davies, 1995), for the most part preserving them as proper sub­languages of the blended notation. The essence of this blending is the identification of Object­Z operation specification schemas with terminating CSP processes. Thus operation schemas and CSP processes occupy the same syntactic and semantic category, operation schema expressions may appear wherever processes may appear in CSP and CSP process definitions may appear wherever operation definitions may appear in Object­Z. The primary specification-structuring device in TCOZ is the Object­Z class mechanism. 

In this section we briefly consider various aspects of TCOZ. A detailed introduction to TCOZ and its Timed CSP and Object­Z features may be found elsewhere. The formal semantics of TCOZ is also documented (Mahony & Dong, 1999). 

A Model of Time 

In TCOZ, all timing information is represented as real valued measurements in seconds, the SI standard unit of time. We believe that a mature approach to measurement and measurement standards is essential to the application of formal techniques to systems engineering problems. In order to support the use of standard units of measurement, extensions to the Z typing system suggested by Hayes and Mahony (1995) are adopted. Under this convention, time  quantities are represented by the type 
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where R represents the real numbers and T is the SI symbol for dimensions of time. Time literals consist of a real number literal annotated with a symbol representing a unit of time. All the arithmetic operators are extended in the obvious way to allow calculations involving units of measurement. 

Interface -- channels, sensors and actuators 

CSP channels are given an independent, first class role in TCOZ. In order to support the role of CSP channels, the state schema convention is extended to allow the declaration of communication channels. If c is to be used as a communication channel by any of the operations of a class, then it must be declared in the state schema to be of type chan. Channels are type heterogeneous and may carry communications of any type. Contrary to the conventions adopted for internal state attributes, channels are viewed as shared (global) rather than as encapsulated entities. This is an essential consequence of their role as communications interfaces between objects. The introduction of channels to TCOZ reduces the need to reference other classes in class definitions, thereby enhancing the modularity of system specifications. Complementary to the synchronizing CSP channel mechanism, TCOZ also adopts a non­synchronizing shared variable mechanism. A declaration of the form s : X sensor provides a channel­like interface for using the shared variable s as an input. A declaration of the form s : X actuator provides a local­variable­like interface for using the shared variable s as an output. Sensors and actuators may appear either at the system boundary (usually describing how global analog quantities are sampled from, or generated by the digital subsystem) or else within the system (providing a convenient mechanism for describing local communications which do not require synchronizations). The shift from closed to open systems necessitates close attention to issues of control, an area where both Z and CSP are weak (Zave & Jackson, 1997). We believe that TCOZ with the actuator and sensor can be a good candidate for specifying open control systems. Mahony and Dong (1999) recently presented detailed discussion on TCOZ sensor and actuators. 

Active Objects 

Active objects have their own thread of control, while passive objects are controlled by other objects in a system. In TCOZ, an identifier MAIN (non­terminating process) is used to determine the behavior of active objects of a given class (Dong & Mahony, 1998). The MAIN operation is optional in a class definition. It only appears in a class definition when the objects of that class are active objects. Classes for defining passive objects will not have the MAIN definition, but may contain CSP process constructors. If ob1 and ob2 are active objects of the class C, then the independent parallel composition behavior of the two objects can be represented as ob1 ||| ob2, which means              ob1 ( MAIN ||| ob2 ( MAIN . 

Semantics of TCOZ 

A separate paper details the blended state/event process model which forms the basis for the TCOZ semantics (Mahony & Dong, 1998). In brief, the semantic approach is to identify the notions of operation and process by providing a process interpretation of the Z operation schema construct. TCOZ differs from many other approaches to blending Object­Z with a process algebra in that it does not identify operations with events. Instead an unspecified, fine-grained, collection of state­update events is hypothesized. Operation schemas are modeled by the collection of those sequences of update events that achieve the state change described by the schema. This means that there is no semantic difference between a Z operation schema and a CSP process. It therefore makes sense to also identify their syntactic classes. 

The process model used by TCOZ consists of sets of tuples consisting of: an initial state; a trace (a sequence of time stamped events, including update­events), a refusal (a record what and when events are refused by the process), and a divergence (a record of if and when the process diverged). The trace/refusal pair is called a failure and the overall model the state/failures/divergences model. The state of the process at any given time is the initial state updated by all of the updates that have occurred up to that time. If an event trace terminates (that is if a √ event occurs), then the state at the time of termination is called the final state. 

