Exclusive Control within Object Oriented Systems

Jin Song Dong

Software Engineering Group
Division of Information Technology
CSIRO
Canberra, ACT 2601, Australia

Abstract

In object-oriented systems, object associations
generally result in a complex structure whose
precise description is a crucial part of the sys-
tem’s formal specification. A particularly com-
mon object association arises when one object
exclusively controls (owns) another. As exclu-
sive object control is an important aspect of
safety and security critical systems, specific no-
tation to capture directly such a notion needs
to be included in any formal specification lan-
guage. This paper first discusses the problems
that arise when using the existing Object-Z no-
tations, such as object containment, to cap-
ture the notion of exclusive control. Then the
Object-Z notation is extended to enable the no-
tion of exclusive control to be modelled directly.
Finally, a case study is presented to contrast the
distinction between the use of exclusive control
and object containment when modelling object-
oriented systems.

Keywords: formal object-oriented specification,
exclusive control, containment

1 Introduction

In object-oriented systems, a client object will
have an attribute whose value references some
other supplier object in the system so that the
referenced supplier object can be sent messages
(or accessed)Meyer 1988]. The object associa-
tions determined by the attributes of client ob-
jects in a system will generally result in a com-
plex structure. The precise description of these

Roger Duke

Software Verification Research Centre
Department of Computer Science
The University of Queensland
Brisbane, Q 4072, Australia

associations is a crucial part of the formal spec-
ification of the system. In this paper, we are
interested in formally modelling a particular as-
sociation, that of exclusive object control. The
exclusive control notion arises when a supplier
object has only one direct client object in a sys-
tem. In this case, the client object has exclusive
control over the supplier object. For instance,
in a general case, a car object may be exclu-
sively controlled by a person object. As the no-
tion of exclusive object control is an important
aspect of safety and security critical systems,
there is the need for specific notations to cap-
ture directly such a notion within a formal spec-
ification language such as Object-Z[Duke, King,
Rose, and Smith 1991; Duke, Rose, and Smith
; Rose 1992]. This paper extends the Object-Z
notation to accommodate this need.

The notion of exclusive object control is at first
sight apparently similar to the notion of ob-
ject containment[Dong and Duke 1995a]. How-
ever, object containment is concerned only with
the relative geometric patterns of some com-
mon object associations; it is not concerned with
the access control aspect of object associations.
Therefore, in general it is inappropriate to use
the containment notations introduced in [Dong
and Duke 1995a] to capture the notion of ex-
clusive control. Section 2 of this paper details
this with an example that motivates the need
to extend Object-Z to capture directly the no-
tion of exclusive control. Section 3 then presents
the specific notation for exclusive object control
and details the underlying semantics. Section 4
presents a case study to illustrate the role of
exclusive control in system modelling. In the
case study, exclusive control and containment
notations are both used so that the distinction
between the two can be demonstrated. Related

J.S. Dong and R. Duke. Exclusive Control within Object Oriented Systems. In Proceedings of
the 18th International Conference on Technology of Object-Oriented Languages and Systems
(TOOLS'Pacific95). Melbourne, Australia, pages 123-132, Prentice-Hall, Dec 1995.

dcsdjs
J.S. Dong and R. Duke. Exclusive Control within Object Oriented Systems. In Proceedings of the 18th International Conference on Technology of Object-Oriented Languages and Systems (TOOLS'Pacific95). Melbourne, Australia, pages 123-132, Prentice-Hall, Dec 1995.

Figure 1: Piggy-bank.

issues, such as transferring object ownership and
the notion of new objects, are also discussed in
this case study.

Familiarity with the basic features of the Object-
Z notations as given in [Duke, King, Rose, and
Smith 1991; Rose 1992] is assumed. However,
for those readers not familiar with object con-
tainment within Object-Z, a brief introduction
is given in the Appendix.

