
A Reasoning Tool for Timed CSP based on Constraint Solving

Jin Song Dong, Ping Hao, Jun Sun, Xian Zhang∗

School of Computing,
National University of Singapore

{dongjs,haoping,sunj,zhangxi5}@comp.nus.edu.sg

Abstract

Timed CSP extends CSP by introducing a capability to
quantify temporal aspects of sequencing and synchroniza-
tion. It is a powerful language to model real-time reac-
tive systems. However, there is no verification tool support
for proving critical properties over systems modelled using
Timed CSP. In this work, we investigate ways of using Con-
straint Logic Programming (CLP) as an underlying reason-
ing tool for Timed CSP. We start with encoding the seman-
tics of Timed CSP in CLP, which allows a systematic trans-
lation of Timed CSP to CLP. Powerful constraint solver like
CLP(R) is then used to prove traditional safety properties
and beyond, e.g., reachability, deadlock-freeness, timewise
refinement relationship, lower or upper bound of a time in-
terval, etc. Finally, we demonstrate the effectiveness of our
approach through a case study of the railway crossing sys-
tem.

1. Introduction

Event-based specification languages like the classic
Communicating Sequential Process (CSP) of Hoare’s [8]
and its timed extension Timed CSP [14], have been pro-
posed for decades. Such specification languages are elegant
and intuitive as well as precise. They have been widely ac-
cepted and applied to a wide arrange of systems, includ-
ing communication protocols, embedded systems, etc [15].
Therefore, it is important that system specified using CSP
or Timed CSP can be proved formally, and even better if
the proving is fully automated.

For CSP, the de facto mechanical verification support
is its model checker FDR (Failure Divergence Refine-
ment [6, 15]), which verifies safety properties and beyond
by showing that there is a refinement relation from the con-
structed CSP model to the CSP process capturing the prop-
erties. There is not yet a mechanized proving method for
Timed CSP due to the complexity of time, e.g. the timed

∗Author for correspondence, phone: +65 68742834, fax: +65
67794580

trace and failure semantics of Timed CSP is far more com-
plex those of CSP. As far as the authors know, the only at-
tempt is Brooke’s work on partial encoding Timed CSP in
PVS [2], which relies on heavy user interaction.

In literature, Constraint Logic Programming (CLP [9]) is
designed for mechanical proving based on constraint solv-
ing. CLP has been applied to model programs and transition
systems for the purpose of verification problems [7, 12]. In
this work, we propose a constraint-based approach for solv-
ing the verification problem of Timed CSP, which readily
implies we handle ordinary CSP as well. In contrast to pre-
vious works using CLP for specification and verification of
real-time systems, our work verifies systems specified using
process algebra instead of finite state machines like Timed
Safety Automata [1]. The challenge is therefore to cope
with the greater expressiveness of Timed CSP and allow ef-
ficient automatic proving.

Our approach starts with encoding the semantics of
Timed CSP in CLP. Both operational and denotational se-
mantics are encoded, which allows a systematic translation
of Timed CSP to CLP. We then go beyond by allowing use-
ful extensions to Timed CSP, for example, the concept of
signal as in [4] for specifying broadcast communication and
some liveness conditions, and integration of Timed CSP and
State-based specifications so that we may specify and verify
systems with non-trivial data structures.

The practical implication of our translation of Timed
CSP to CLP is that powerful constraint solvers like
CLP(R) [10] can be used to prove properties over sys-
tems modelled using Timed CSP. We investigated ways of
proving traditional safety properties and beyond, for ex-
ample reachability, deadlock-freeness, refinement relation-
ship,lower or upper bound of a time interval and etc. The
termination of the proving for regular processes are guar-
anteed by the constraint solving technique called coinduc-
tive tabling [11]. We implemented a prototype as a CLP(R)
program and experimented our encoding with standard real-
time systems like the train crossing system.

This work is partially inspired by the work of Jaffar el
al. [12]. They presented a CLP proof method for Timed

Automata based on a translation of Timed Automata to
CLP. They showed that their approach out performs the
well-known Timed Automata model checker UPPAAL by
allowing a wide range of properties to be verified more ef-
ficiently in some cases. In this work, we investigate the
idea of using CLP to reason about real-time systems in or-
der to build the first mechanical reasoning tool for Timed
CSP. However, because Timed CSP is an event-based pro-
cess algebra, its expressiveness presents a challenge. For
instance, Timed CSP, inherited from CSP, may specify ir-
regular languages, which is certainly beyond the capability
of Timed Automata. Moreover, because Timed Automata
allow a very restricted form of clock constraints, system be-
haviors depend on multiple clock valuation at the same time
can not be modelled. Timed Automata only handle primi-
tive data components. Our approach however allows prov-
ing over systems modelled using irregular processes, with
potentially complicated data structures and etc.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly introduces Timed CSP and the Constraint
Logic Programming. Section 3 illustrates the encoding of
both operational and denotational semantics of Timed CSP
in CLP. A number of useful extensions to Timed CSP are
also considered. Section 4 presents various proving we may
perform over systems modelled using Timed CSP and trans-
lated to CLP. Section 5 illustrates the effectiveness of our
approach with a case study. Section 6 concludes the paper.

2. Background

This section is devoted to a brief introduction of Timed
CSP and CLP, of which more details can be found in [5]
and [9] respectively.

2.1. Timed CSP

Timed CSP extends the well-known CSP (Communicat-
ing Sequential Processes) notation of Hoare [8] with timing
primitives. CSP is an event based notation primarily aimed
at describing the sequencing of behavior within a process
and the synchronization of behavior (or communication) be-
tween processes. Timed CSP extends CSP by introducing
a capability to quantify temporal aspects of sequencing and
synchronization. Inherited from CSP, Timed CSP adopts a
symmetric view of process and environment. Events repre-
sent a cooperative synchronization between process and en-
vironment. Both process and environment may control the
behavior of the other by enabling or refusing certain events
and sequences of events.