The process model of an operation schema consists of all initial states and update traces (terminated with a √) such that the initial state and the final state satisfy the relation described by the schema. If no legal final state exists for a given initial state, the operation diverges immediately. An advantage of this semantics is that it allows CSP process refinement to agree with Z operation refinement. 

Network Topologies 

The syntactic structure of the CSP synchronisation operator is convenient only in the case of pipe­line like communication topologies. Expressing more complex communication topologies generally results in unacceptably complicated expressions. In TCOZ, a graph­based approach is adopted to represent the network topology (Mahony & Dong, 1998). For example, consider that processes A and B communicate privately through the interface ab, processes A and C communicate privately through the interface ac, and processes B and C communicate privately through the interface bc. This network topology of A, B and C may be described by
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Other forms of lax usage allow network connections with multiple channels above the arrow, for example if processes D and F communicate privately through the channel/sensor­actuator df1 and df2, then
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LCS AND USE CASE MODEL 

In most existing light control systems, all lights are controlled manually. Electrical energy is wasted by lighting rooms that are not occupied and by not adjusting light levels relative to need and daylight. LCS is an intelligent control system. It can detect the occupation of the building, then turn on or turn off the lights automatically. It is able to tune illumination in the building according to the outside light level. It gains input from sensors and actuators. The LCS presented here is a simplified version of a complex light control system presented by Feldman et al (1999). 

The Unified Modeling Language is a recent synthesis of earlier object design languages. The essential UML software process model is use­case driven. The Rational Rose2000 Enterprise case tool was used in constructing the UML models for LCS requirements. 

Firstly, we identify the actor in the LCS --- the occupant. The top-level use case model is depicted in Figure 1. Collaboration diagrams and sequence diagrams can be used to realize detailed use cases and they can be converted to each other. Collaboration diagrams are chosen for detailed use case analysis.
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As there are many use­cases in a system, we need to prioritize them. The most essential ones are when occupants enter or exit a room. For example, when a user enters a room: a motion detector senses the presence of the person, the room controller reacts by the retrieving current daylight level and turning on the light group with appropriate illumination setting. When a user leaves a room (leaving it empty): the detector senses no movement, the room controller waits absenT time units and then turns off the light group. Finally, the occupant can directly turn on/off the lightgroup by pushing the button. The collaboration diagram in Figure 2 captures these usecases. The role of message in the collaboration diagram is indicated by the associated arrow's direction (indicating the data flow direction) and the arrow's properties (synchronous/asynchronous). This provides guidelines for constructing the TCOZ communication interfaces in terms of channels and sensor/actuators.

UML AND TCOZ MODELS 

In this section, UML and TCOZ are used to specify the LCS requirements. From the use case analysis activity, a few analysis classes are identified. Specifically, the boundary classes of LCS include the motion detector, the outdoor­sensor and the light group. The control class is the room controller. Physical composite components, such as rooms, can be composed from the boundary objects. For example, a room can be specified as a composite object that consists of an outdoor­sensor, a motion detector and a lightgroup. 

As the second step in the developing process given earlier, the UML class diagram should be used to capture all static aspects of the system, classes, relationship between classes and the overall structure of the system. This step leads to the design stage, in which the static view of the system is presented. Based on this step, the developer can get into the system analysis and design details and build up the whole system. 

Following the second step, detailed TCOZ models could be constructed in a bottom-up style. All elements in the class diagrams modeled in the previous stage, such as boundary objects in the following case study, will be specified using TCOZ. At this step, behaviors of these elements are also specified in the formal model.

The forth step is interleaved with the third step above. Specifically, when behaviors of elements are captured in the TCOZ specifications, UML statecharts are used to visualize the dynamic view of these elements. The projection from formal model to UML statecharts should follow certain guidelines, which are interpreted later where they are applied in the case study.  Frequently, these statecharts can help the developer to find obvious mistakes, such as wrong logic flows in the formal specification, then he/she can return to the third stage to modify and check again. After all elements in the system are specified, the syntactic structure of the whole system will be built up using the network topology technique in TCOZ. This specification will address the analysis (collaboration diagram) in the first step as guidelines in specifying communication interfaces.