2 Capturing Exclusive Con-

trol: the Problem

The reference semantics of Object-Z[Duke and
Rose 1993; Rose 1992] takes the view that every
referenced object is potentially shared. A dec-
laration a : A declares a to be a reference to an
object of class A. There is no implication that
distinct object reference declarations introduce
distinct object references and hence distinct ob-
jects, i.e. declaration a1, a9 : A does not imply
that a; and as reference distinct objects.

However, exclusive control supposes the exis-
tence of a unique client (the owner) with exclu-
sive access. The notion of object containment
as defined in [Dong and Duke 1995a] can en-
sure only that no object is directly (uniquely)
contained in two distinct objects. It indicates
nothing about whether objects other than a con-
taining object can reference (and hence access)

a contained object (The discussion in Section 5
of [Dong and Duke 1995a] clearly demonstrates
that containment and access are distinct no-
tions).

2.1 Example: Piggy-bank

Suppose each (adult) person has a piggy-bank
for storing spare coins. Furthermore, suppose
a married person shares their piggy-bank with
their spouse, whereas a single person exclusively
owns their piggy-bank. A piggy-bank can be
modelled in Object-Z as:

___ PiggyBank

INIT
coins : P Coins licoins =g

__ PutlIn
A(coins)
n?: Coin

in? & coins
coins’ = coins U {in?}

__ EmptyAll
A(coins)
out! : P Coins

out! = coins
coins' = @

where Coins denotes the set of all coins.

A specification of married and single people
(with their piggy-banks) in Object-Z would be

__ MarriedPerson

has, : PiggyBank
spouse : MarriedPerson

spouse # self

spouse.spouse = self

has, = spouse.has,

V m : (MarriedPerson \ {self, spouse}) ®
m.has, # has,

PutIn = has,.Putin
EmptyAll = has,.EmptyAll

___SinglePerson

has, : PiggyBankg

PutIn = has,.Putin
EmptyAll = has,.EmptyAll

Notice that the semantics of the containment ‘g’
ensures the following property:

V s1, s2 : SinglePerson e
$1 # 8o = s1.has, # s9-has,

which, however, by itself does not prevent
an object of SinglePerson and an object of
MarriedPerson referencing the same piggy-bank
object. Moreover it is also inappropriate to use
the object containment notation to specify the
class MarriedPerson, such as has, : PiggyBankg
in the state schema of the class MarriedPerson,
because the semantics of ‘g’ will invalidate the

property

V' m : MarriedPerson e
m.has, = m.spouse.has,

(the property which allows a married couple to
share the same piggy-bank object.)

To ensure the exclusive control relation between
single people and their piggy-banks, it is possi-
ble to further impose system constraints on the
environment of those SinglePerson objects in a
system, i.e.

___System

people : P(SinglePersonU
MarriedPerson)

Vs : SinglePerson e [i]
Vm : MarriedPerson e
s.hasq # m.has,

PutIn = [p? : people] ® p?.Putln
EmptyAll = [p? : people] o p?. EmptyAll

where SinglePerson U MarriedPerson is a class-
union (see [Dong ; Dong and Duke 1993] for de-
tails on class-union constructs). However, cap-
turing the exclusive control property of the class
SinglePerson explicitly in this way is cumber-
some, particular if the specification is complex
and contains many objects. Furthermore, if the
specification needs to be extended to include a
new class Child, say, which also has an attribute
has, referencing a piggy-bank object that may
be shared with their parents, then the following
predicate which is similar to [i] would need to
be included in the specification.

V s : SinglePerson e
V¢ : Child e s.has, # c.has,

This problem indicates that we need a new no-
tation to capture this exclusive control notion
directly in the Object-Z specification language.

3 Notation for Exclusive Con-
trol

In this section, the properties of exclusive con-
trol are first formalised, and then notation is in-
troduced into Object-Z to capture directly these
properties.

3.1 Formalising Exclusive Control

Broadly speaking, if one object references an-
other object, either the object exclusively con-
trols the referenced objects and no other object
can reference it, or the referenced object is free
to be referenced by other objects.