The syntactic class of Timed CSP expressions is defined
as the following:

P ::= STOP | SKIP | RUN

| e
t
→ P | e : E → P(e) | e • t → P(t)

| P1 2 P2 | P1 u P2

| P1 X ||Y P2 | P1 |[X]|P2 | P1 ||| P2

| P1; P2 | P1 O P2 | P1 .{d} P2
| WAIT[d] | P1 O{d} P2 | µ X • P(X)

RUNΣ is a process always willing to engage any event in
Σ. STOP denotes a process that deadlocks and does noth-
ing. A process that terminates is written as SKIP. A process
which may participate in event e then act according to pro-
cess description P is written as e • t → P(t). The event e
is initially enabled by the process and occurs as soon as it
is requested by its environment, all other events are refused
initially. The (optional) timing parameter t records the time,
relative to the start of the process, at which the event e oc-
curs and allows the subsequent behavior P to depend on its
value. The process e

t
→ P delays process P by t time units

after engaging event e.
Diversity of behavior is introduced through two choice

operators. The external choice operator (2) allows a pro-
cess of choice of behavior according to what events are
requested by its environment. For instance, the process
(a → P) 2 (b → Q) begins with both a and b enabled.
The environment chooses which event actually occurs by
requesting one or the other first. Subsequent behavior is
determined by the event which actually occurred. Internal
choice represents variation in behavior determined by the
internal state of the process. The process a → P u b → Q
may initially enable either a or b or both, as it wishes, but
must act subsequently according to which event actually oc-
curred. The environment cannot affect internal choice.

The parallel composition of processes P1 and P2, syn-
chronized on common events of their alphabets X, Y (or
a common set of events A) is written as P1 X ||Y P2 (or
P1 |[A]|P2). No sharing event may occur unless enabled
jointly by both P1 and P2. When a sharing event does occur,
it occur in both P1 and P2 simultaneously and is referred to
as synchronization. Events not sharing may occur in either
P1 or P2 separately but not jointly.

The sequential composition of P1 and P2, written as
P1; P2, acts as P1 until P1 terminates by communicating
a distinguished eventX and then proceeds to act as P2. The
termination signal is hidden from the process environment
and therefore occurs as soon as enabled by P1. The interrupt
process P1 O P2 behaves as P1 until the first occurrence of
event in P2, then the control passes to P2. The timed in-
terrupt process P1 O{d} P2 behaves similarly except P1 is
interrupted as soon as d time units have elapsed.

A process which allows no communications for period d
time units then terminates is written as WAIT[d]. The time-
out construct written as P1 .{d} P2 passes control to an
exception handler P2 if no event has occurred in the pri-
mary process P1 by some deadline d. Recursion is used to

give finite representation of non-terminating processes. The
process expression µ X • P(X) describes a process which
repeatedly act as P(X).

In general, the behavior of a process at any point in time
may be dependent on its internal state and this may conceiv-
ably take an infinite range of values. It is often not possible
to provide a finite representation of a process without in-
troducing some notation for representing this internal state.
The approach adopted by Timed CSP is to allow a process
definition to be parameterized by state variables. Thus a
definition of the form P(x) represents a family of defini-
tions, one for each possible value of x.

The semantics of a Timed CSP process is precisely de-
fined either by identifying how the process may evolve
through time or by engaging in events (operational seman-
tics [17]) or by stating the set of observations, e.g., traces,
failures and timed failures (denotational semantics [4]).

Example We take a simple timed vending machine as an
example. A user may insert some coins and then make a
choice between coffee or tea. Once the choice is made, the
vending machine dispatches the corresponding drink. Or
the user may ask the machine to release the coins and walk
away. If the user idles more than 10 seconds after the coin
is inserted, the machine will release the coins.

TVM =̂ µ X • insert →

((reqrelease → release
2
→ X)

2 (coffee
3
→ dispatchcoffee → X)

2 (tea
2
→ dispatchtea → X))

.{10} (release → X)

2.2. CLP Preliminaries

Constraint Logic Programming (CLP) began as a natu-
ral merger of two declarative paradigms: constraint solving
and logic programming. This combination helps make CLP
programs both expressive and flexible. The CLP scheme de-
fines a class of languages based upon the paradigm of rule-
based constraint programming. Each instance of the scheme
is a programming language and is obtained by specifying a
structure of computation. That is, the domain of discourse
and the functions and relations on this domain characterize
the language.

A constraint is written using a language of func-
tions and relations, which are used in the basic program-
ming language to describe expressions and conditions.
in CLP(R), it can be either an arithmetic constraint or
primitive constraint. A primitive constraint is solvable iff
there is an appropriate assignment of real numbers and
ground terms to the variables such that the constraint evalu-
ates to true.

The universe of discourse D of our CLP program is a
set of terms, which can be either simple terms or compound

terms constructed from simple terms. The simple terms are
variable terms, numeric constant terms, symbolic numeric
constants, functor constant terms and string constant terms.

A compound term can be a list of the notation: [L]. The
other compound term is an atom, of the form p(̃t), where p is
a user defined predicate symbol and t̃ is a sequence of terms.
The set of p(d̃) where p ranges over the predicates and d̃
ranges over the tuples in D is called the domain base B. A
rule is of the form A0 : −α1, α2, ..., αk, where each αi is
either a primitive constraint or an atom. The atom A0 is the
head of the rule while the remaining primitive constraints
and atoms constitute the body of the rule. A goal has exactly
the same format as the body of the rule of the form ? −
α1, α2, ..., αk. In case there are no atoms in the body, we
may call the rule a fact. All goals, rules and facts are terms.

Inherent in the operational model of CLP is a subgoal se-
lection strategy, which selects a constraint or an atom from
a given goal. Now let P denotes a CLP program and G be
a goal with the form: A1, A2, ..., An, n≥ 0, whose subse-
quence of solved constraints are denoted by σ1, σ2, ..., σm,
m≥ 0, and whose subsequence of delayed constraints are
denoted by δ1, δ2, ...δk, k≥ 0. We say that there is a
derivation step from G to another goal G2 if one of the fol-
lowing holds:

• The subgoal selection strategy selects δi, 1 ≤ i ≤
k, from G. In G2, the subsequence of atoms are
A1, A2, ..., An, the subsequence of solved constraints
are σ1, σ2, ..., σm, δi, the subsequence of delayed con-
straints are δ1, ..., δi−1, δi+1, ..., δk. Furthermore, the
conjunction of the solved constraints in G2 is solvable.