The UML class diagram in Figure 3 depicts the structure of the LCS and provides guidelines for constructing the formal TCOZ models.  The LCS system is roughly composed of RoomController and RoomDevices. RoomController serves as controlling the behaviors of the whole system. RoomDevices consists of some physical equipments, OutDoorSensor, LightGroup and MotionDetector. 
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Firstly, let us see how to use TCOZ to specify those boundary objects. 

Boundary classes

The basic data types are defined: 
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The requirements of  the motion detector, outdoor sensor and light group are captured by the following classes. 
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The purpose of the MotionDetector is to detect any movement and send appropriate signals to the room controllers. Timing behavior of the motion detector (when movement/no­movement is detected, system will be notified after 1 second) is captured in the MAIN process.
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The function convert is used to convert the analog signal to a digital signal.
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The purpose of the OutDoorSensor class is to sense outdoor light illumination and send appropriate information to the room controller. Note that the continuous-function sensor interface captures exactly the analog nature of the illumination level from the outside world.
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The ceiling light group in the room has one related push button which is abstractly modeled as the CSP channel button. Another channel dimmer is connected to the control system component. If the occupant manually turns off the light group, there is no point in keeping the controller adjusting the dim value of the light group, so the automatic control should be correspondingly disabled. The control will be enabled when the occupant turns on the light group. The Boolean variable---on, is specified to record the control state. The behavior of a light group can be visualized by the UML statechart diagram in Figure 4 where TCOZ processes and events are corresponding to UML state and state transitions. The overall process behavior is illustrated well by the statechart diagram. The statechart diagram indeed provides visual aid to the formal TCOZ model. Some guidelines to build the statechart are as follows: First of all, we consider each operation in TCOZ model as a state/substate, which may have its own actions or fix some values for a span of time. MAIN is modeled as the state that the startstate leads to. Secondly, events and guards in TCOZ model are viewed as triggers which cause transition of states in the statechart (such as button?1  and [dim=0] in Figure 4),  which totally match the definition of trigger in UML statechart. Thirdly, sometimes, operations can call other operations (this doesn’t happen in this simple case study). In this case, the called operations serve as the substates of the former ones and they compose a composite state in the statechart. If this composite state is too large, we can use the submachine to model it, and then just put the submachine state there and the diagram for the submachine elsewhere.  This is useful when two or more operations call a shared complex operation (mapping to large composite state).
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Physical Composite Components 

Requirement specifications specify not only the software requirements but also their environment, usually physical systems/devices. Physical devices, like boundary objects, have been specified in the previous section. In this section, the room devices are specified as:
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The subscript `©' indicates that the referenced objects (outdoorsensor ; motiondetector ; lg) are contained in their corresponding RoomDevices object. Object containment ensures that no object directly or indirectly contains itself; and no object is directly contained in two distinct objects. For a detailed discussion see (Dong & Duke, 1995). The behavior of a room is that all its components are concurrently and independently running which is captured by the interleave operator |||. Due to the space limitation of the paper, we omit some minor issues of the LCS. Our main aim here is to demonstrate the approach.

Light Control System 

The satisfaction relation between dim values for lights and outdoor light illumination is specified as:
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The room controller is used to control the room light groups. It is specified as 
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The behavior of the room controller can be visualized through the UML state diagram in Figure 5.  Note here MAIN is just the operation Off , and some operations consist of only one other operation and  events/guards(such as Ready). In these cases, two more guidelines for visualization are introduced. One, in order to avoid visualizing the behavior as a single large state MAIN, MAIN is identified with the single operation that MAIN represents and then model it as the content of the single state MAIN. This is demonstrated in Figure 5. Two, in the case the specification of one operation consists of only one other operation and events/guards leading to it, instead of using the substate technique, we model the two operations as two separate states with events/guards as the triggers between them (see Ready and Off in Figure 5) . The aim of this reduction way is also to avoid unnecessary composite states. 
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Now the whole light control system is defined by inclusion of the physical system part and composition of all the room controllers.
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The attribute rd_rc captures the one­to­one relationship between rooms and their corresponding controllers. 