To capture this idea formally, let @ denote the
universe of all object identities in a system (see
[Dong and Duke 1993]), and let

ec: 0+ 0

denote the relation whereby
oby ec 0by

if and only if object 0b; exclusive controls object
0by. In contrast, let

free : Q0 < O
denote the relation whereby
oby free oby

if and only if object 0b; references oby, but 0by
is free to be referenced by other objects.

The properties of the relations ec and free can
be formally captured as

Vob:0Qe [ii]
ec({ob}) N free({ob}) = @

YV oby,0by: Qe [iii]
oby 75 oby =

ec({ob1 }) N (ec U free)({ob2}) = @

3.2 Object-Z Notation for Exclusive
Control

In this subsection, specific notation is intro-
duced into Object-Z to capture directly the no-
tion of exclusive object control. This notation
enables the specifier to state explicitly, as part
of the class specification, which objects will be
exclusively controlled by objects of that class.

Let each class have implicitly declared secondary
attributes’

excon, freerefs : PO

where the value of ezcon is the set of exclusive
controlled objects, while that of freerefs is the
set of referenced objects that are free to be ref-
erenced by other objects. Then in any system
the relations

ec,free : O < O

! Attributes of a class are partitioned into primary and
secondary. The values of the primary attributes deter-
mine the state of an object; the values of the secondary
attributes depend upon the primary attributes of this or
other objects in the system and enable an object to re-
tain information about various aspects of the state of the
system. For a detailed discussion on secondary attributes
see [Duke and Rose 1993; Dong, Rose, and Duke 1995].

introduced in Section 3.1 are determined by

Vobi,0b0: Qe

oby ec 0by < 0by € 0by.excon
Vobi,0bp : Qe

oby free oby < oby € oby.freerefs

The properties of the relations ec and free (as
stated in Section 3.1) imply invariant conditions
on the system that need not be stated explicitly.
In terms of the attributes exzcon and free these
conditions are:

Vob:0e [iia]
ob.excon N ob.freerefs = &
Y obi,0by : Qe [iiia]
ob; ;é oby =

oby.excon N (0by.excon U obs.freerefs) = &

The above predicates can be combined and sim-
plified to give the following predicate:

Vobi,0bp : O e [iv]
obi.excon N obo.freerefs = @
(0b1 7é oby =

0by.excon N oby.excon = &)

This predicate is a global invariant of any
Object-Z specification.

Considering again the piggy-bank example in
Section 2, using this global invariant the exclu-
sive control relation between single people and
their piggy-banks can be ensured by specifying
the class SinglePerson as:

___SinglePerson

hasq : PiggyBank

excon = {hasq}
freerefs = @

If the role of an attribute is to always identify
exclusive controlled objects, this can be indi-
cated when the attribute is declared by append-
ing a subscript ‘g’ to the appropriate type. This
removes the necessity to write explicit predi-
cates involving ezcon and freerefs. For exam-
ple, adopting this syntactic convention, the class
SinglePerson becomes

SinglePerson

has, : PiggyBankg)

As object containment notation ‘g’ does not re-
strict object access, contained objects are part
of the free referenced objects, i.e.

Vob : Q e ob.dcontain C ob.freerefs

where dcontain denotes the set of objects di-
rectly contained in ob (see [Dong and Duke
1995a)).

Type declarations involving ‘g’ and ‘g’ can be
converted into declarations that directly use the
attribute excon, dcontain and freerefs instead;
for instance, suppose a class A is defined as:

A

OpA = ...

Then

_ B

as; :PA
asy : P Ag
as3 : P Ag

can be converted to

_ B

as1 : P A
aso : P A
as3 :PA

freerefs = as; U ase
dcontain = aso
€LCon = as3

3.3 Preventing Indirect Access

The global class invariant [iv] (above) ensures
that exclusively controlled objects cannot be

directly referenced by objects other than the
owner. However, there is an indirect way
whereby an object other than the owner can
access an exclusively controlled object. For in-
stance, consider the definition of the class C

o

b:B

Op =[a: b.ass) ® a.OpA

where the classes A and B are defined in Sec-
tion 3.2. In effect, an object ¢ of class C can
access the exclusively controlled objects of c.b.
This access path can be blocked if the client ob-
ject attributes referencing exclusively controlled
objects are invisible to the environment. There-
fore a general rule would be that

in every Object-Z class, attributes ref-
erencing exclusively controlled objects
are hidden from the environment (by
not being placed in the class visibility
list?).