• The subgoal selection strategy selects Ai,1 ≤ i ≤ k,
from G, and the program P contains rule R which can
be renamed so that it contains only new variables and
takes the form: B : −B1, B2, ..., Bs, δ

′

1, δ
′

2, ...δ
′

t . s ≥
0, t ≥ 0, where Bi denotes the atoms and δ′i denotes the
constraints. In G2, the subsequence of the atoms are
A1, ..., Ai−1, B1, ..., Bs, Ai+1, ..., An, the subsequence
of the solved constraints are σ1, σ2, ..., σm, the sub-
sequence of the delayed constraints are δ1, ...δk, A =
B, δ′1, ...δ

′

t . Furthermore, the conjunction of the solved
constrains in G2 is solvable.

We say that the delayed constraints δi or atom Ai in G is
the selected subgoal. Equivalently, δi or Ai is the subgoal of
G chosen to be reduced.

A derivation sequence is a possibly infinite sequence of
goals, starting with an initial goal. A sequence is successful
if it is finite and the last goal Gn with no atoms which is
called a terminalgoal, and the constraints in Gn are called
answer constraints.

3. Timed CSP Semantics in CLP

This section is devoted to an encoding of the semantics
of Timed CSP in CLP. The practical implication is that we
may then use powerful constraint solver like CLP(R) [10]
to do various proving over systems modelled using Timed
CSP. Both the operational semantics and denotational se-
mantics are encoded, among which the encoding of opera-
tional semantics serves most of our purposes, nevertheless
the encoding of the denotational semantics offers an alter-
native way of proving systems modelled in Timed CSP as
well as the correctness of the encoding itself. For example,
we may prove the event history of the operational seman-
tics model is always allowed in the denotational semantics
model.

The very initial step of our work is the syntax encoding
of Timed CSP process in CLP syntax, which can be auto-
mated easily by syntax rewriting. For instance, Figure 1 is
the syntax encoding of process TVM in CLP.

3.1. Operational Semantics

The operational semantics of Timed CSP is precisely de-
fined by Schneider [17] using two relations: an evolution
relation and a timed event transition relation. It is straight-
forward to verify that our encoding conforms the two rela-
tions in [17].

A relation of the form tos(P1,T1,E,P2,T2) is used to
capture the operational semantics. Informally speaking,
tos(P1,T1,E,P2,T2) is true if the process P1 may evolve to
P2 through either a timed transition, i.e., let T2-T1 time
units pass, or an event transition by engaging an abstract
event instantly1. The relation tos defines a transition sys-
tem interpretation of a Timed CSP process, where the state
is identified by the combination of the the process expres-
sion and the time variable. Using tabling mechanism of-
fered in some of the constraint solvers like CLP(R) [10] or
XSB [19], the termination of the derivation sequence based
on relation tos depends on the finiteness of the reachable
process expressions from the initial one2. Therefore, if a
process is irregular, proving of goals which need to explore
all reachable process expressions is not feasible. However,
even for irregular processes, interesting proving like exis-
tence of a trace is still possible.

We define the tos relation in terms of each and every op-
erator of Timed CSP. For the moment, we assume the pro-
cess is not parameterized and we shall handle parameterized
processes uniformly in Section 3.3. For instance, the prim-
itives process expressions in Timed CSP is defined through
the following clauses.

1Or both at the same time by engaging an nontrivial action which takes
time (necessary for only extensions to Timed CSP like TCOZ [13] where
E could be a complicated computation)

2Trivial time steps can be aggressively abstracted, for example, a trivial
time step is allowed only if the enabled events are changed.

tos(stop,T1,[],stop,T2) :- D>=0, T2=T1+D.
tos(skip,T,[termination],stop,T).
tos(skip,T1,[],skip,T1+D) :- D>=0.
tos(run,T,[_],run,T).
tos(run,T1,[],run,T2) :- D>=0, T2=T1+D.

The only transition for process STOP is time elapsing.
Whereas process SKIP may choose to wait some time be-
fore engaging event termination which is our choice of rep-
resentation for eventX in CLP. Process RUN may either let
time pass or engaging any event. In the following, we show
how hierarchical operators are encoded in CLP using the
alphabetized parallel composition operator as an example.

In the operational semantics, the event transition and
evolution transition associated with the alphabetized paral-
lel composition operator is illustrated as the following [17]:

P1

e
→ P′

1
[e ∈ X ∩ {τ} \ Y]

P1 X ||Y P2

e
→ P′

1 X ||Y P2

P2

e
→ P′

2
[e ∈ Y ∩ {τ} \ X]

P1 X ||Y P2

e
→ P1 X ||Y P′

2

P1
e
→ P′

1, P2
e
→ P′

2
[e ∈ X ∩ Y]

P1 X ||Y P2

e
→ P′

1 X ||Y P′

2

P1

d
 P′

1, P2

d
 P′

2

P1 X ||Y P2

d
 P′

1 X ||Y P′

2

The → represents an event transition, whereas repre-
sents an evolution transition. The rules associated with the
alphabetized parallel composition operator is as the follow-
ing:

tos(para(P1,P2,X,Y),T,[E],para(P3,P2,X,Y),T)
:- tos(P1,T,[E],P3,T),

member(E,X), not(member(E,Y)).
tos(para(P1,P2,X,Y),T,[E],para(P1,P4,X,Y),T)

:- os(P2,T,[E],P4,T),
member(E,Y), not(member(E,X)).

tos(para(P1,P2,X,Y),T,[E],para(P3,P4,X,Y),T)
:- tos(P1,T,E,P3,T),tos(P2,T,E,P4,T),

member(E,X), member(E,Y).
tos(para(P1,P2,X,Y),T1,[],para(P3,P4,X,Y),T1+D)

:- tos(P1,T1,[],P3,T1+D),
tos(P2,T1,[],P4,T1+D).

The first two rules state that either of the components
may engage an event as long as the event is not shared. The
third rule states that a shared event can only be engaged si-
multaneously by both components. The last expresses that
the composition may allow time elapsing as long as both the
components do. Other parallel composition operation, like
|[X]| and |||, can be defined as special cases of the alpha-
betized parallel composition operator straightforwardly.