The behavior of the system is the multi­threaded concurrent interaction between the physical system components and their corresponding controllers, which is captured by the distributed TCOZ network topology operator. Note that although the TCOZ model is precise, the data/control flow direction and properties (sync/async) are not obvious in the network topology expression --- it is implicitly captured by the input `?' and output `!'  parameters and their types in lower level components. The collaboration diagrams (e.g. Figure 2) complement this.

RELATED WORKS AND FUTURE TRENDS 

Linking formal and informal methods has been an active area in recent years (Araki, Galloway, Taguchi, 1999, Bryant & Semmens, 1996). From a technical point of view, our approach lies in this area. Others have studied Z and Fusion(France et al., 1997), VDM++(Durr & Katwijk, 1992) and OMT , LOTOS(Wand, Richter, & Cheng, 1997) and OMT, and UML and Object- Z(Dupuy, Ledru, & Chabre-Peccoud, 1997). The main difference is that our approach addresses not only the static aspects but also the dynamic aspects, e.g. TCOZ class behaviors are closely associated to the UML statechart and collaboration diagrams. Another difference is due to the TCOZ integration of state­based (Object­Z) and event­based (Timed CSP) formalisms, whereas Z, Object-Z and VDM++ are only  state­based. The process algebra aspects (processes/events) in TCOZ further link to the dynamic behavior (states/transitions) of UML statechart diagrams. 

One further research topic is to develop systematic translation techniques/tools between UML and TCOZ. Since the current TCOZ specifications are constructed by using Latex (which often considered as). We are currently investigating an XML format of TCOZ specification and a translation tool from Latex to XML. Since UML 1.3 has already support for XMI (XML Metadata Interchange), then the next step is to implement the idea/guidelines of this chapter in an semi-automatic tool to translate/project between TCOZ (XML) models and the UML (XMI) models. 
It is also possible to do some forms of analysis/reasoning using the TCOZ model. For example, the model is constructed such that the question of consistency of the requirement model is equivalent to the TCOZ model being free from deadlocks. The absence of deadlocks can be checked by CSP analysis tools such as FDR (Roscoe 1994). Projection from subset of TCOZ to FDR checkable code would be also an interesting future research area.

CONCLUSION 

This paper demonstrates an effective combination of UML and an integrated formal method (TCOZ) for the requirement specification of a light control system. Through this case study, we find that UML and TCOZ are highly complementary and compatible. The interplay between UML diagrams and TCOZ logical models make the requirement documentation easy to trace and digest. UML provides visual aid to TCOZ, while TCOZ provides a single underlying formal semantic model for all UML diagrams. From another point of view, UML diagrams can be seen as the different viewpoint projections (static, behavior, communication ...etc.) of the formal unified (TCOZ) model. The formal model ensures that UML diagrams are consistent. Perhaps, this work provides a complementary approach to viewpoints work (Easterbrook, 1993, Nuseibeh, Kramer, &Finkelstein, 1994). 

UML use­case models (user­case and collaboration diagrams) can be used to analyze system requirements so that main classes/operations can be identified/classified. For example, after the use case analysis, boundary classes (motion­detector and outdoor­sensor) and control classes (room controllers) are clearly identified.

UML class diagrams can also capture the static structure of the LCS systems, which is a good starting point to construct detailed class models. It provides the basis/guidelines for TCOZ formal model construction. The TCOZ process communication primitives ­ channels, sensors and actuators ­ precisely describe concurrent (synchronous and asynchronous) interactions between physical and control system components. It is appropriate to semantically identify the concept of `state' in UML statechart diagrams with the TCOZ concept of `process' and identify the `state transition' of UML with the TCOZ `event/guard'. In this way, the essential behavior of the LCS system can be visualized/highlighted according to the TCOZ formal model. The communications (concurrent interactions) between system components can also be depicted by the collaboration diagrams. 

We believe that the successful combination of UML and integrated formal methods for requirement specification will provide many useful guidelines for the system design and implementation. 
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A TCOZ GLOSSORY
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output a from channel ¢
enable P only if b

perform P until termination, then perform Q

perform the first enabled of P and Q

perform P with first enabled value of i (external choice)
network topology abstraction with parameters pi, ..., pn
and network connections including p; communicating
with p; on private channels from A

P and Q running without sychronisations

if P does not begin by time , perform Q instead
perform P until exception e, then transfer control to Q