To enforce the above rule in Object-Z specifica-
tions, we introduce a class invisibility-list nota-
tion “k(...)” to complement the class visibility-
list. For instance, the conversion for the class B
above is automatically enhanced with the class
invisibility-list. as:

B

as3 : P Ag

can be converted to

— B
* (as3)

as3 :PA

ercon = ass

2 A visibility-list introduces a list of features which are
accessible via the dot notation.

The notation ¥ (as3)’ denotes that the attribute
ag is not in the visibility list of the class B.
This invisibility-list mechanism facilitates the
notion of exclusive control by ensuring that no
objects other than the owner can directly access
an owned object through the dot notation.

In the next section, the notation for exclusive
object control is applied to specify a computer
file system. This case study illustrates the dis-
tinction between exclusive control and object
containment.

4 Case Study: Files and Users

Consider a computer system in which a user can
both exclusively own some files, and yet share
other files with other users. Any file in the sys-
tem whether shared or not, has one user as nom-
inal owner. A file can be created or deleted by
its nominal owner. Each file of a user can be pri-
vate or public. If a file is private then no other
user can access the file, while if the file is public
then all users in the system can access the file.
A user can change his or her files from private
to public and vice-versa. Private files can also
be transferred between users. As an example,
an object-reference structure of such a system
is illustrated in Figure 1. The following is an
Object-Z specification of this system.

Firstly, let the skeletal class

__ File

content : Text

— Update
A(content)

represent a file, where Tezt is a given type.

A computer user can be modelled as:

__ User

my_private : P Fileg
my_public : P’ Fileg

A

other_public : P File

__AddToMyPriv
A(my_private)
f?: File

f? & my_private
my_private’ = my_private U {f?}

_ DelFromMyPriv
A(my_private)
7 File
f7 € my_private
my_private’ = my_private \ {f?}

— AddToMyPub
A(my_public)
7 File

f7 & my_public
my_public' = my_public U {f7}

__DelFromMyPub
A(my_public)
f?: File

f7 € my_public
my_public' = my_public \ {f?}

OpenAccess = DelFromMyPriv

A
AddToMyPub
LimitAccess = DelFromMyPub
A
AddToMyPriv
—_Select
f?: File

7 € (my_privateU
my_public U other_public)

Update = Select o f7.Update

The secondary attribute other_public denotes all
other public files which are not owned by a user
but can be accessed by the user. For any user ob-
ject z, the value of z.other_public is dependent
on the environment of z. The precise meaning
of this attribute is defined by the state invariant
of the system class below.

The system consists of a set of users.

User

4

my_private

my_public

S

other_public

ZAPANN

User

s

my_private

my_public (ﬂ

other_public

i

System

my_public

Figure 2: Files

___System

users : P User

YV up : users e
uy.other_public =
U{ug : users |

ug # up ® ug.my_public}

__Select

u? : User

u? € users

__ SelectTwo

u1?, ug? : User

Ul? 7é UQ?
{u1?, up?} C users

and Users.

Update = Select o u?.Update

Create = Select o u?.AddToMyPriv
Delete = Select o u?.DelFromMyPriv
OpenAccess = Select o u?.OpenAccess
LimitAccess = Select ® u?.LimitAccess

Transfer = SelectTwo e
u1 7. DelFromMyPriv

|
ug?. AddToMyPriv

The state invariant of System implies that if a
file is public then all users in the system can
access the file.

The operation Create =
Select o u?.AddToMyPriv specifies that a file
f? can be added to a user u?. Although the
specification is not concerned with how the file

~

f7 is created, it precisely captures that the file
added to the user is a new file which is not ref-
erenced by any user in the system before the
operation is invoked. This is because of the ex-
plicit precondition f? & u?.my_private and the
global class invariant ([iv] in Section 3.2) ensur-
ing that no users other than 4? can reference the
files of u?.my_private.