There is a clear one-to-one correspondence between
these rules and the event transitions and evolution transi-
tions illustrated above. So are the rules associated with

proc(c1,delay(coffee, eventprefix(dispatchcoffee, tvm), 3)).
proc(c2,delay(tea, eventprefix(dispatchtea, tvm), 2)).
proc(c3,eventprefixc(reqrelease, delay(release,tvm,2))).
proc(choices,extchoice(extchoice(C,T),R)):- proc(c1,C), proc(c2, T), proc(c3 ,R).
proc(to, timeout(C,eventprefix(release, tvm),10)):- proc(choices,C).
proc(vending, recursion([tvm, eventprefix(insert, P)], eventprefix(insert, P))):- proc(to, P).

Figure 1. Vending Machine in CLP

other compositional operators, which are partly illustrated
in Figure 2 and fully at our website3. Therefore, the sound-
ness of the encoding can be proved by showing there is a
bi-simulation relationship between the transition system in-
terpretation defined in [17] and ours. With the clear cor-
respondence between our rules and the transitions defined
in [17], the bi-simulation relationship can be proved easily
via a structural induction.

For simplicity, we do restrict the form of recursion to
µ X • P(X), which means mutual recursion through process
referencing has to been transformed before hand. The fol-
lowing clauses illustrate how recursion is handled, where N
is the recursion point, i.e., X in µ X • P(X)) and P is the
process expression, i.e., P(X).

tos(recursion([N,P],P1),T,[E],
recursion([N,P],P2),T)

:- not(P1==N), tos(P1,T,[E],P2,T).
tos(recursion([N,P],N),T,[],

recursion([N,P],P),T).
tos(recursion([N,P],P1),T1,[],

recursion([N,P],P2),T1+D)
:- D>0, tos(P1,T1,[],P2,T1+D).

3.2. Denotational Semantics

We also encode both the timed traces and the timed fail-
ures model of Timed CSP, where the semantics of a Timed
CSP process is represented by a set of timed traces or a
set of timed failures [16]. In contrast to the operational
semantics, which focuses on a single step at once, the de-
notational semantics captures all possible observations of
systems modelled using Timed CSP. Therefore, it is easier
to prove over all possible behaviors in the denotational se-
mantics model. In the following, we illustrate our encoding
using only a few fundamental constructors for the sake of
space saving.

A relation timedfailure(P, f(Tr, R)) is defined to capture
the timed failure semantics, where P is a process expression
and Tr is a sequence of timed events and R is a set of timed
refusals. For instance,

timedfailure(stop, f([],_)).
timedfailure(skip, f([], R))

:- sigma(R,S), not(member(termination,S)).
timedfailure(skip,f([tevent(T,termination)],R))

:- T>=0, before(R,T,Z), sigma(Z,N),
not(member(termination, N)).

3http://nt-appn.comp.nus.edu.sg/fm/clp

The relation sigma(P, S) is used to retrieve all events S
in a process expression P, i.e., S = σ(P). Similarly, the re-
lation before(R, T, Z) is defined accordingly as Z = R � T,
i.e., the refusals before time T. Basically, the first rule states
that the failures of process STOP are an empty trace with
all possible refusals. Whereas the process SKIP refuses ev-
erything until the occurrence of event termination, and all
events are refused afterwards. As for compositional opera-
tors, we take the interface parallel composition operator as
an example.

timedfailure(parallel(Q1,Q2,A), failure(S,N))
:- timedfailure(Q1, failure(S1,N1)),

timedfailure(Q2, failure(S2,N2)),
union(N1,N2,N),
union(A,[termination],AT),
remove(N1,AT,N11), remove(N2,AT,N22),
setequal(N11,N22), tsynch(S1,S2,A,S).

The relation union(X, Y, Z) is the set union, i.e., Z =
X ∪ Y. The relation remove(X, Y, Z) is the set subtraction,
i.e., Z = X \ Y. The relation tsynch defines the ways in
which a trace tr1 from component Q1 and a trace tr2 from
component Q2 can be combined to form a trace of the par-
allel (refer to [16] for the formal definition). The interface
parallel operator combines the features of the interface par-
allel and the interleaving operators, requiring synchroniza-
tion on events from the interface event set A, and interleav-
ing on events not in A. This means that events within the set
A can be refused by either processes, whereas events outside
A can only be refused when both processes refuse them.

Notice that while the operational semantics focuses on
how the system is evolved through either time or event’s
occurrence, the denotational semantics focuses on observa-
tions of the system, which allows us to query the system
behaviors as a whole. For instance, it is more straightfor-
ward to check timewise refinement using the denotational
semantics, and irregular processes can be handled if we re-
place the recursion using its fixed point. However, because
there is no guarantee that the derivation sequence is termi-
nating, we have to limit the height of the proving tree. For
example, one possible way that has been implemented is to
limit the number of times a recursion is resolved.

3.3. Handling Extensions to Timed CSP

Timed CSP is introduced as a rather useful extension
to hoare’s CSP in [14]. Since then, various extensions of