The operations OpenAccess and LimitAccess
specify that a file f? of a user u? can
be transferred between u?.my_private and
u?.my_public. These two operations illustrate
that a client object can change its exclusive con-
trol of another object.

The operation Transfer specifies that a private
file can be transferred from one user to another.
This operation illustrates that the unique access
right of an object can be transferred from one
owner to another.

5 Discussions and Conclusions

Object sharing (aliasing) and object control are
both important notions in object-oriented sys-
tems, and the formal specification of such sys-
tems needs to capture precisely these notions.
The reference semantics of Object-Z takes the
view that every referenced object is potentially
shared. In this paper, we have extended the
Object-Z notation to directly capture the no-
tion of exclusive object control. A possible way
to implement the exclusive control notion in
object-oriented programming languages, such as
Eiffel[Meyer 1992], is to use the ezpanded class
type.

The notion of exclusive object control is an im-
portant aspect of safety and security critical sys-
tems. With the specific notation defined in this
paper, Object-Z is an ideal language to specify
safety and/or security critical systems. A task
for future research is to investigate how the no-
tation for exclusive object control can facilitate
reasoning about systems specified in Object-Z.

Acknowledgements

We would like to thank Gordon Rose for many
helpful discussions on the issues raised in this
paper. We would also like to thank Shannen

D. Dan for drawing the artistic cartoon for this
paper.

References

Atkinson, S. (1995, September). Formaliz-
ing the Proposed Eiffel Library Kernel
Standard. Technical Report 95-35, Soft-
ware Verification Research Centre, Dept.
of Computer Science, Univ. of Queens-
land, Australia. To appear in Proc. Tech-
nology of Object-Oriented Languages and
Systems: TOOLS 18, Prentice Hall 1995.

Dong, J. S. Living with Free Type and
Class Union. To appear in The 1995 Asia-
Pacific Software Engineering Conference
(APSEC’95) Brisbane, December 1995.

Dong, J. S. (Oct 1995). Formal Object Mod-
elling Techniques and Denotational Se-
mantics Studies. Ph. D. thesis, The Uni-
versity of Queensland. Submitted.

Dong, J. S. and R. Duke (1993, Novem-
ber). Class Union and Polymorphism.
In C. Mingins, W. Haebich, J. Potter,
and B. Meyer (Eds.), Proc. 12th In-
ternational Conference on Technology of
Object-Oriented Languages and Systems.
TOOLS 12 € 9, pp. 181-190. Prentice-
Hall.

Dong, J. S. and R. Duke (1995b). Using
Object-Z to Specify Object-Oriented Pro-
gramming Languages. Technical Report
95-23, Software Verification Research Cen-
tre, Dept. of Computer Science, Univ. of
Queensland, Australia.

Dong, J. S. and R. Duke (Chapman &
Hall, March 1995a). The Geometry of Ob-
ject Containment. Object-Oriented Sys-
tems 2(1), 41-63.

Dong, J. S., R. Duke, and G. Rose
(1994, January). An Object-Oriented Ap-
proach to the Semantics of Programming
Languages. In G. Gupta (Ed.), Proc.
17th Annual Computer Science Confer-
ence (ACSC’17), NZ, pp. T67-775.

Dong, J. S., G. Rose, and R. Duke (1995,
November). The Role of Secondary At-
tributes in Formal Object Modelling. In
A. Stoyenko (Ed.), The First IEEE Inter-

national Conference on Engineering Com-
plez Computer Systems (ICECCS’95),
Florida, pp. 31-38. IEEE Computer So-
ciety Press.

Duke, R., P. King, G. Rose, and G. Smith
(1991). The Object-Z specification lan-
guage. In T. Korson, V. Vaishnavi,
and B. Meyer (Eds.), Technology of
Object-Oriented Languages and Systems:
TOOLS 5, pp. 465-483. Prentice-Hall.