tos(eventprefix(E,P),T,[E],P,T).
tos(eventprefix(E,P),T1,[],eventprefix(E,P),T1+D) :- D>=0.
tos(prefixchoice(X,P),T,[Y],P,T) :- member(Y,X).
tos(prefixchoice(_,P),T1,[],P,T1+D) :- D>=0.
tos(timeout(Q1,_,_),T,[E],P,T) :- tos(Q1,T,[E],T,P).
tos(timeout(Q1,Q2,D),T1,[],timeout(P,Q2,D-T),T1+T) :-T>=0,T<=D,tos(Q1,T1,[],P,T1+T).
tos(timeout(Q1,Q2,D),T,[tau],timeout(P,Q2,D),T) :-tos(Q1,T,[tau],P,T). tos(timeout(_,Q2,0),T,[tau],Q2,T).
tos(wait(D),T1,[],P,T2) :- tos(timeout(stop,skip,D),T1,[],P,T2).
tos(extchoice(P1,_),T,[E],P3,T) :- tos(P1, T, E, P3, T).
tos(extchoice(_,P2),T,[E],P4,T) :- tos(P2,T,E,P4,T).
tos(extchoice(P1,P2),T1,[],extchoice(P3,P4),T1+D):-D>=0,tos(P1,T1,[],P3,T1+D),tos(P2,T1,[],P4,T1+D).
tos(hide(P1,X),T,[tau],hide(P2,X),T) :- tos(P1,T,[E],T,P2),member(E,X).
tos(hide(P1,X),T,[E],hide(P2,X),T) :-tos(P1,T,[E],P2,T), not(member(E,X)).
tos(hide(P,X),T1,[],hide(Q,X),T1+D):-D>=0,tos(P,T1,[],Q,T1+D),not(member(A,X),tos(P,_,[A],_,_)).
tos(sequ(P1,P2),T,[E],sequential(P3,P2),T) :- tos(P1,T,[E],P3,T),not(E=termination).
tos(sequ(P1,P2),T,[termination],P2,T) :-tos(P1,T,[termination],_,T).
tos(sequ(P1,P2),T1,[],sequ(P3,P2),T2):-T2>=T1,tos(P1,T1,[],P3,T2),not(tos(P1,_,[termination],_,_)).
tos(interrupt(P1,P2),T,[E],interrupt(P3,P2),T) :-tos(P1,T,[E],P3,T).
tos(interrupt(_,P2),T,[E],P3,T) :-tos(P2,T,[E],P3,T).
tos(interrupt(P1,P2),T1,[],interrupt(P3,P4),T1+D):-D>=0,tos(P1,T1,[],P3,T1+D),tos(P2,T1,[],P4,T1+D).
tos(tinterrupt(Q1,Q2,D),T,[E],tinterrupt(Q3,Q2,D),T) :-tos(Q1,T,[E],Q3,T), not(E==termination).
tos(tinterrupt(Q1,_,_),T,[termination],Q3,T) :-tos(Q1,T,[termination],Q3,T).
tos(tinterrupt(_,Q2,0),T,[tau],Q2,T).
tos(tinterrupt(Q1,Q2,D),T1,[],tinterrupt(Q3,Q2,D),T1+T) :-T>=0,T<=D, tos(Q1,T1,[],Q3,T1+T).

Figure 2. Operational Semantics of Timed CSP in CLP

Timed CSP has been proposed. In this work, we iden-
tify some of the extensions that we believe is effective in
modelling systems and show that they can be encoded in
the CLP framework. For instance, the idea of signal by
Davies [4] is a simple yet useful extension to capture live-
ness as well as model broadcasting effectively. The mo-
tivation of the concept signal is that when describing the
behavior of a real-time process, we may wish to include in-
stantaneous observable events that are not synchronization.
For example, an audible bell might form part of the user
interface to a telephone network, even though the bell may
ring (a signal) without the cooperation of the user. Infor-
mally, signal events are distinguished events that will oc-
cur as soon as they become available, and will propagate
through parallel composition. A process may ignore any
signal performed by another process, unless it is waiting to
perform the corresponding synchronization. The semantics
for timed signals model requires that for any observation
can be extended into the future, the only events must be ob-
served are signals. Therefore, signals are useful both for
modelling broadcast communication and specifying live-
ness conditions, i.e., some events must be engaged. We
encode the denotational semantic model for timed signals,
in which relation sigTF(P, sigfailure(Tt, Tr, T)) is used to
capture this time failure semantics for signals, where P de-
notes the process, Tt is the timed trace, Tr denotes the timed
refusal set and T denotes a time value. The following CLP
clauses illustrate the possible evolution of signal event pre-
fixing.

sigTF(eventprefix(E,_,_),sigfailure([],X,T))
:- not(E==sig(_)), sigma(X,Z),

not(member(E,Z)),end(X,T1), T>=T1.
sigTF(eventprefix(E,P,D),

sigfailure([tevent(T,E)|XS],Y,T1+D+T))

:- T>=0, not(E==sig(_)),
sigTF(P,sigfailure(S,Y1),T1),
backthrough(Y,T+D,Y1), begin(S,T2), T2>=T+D,
end(S,Y,T3), max(T,T3,T4), T1+D+T >= T4,
before(Y, T, Z), sigma(Z,N), not(member(E,N)),
delay(S,T+D,XS).

sigTF(eventprefix(sig(E), P, D), sigfailure([],[],0)).
sigTF(eventprefix(sig(E),P,D),

sigfailure([tevent(0,E)|XS],Y,T))
:- sigTF(P,failure(S,Y1),T1), backthrough(Y,T+D,Y1),
T=T1+D, before(Y,T,Z), sigma(Z,N),
not(member(E,N)), delay(S,T+D,XS).

The first two clauses denote the semantics for event pre-
fix process a → P where a is not a signal, while the last two
denote the one with signal event â, presented as sig(a). In
the above rules, end(X,T) computes the least upper bound of
the time refusal X. backthrough(Y,T,Y1) represents the rela-
tion: Y - T = Y1, i.e., timed refusal Y1 is generated from
Y by translating it backwards through time T. begin(S, T)
retrieves the time of the first event in timed trace S.

Another extension of special interest is Timed CSP in-
tegrated with state-based languages like Z [20] to model
systems with not only complicated control flow but also
complex data structures [13, 18]. Instead of adopting a
heavy language like TCOZ (Timed Communicating Object-
Z [13]), we allow a finite number of variables to be associ-
ated with a process4, called state variables. In addition, we
allow a state update transition, i.e., instead of engaging an
abstract event, the system may perform a state update which
changes the valuation of the state variables. A state update
is specified as a predicate involving state variables before
and after the update, as in Z style where the after-variables
are primed [20].

For instance, there is a fragment of the specification of

4which are of types supported by current tools for CLP.

this vending machine, in which we allow different coins to
be inserted via a channel communication insert?x where x
is 10, 20 or 50, a data variable Quota is requested to accu-
mulate the amount of all coins inserted by the user.

Insert(Quota) =̂ insert?x → AddQuota

This Timed CSP specification corresponds to the follow-
ing CLP clauses where both the pre and post values of the
process parameter are presented as the parameters, namely
Quota1 and Quota2 in this example, of the relation proc.
The user is responsible to specify exactly how an action up-
dates the data variables, e.g., adding the amount of the coin
to Quota.

proc(insert,eventpreifx(insert(X1),aq),Quota1,Quota2)
:- action(aq, X1, Quota1, Quota2).

action(aq,X1,Quota1,Quota2) :- Quota2 = Quota1 + X1.

4. Proving Timed CSP
This section is devoted to show the various proving we

may perform over systems modelled using Timed CSP and
then encoded in CLP. We implemented a prototype in one of
the CLP solver, namely CLP(R). Any CLP assertion can be
proved against a given real-time system. We also developed
a number of shortcuts for easy querying and proving.

4.1. Safety and Liveness

Using CLP, we may make explicit assertion which is nei-
ther just a safety assertion, nor just a liveness assertion. Yet
it can be used for both purposes using a unique interpreta-
tion. In the following, we show how safety properties and
liveness properties, like reachability, can be queried. We
employ the concept of coinductive tabling with the purpose
of obtain termination when dealing with recursions, which
facilitates verifying safety and liveness properties based on
traces. The detailed introduction of coinductive tabling can
be found in [11].

Because Timed CSP is an event-based specification lan-
guage, it is clearly useful to prove safety and liveness prop-
erties in terms of predicate concerning not only state vari-
ables but also events. A discussion on how to allow such
temporal properties is presented in [3]. In order to explore
the full state space, we define the following5:

treachable(P, P, T1, T1).
treachable(P, Q, T1, T2)

:- tos(P,T1,_,P1,T3),treachable(P1,Q,T3,T2).

The relation treachable(P, Q, T1, T2) states that it is pos-
sible to reach the process expression Q at time T2 from P
at time T1. By using the tabling method, we dynamically
record the process expressions that have been explored so

5The possible state variables and local clocks are skipped for simplicity.

as to avoid re-exploring them. In this regard, one kind of
liveness property namely reachability is easily asserted us-
ing treachable.

An invariant property (a predicate over time variable and
state variables and possible local clocks) is in general ex-
pressed as the assertion:

inv(P, T, Property)
:- not(treachable(P, Q, T, T1),

not(sat(Property))).

One safety property of special interest is deadlock-
freeness. The following clauses are used to prove it.

tdeadlock(P,T1) :-
treachable(P,P1,T1,T2),
(not(tos(P1,T2,[],Q,T), tos(Q,T,[_],_,_));
(tos(P1,T2,[],Q,_); not(tos,P1,T2,[_],_,_))),
printf("deadlock at: %\n",[P1]).

Basically, it states that a process P at time T1 may result
in deadlock if it can reach the process expression Q at time
T2 where no event transition is available neither at T2 nor
at any later moment. The last line outputs the deadlocked
process expression. Alternatively, we may present it as a
result of the deadlock proving.

We allow trace-based properties (safety or liveness6) that
can be checked by exploring trace set partially. The retrieve
of a trace is done by the predicate superstep(P, N, Q), which
finds a sequence of events through which process expres-
sion P evolves to Q:

superstep(P,[-],_)
:- not(tos(P,_,_,Q,_), not table(Q)).

superstep(P,[A|N],Q)
:- tos(P,_,M,P1,_), not(M==[];M==[tau]),

M=[A], not table(P1),
assert(table(P1)), superstep(P1,N,Q).

superstep(P,N,Q)
:- tos(P,_,M,P1,_), (M==[];M==[tau]),

not table(P1), assert(table(P1)),
superstep(P1,N,Q).

We may prove that some event will always eventually be
ready to be engaged using the following rule: where rule
member(N, E) returns true if event E appears at least once
in the event sequence N.

finally(P,E) :- not(superstep(P,N,_)),not member(N,E)).

Predicate finally(P, E) captures the idea that there is no
such trace without event E in this process P. In other words,
this process will eventually go to event E. Another property
based on traces would be identifying the relationship among
events, e.g. event A can never happen before (after) event B
in a trace or trace fragment. Take the timed vending for ex-
ample, we would like to ensure that in a round of using the
machine, the event tea will never be followed by an event
dispatchcoffee.

6Liveness in CSP is a bit different from that in traditional temporal
logic. In CSP, a process may wait forever before engaging an available
event.

Example For the timed vending machine, we would like to
check that it is deadlock-free by running the following goal
and expecting failure:

? − proc(vending, P), tdeadlock(P, 0)

Moreover, we would expect that whenever we choose tea,
it would never dispatch coffee instead of tea, which can be
checked by the following goal:

? − proc(vending, P), super(P, N), (not in(tea, N);
after(n, dispatchcoffee, tea)).

4.2. Timewise Refinement Checking

The notion of refinement is a particularly useful concept
in many forms of engineering activity. If we can establish
a relation between components of a system which captures
the fact that one satisfies at least the same conditions as
another, then we may replace a worse component by a
better one without degrading the properties of the system.
Compared to untimed CSP refinements which can be
defined by FDR [15], timedwise refinements for Timed
CSP contain more infromation about timing behavior.
With the denotational model - timed failure model build in
CLP, the refinement relations can be defined for systems
described in Timed CSP in several ways, depending on
the semantic model of the language which is used. In
the timed versions of CSP, we mainly concentrate on two
forms of refinement, corresponding to the semantic models
which are trace timewise refinement and failure timewise
refinement.

Trace timewise refinement Classical refinement in
the traces model states that P1 is refined by P2 if any trace
in P2 is also a trace in P1. Following this approach, a
process Q is a trace timewise refinement of P if all of its
timed traces are allowed by P. The trace timewise relation
is written P T vTF Q where P is an untimed CSP process,
and Q is a timed CSP process. It is defined as:

P T vTF Q = ∀(s,ℵ) ∈ T F [[Q]] •
#s< ∞ ⇒ strip(s) ∈ traces(P)

In our timed failure model in CLP, we are able to find any fi-
nite timed trace of a process. Instead of testing every timed
trace of a process Q by proving that this timed trace s with
times removed is also a legal trace for the untimed process
P, we test on the negation of this predicate. We introduce
the predicate traceTR to find a violative timed trace of Q
that is not a legal trace of P with its time information re-
moved. The definition of timedTR is given by the following
CLP clause: where Q is the timed process, P is the untimed
process, S is a timed trace of Q and TimeRmTr represents
the times removed version of S.

traceTR(P,Q,S)
:- timedfailure(Q, failure(S,Refusal)),

strip(S,TimeRmTr),
not(trace(P,TimeRmTr)).