Duke, R. and G. Rose (1993, February). Mod-
elling object identity. In Proc. 16th Aus-
tralian Comput. Sci. Conf. (ACSC-16),
pp- 93-100.

Duke, R., G. Rose, and G. Smith. Object-Z: a
Specification Language Advocated for the
Description of Standards. To appear in a
special issue of Computer Standards and

Interfaces on Formal Methods and Stan-
dards, September 1995.

Hussey, A. and D. Carrington (1995). Com-
paring two user-interface architectures:
MVC and PAC. In S. Balbo (Ed.), QCHI
95 Symposium, pp. 3—21. Computer Hu-
man Interaction Special Interest Group of
the Ergonomics Society of Australia.

Meyer, B. (1988). Object-Oriented Software
Construction. International Series in Com-
puter Science. Prentice-Hall.

Meyer, B. (1992). FEiffel:
Prentice-Hall.

Rose, G. (1992). Object-Z. In S. Stepney,
R. Barden, and D. Cooper (Eds.), Object
Orientation in Z, Workshops in Comput-
ing, pp- 59-77. Springer-Verlag.

The Language.

Appendix: Outline of Object

Containment

The development of the object containment no-
tation was initially motivated by using Object-
Z to define the semantics of programming lan-
guages[Dong, Duke, and Rose 1994]. The ob-
ject containment notation has not only played
important roles in the object-oriented definition
of programming languages[Dong 1995; Dong
and Duke 1995b] but has also proved to be
useful for modelling object-oriented systems in
general[Atkinson 1995; Hussey and Carrington

10

1995]. In the following, we outline the object
containment notation.

Consider the situation where a country contains
a set of states, each state contains a set of cities
and each city contains a set of suburbs. A spec-
ification in Object-Z would be

_ Suburb

__City

sbs : P Suburb

__ State

cts : P Clity

Y cty, cly : cts ®
cty 75 cty =
ct1.sbs N ctly.sbs = &

— Country

sts : IP State

V sty, sty : sts e
sty 75 sty =
sty.cts N sty.cls =
Y cty : sty.cts;
cly : sto.cts @
ct1.sbs N cty.sbs = &

The class invariant of class State specifies that
no suburb can be in two distinct cities in a state.
Similarly, the class invariant of class Country
specifies that no city can be in two distinct states
of the country.

Clearly, capturing the properties of object con-
tainment explicitly in this way is cumbersome,
particular if the system is large and com-
plex. Therefore in [Dong and Duke 1995a], the
Object-Z notation is extended by appending a
subscript ‘g’ to the appropriate types, and hence
introducing global invariants to remove the ne-
cessity to write explicit predicates to capture

containment. For example, adopting this syn-
tactic convention, the relevant classes in the
above specification become

City

sbs : P Suburbg

State

cts : P Cityg

Country

sts : IP Stateg

In general, two properties of object containment
are implied when the g abbreviation is used:

(1) no object directly or indirectly contains it-
self; and

(2) no object is directly contained in two dis-
tinct objects.

The semantics behind the syntactic convention
‘@ is that every Object-Z class has an implicitly
declared secondary attribute dcontain (directly
contained objects). Type declarations involv-
ing ‘@’ can be converted into declarations that
directly use the attribute dcontain instead; for
instance, the state schema of the Country class
can be converted to

sts : P State

dcontain = sts

Properties of object containment are captured
by implicit (global) class invariants. For exam-
ple, the property (2) ‘no object is directly con-
tained in two distinct objects’ is formalised as
the implicit (global) class invariant:

Y 0by, 0by : O @ 0by # 0bo =
obi.dcontain N oby.dcontain = &

Notice that the notions of containment and con-
trol are in general quite distinct and should not

11

be confused in system modelling: containment is
concerned with the relative geometric, or struc-
tural relationship between objects; control is
concerned with access, i.e. the right of one ob-
ject to send a message to another object. Often
within object-oriented systems the case arises
when one object contained within another can
be sent messages by a third object elsewhere in
the system. For a detailed treatment of object
containment see [Dong and Duke 1995a].