Failures timewise refinement The timed process Q will be
a failure timewise refinement of the untimed process P if
all of its timed traces are allowed by P, as well as all its
timed failures area allowed by the stable failures of P. This
is formally defined as:

P SFvTF Q = ∀(s,ℵ) ∈ T F [[Q]] •
#s< ∞ ⇒

strip(s) ∈ trace(P) ∧
(∃ t : R+; X ⊆ Σ •

([t,∞) × X) ⊆ ℵ ⇒
(strip(s), X) ∈ SF [[P]])

We take the similar approach as the trace timewise refine-
ment which tests the negation of the universal predicate.
The predicate failureTR is introduced to capture this idea,
that can be represented by the following CLP clauses:

failureTR(P,Q,S,Refusal)
:- timedfailure(Q,failure(S,Refusal)),

((strip(S,TimeRmTr),
not(trace(P, TimeRmTr)));
not(inStableFailure(Q, S,Refusal,P))).

inStableFailure(Q,S,Refusal,P)
:- T>0, sigma(Q, Sigma), subset(Sigma,X),

(not(subset(prod(int(T,inf),X),Refusal));
(strip(S, TimeRmTr),
stablefailure(P, failure(TimeRmTr, X)))).

4.3. Additional Checking

In reality, most processes are non-terminating, so it
would not be possible to retrieve all possible traces of a pro-
cess. However, by given a specific trace of a trace fragment,
we are able to identify whether it is a legal trace for a spe-
cific process. For instance, the following clause is used to
query if a sequence of event is a trace of the system, where
P is a process expression and X is a sequence of events.

trace(P,X) :- superstep(P,X,_).

In addition to proving pre-specified assertions, one dis-
tinguished feature of our approach is that implicit assertions
may be proved. For example, we may identify the lower
or upper bound of a (time or data) variable, which is very
useful for applications like worst or best case analysis of
execution time.

dur(P, Q, T1,T2) :- tos(P,T1,_,Q,T2).
dur(P, Q,T1,T2)

:- tos(P,T1,_,P1,T3),dur(P1,Q,T3,T2).

We are able to compute the duration of the execution of
one process P to its subsequent process Q by the above two
rules, where T1 is the starting time and T2 is the ending time.
By using the predicate dur, we are able to get identify the

proc(trainp1,delay(entercrossing,eventprefix(leavecrossing,eventprefix(outind,train)),20)).
proc(trainp,eventprefix(trainnear, delay(nearind,P,300))):-proc(trainp1,P).
proc(train, recursion([train, P],P)):-proc(trainp,P).
proc(pchoice1,delay(downcom,eventprefix(down,eventprefix(confirm,gate)),100)).
proc(pchoice2,delay(upcom,eventprefix(up,eventprefix(confirm,gate)),100)).
proc(pchoices, extchoice(P1,P2)):-proc(pchoice1,P1),proc(pchoice2,P2).
proc(gate, recursion([gate,P], P)):-proc(pchoices,P).
proc(cchoice1,delay(nearind,eventprefix(downcom,eventprefix(confirm,controller)),1)).
proc(cchoice2,delay(outind,eventprefix(upcom,eventprefix(confirm,controller)),1)).
proc(cchoices,extchoice(C1,C2)):-proc(cchoice1,C1),proc(cchoice2,C2).
proc(controller,recursion([controller,C],C)):- proc(cchoices,C).
proc(crossing, parallel(C,G,A,B)):-proc(controller,C),proc(gate,G),sigma1(C,A),sigma1(G,B).
proc(system, parallel(T,C,A,B)):-proc(crossing,C),proc(train,T),sigma1(T,A),sigma1(C,B).

Figure 3. Railway Crossing Model in CLP

lower bound of some processes involving time. The pro-

cess WAIT(2); a
3
→ SKIP should terminate in more than

5 time units, which can be identified by the following goal
and expecting T≥5.

? − dur(sequ(wait(2), delay(a, skip, 3)), stop, 0, T).

An additional property that is beyond the capability of
traditional model checking is symmetry. We allow the prov-
ing of the symmetry of the system, which may be subse-
quently used to optimize any proving over the system (refer
to [12]).

5. A Case Study: The Railway Crossing

We use a simple model of a railway crossing as a case
study, which is nevertheless complex enough to demon-
strate a number of aspects of the modelling and verification
of timed systems. The verification of timewise refinement
is also presented.

The system consists of three components: a train, a gate
and a gate controller. The gate should be up to allow traffic
to pass when no train is approaching, but should be lowered
to obstruct traffic when a train is reaching the crossing. It is
the task of the controller to monitor the approach of a train,
and to instruct the gate to be lowered within the appropriate
time. The train is modelled at a high level of abstraction:
the only relevant aspects of the train’s behavior are when it
is near the crossing, when it is entering it, when it is leaving
it; and the minimum delays between these events.

The gate controller CONTROLLER receives two types of
signal from the crossing sensors: nearind, which informs
the controller that the train is approaching, and outind,
which indicates that the train has left the crossing. It
sends two types of signal to the crossing gate mechanism:
downcom, and upcom, which instruct the gate to go down
and up respectively. It also receives a confirmation confirm
from the gate. These five events form the alphabet C of the
controller.

The gate, modelled by GATE, responds to the commands
sent by the controller. The additional events up and down
are included to model the position of the gate. These two

events together with upcom and downcom and the confir-
mation confirm, form the alphabet G of the gate.

The train triggers the sensors by means of the nearind
and outind events. The events trainnear, entercrossing and
leavecrossing model respectively the situations where the
train is close to the crossing, the train enters the crossing,
and the train leaves the crossing. These five events are all
that are required for the sake of this analysis: they form the
alphabet T of the train.

The Timed CSP model of this system is as follows (pre-
sented in [16]) and the corresponding CLP model is pre-
sented in Figure 3:

TRAIN = µ T • trainnear → nearind
300
→ entercrossing

20
→ leavecrossing → outind → T

GATE = µ G • downcom
100
→ down → confirm → G

2 upcom
100
→ up → confirm → G

CONTROLLER = µ C • outind
1
→ upcom → confirm → C

2 nearind
1
→ downcom → confirm → C

CROSSING = CONTROLLER C ||G GATE
SYSTEM = TRAIN T ||C∪G CROSSING

The time information we have about the system is that:
the train takes at least 5 minutes from triggering the near.ind
sensor to reach the crossing; and that it takes at least 20 sec-
onds to get across the crossing. The controller takes a negli-
gible amount of time, say 1 second, from receiving a signal
from a sensor to relaying the corresponding instruction to
the gate. The gate process takes a non-negligible amount of
time, i.e. 100 seconds to get the gate into position following
an instruction.

In the verification experiment of the railway crossing ex-
ample, we designed and verified a number of properties, in-
cluding deadlock-free property, timing properties and trace-
based properties, six of which are illustrated in Table 1. As
UPPAAL is by far the most well-known tool for verification
of real-time systems, we did compared our approach with
UPPAAL in terms of both efficiency and supported prop-
erties. The conclusion is that for properties that can be

Property Goal in CLP
deadlock-free proc(system, P), tdeadlock(P, 0) |= false

if train enters crossing,

the gate must be down proc(system, P), supersetp(P, X), last(X, entercrossing),filter(X, [up,down], X2), last(X2, up) |= false

lower bound for a train

passes the crossing is 320 s proc(system, P), dur(delay(nearind, ,), eventprefix(outind,), T1, T2),T2-T1<320 |= false

if the gate is up, the train proc(system,P), superstep(P, X),

must have left the crossing not(not in([up, entercrossing, leavecrossing], X);after(X, leavecrossing, entercrossing))) |= false

legal trace checking proc(system, P),

lower bound for a train superstep(P, [trainnear, nearind, downcomm, down, confirm, entercrossing, leavecrossing, outind])|= true

lower bound for the controller senses

train out till gate confirmed up is 101s proc(system,P), superstep(P,X,), duration(X,outind,confirm,T),T<101 |= false

Table 1. Properties verification

checked by both UPPAAL and our work, our tool performs
similarly timewizely comparing to UPPAAL. The character-
istic of our work is that properties beyond the capability of
UPPAAL like timewise refinement, traced-based properties,
lower or upper bound of a time internal can be effectively
checked.

6. Conclusions

In this paper, we propose a reasoning tool for Timed
CSP based on constraint logic, which to our knowledge, is
the first mechanical reasoning support for Timed CSP. The
contribution of this work is threefold. Firstly we show that
event-based process algebra Timed CSP can be encoded in
CLP by encoding both the operational semantics and de-
notational semantics. Our work therefore broadened real-
time systems which can be specified and verified by CLP.
Second, we investigated a wide range of properties that
may be proved based on constraint solving, for instance we
showed that using a unique interpretation, traditional safety
and liveness can be proved effectively as well as properties
such as lower or upper bound of a variable and refinement.
Lastly, we implemented a prototype program and applied
our approach to various systems.

Acknowledgement

The authors thank Andrew Santosa for insightful discus-
sion on CLP and pointing out relevant documentations.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[2] P. J. Brooke. A Timed Semantics for a Hierarchical Design
Notation. PhD thesis, University of York, april 1999.

[3] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. State/Event-based Software Model Checking. In
Proceeding of Integrate Formal Methods 2004, pages 128–
147, April 2004.

[4] J. Davies. Specification and Proof in Real-Time CSP. Cam-
bridge University Press, 1993.

[5] J. Davies and S. Schneider. A brief history of timed csp.
Theor. Comput. Sci., 138(2):243–271, 1995.

[6] Formal Systems (Europe) Ltd. Failure divergence refine-
ment: Fdr2 user manual. 1997.

[7] G. Gupta and E. Pontelli. A constraint-based approach for
specification and verification of real-time systems. In IEEE
Real-Time Systems Symposium, pages 230–239, 1997.

[8] C. A. R. Hoare. Communicating Sequential Processes. In-
ternational Series in Computer Science. Prentice-Hall, 1985.

[9] J. Jaffar and M. J. Maher. Constraint logic programming:
A survey. Journal of Logic Programming, 19/20:503–581,
1994.

[10] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The
clp(r) language and system. ACM Trans. Program. Lang.
Syst., 14(3):339–395, 1992.

[11] J. Jaffar, A. Santosa, and R. Voicu. Modeling systems in clp
with coinductive tabling. In ICLP, 2005.

[12] J. Jaffar, A. E. Santosa, and R. Voicu. A clp proof method
for timed automata. In RTSS, pages 175–186, 2004.

[13] B. P. Mahony and J. S. Dong. Timed communicating object
z. IEEE Trans. Software Eng., 26(2):150–177, 2000.

[14] G. M. Reed and A. W. Roscoe. A timed model for com-
municating sequential processes. In L. Kott, editor, ICALP,
volume 226 of Lecture Notes in Computer Science, pages
314–323. Springer, 1986.

[15] A. Roscoe. The Theory and Practice of Concurrency.
Prentice-Hall, 1997.

[16] S. Schneider. Concurrent and Real-time System: The CSP
approach. JOHN WILEY & SONS, LTD, 2000.

[17] S. A. Schneider. An operational semantics for timed CSP.
In Proceedings Chalmers Workshop on Concurrency, 1991,
pages 428–456. Report PMG-R63, Chalmers University of
Technology and University of Göteborg, 1992.

[18] G. Smith and J. Derrick. Specification, refinement and veri-
fication of concurrent systems-an integration of object-z and
csp. Formal Methods in System Design, 18(3):249–284,
2001.

[19] D. S. Warren. Programming with tabling in XSB. In PRO-
COMET ’98: Proceedings of the IFIP TC2/WG2.2,2.3 Inter-
national Conference on Programming Concepts and Meth-
ods, pages 5–6, London, UK, UK, 1998.

[20] J. Woodcock and J. Davies. Using Z: Specification, Refine-
ment, and Proof. Prentice-Hall International, 1996.

