
Timed Communicating Object Z

Brendan Mahony
�
and Jin Song Dong

�

Abstract

This paper describes a timed, multi-
threaded object modeling notation for
specifying real-time, concurrent, and re-
active systems. The notation Timed Com-
municating Object Z (TCOZ) builds on
Object-Z's strengths in modeling com-
plex data and algorithms, and on Timed
CSP's strengths in modeling process con-
trol and real-time interactions. TCOZ is
novel in that it includes timing primitives,
properly separates process control and
data/algorithm issues and supports the
modeling of true multi-threaded concur-
rency. TCOZ is particularly well suited for
specifying complex systems whose compo-
nents have their own thread of control. The
expressiveness of the notation is demon-
strated by a case study in specifying a
multi-lift system that operates in real-time.

Index Terms

1 Introduction

Many formal specification and design no-
tations have tended to concentrate either
on data modeling and algorithmic con-
cerns (eg. Z, VDM, etc.) or else on pro-
cess control concerns (eg. CSP, CCS, Stat-
eCharts, etc.). Complex systems often
have intricate system states and process
control structures involving concurrency
and real-time interactions. To formalise
such systems, it is necessary to have a no-
tation which is able to capture both the
data/algorithmic issues and the process be-
haviour issues in a smoothly integrated,
but also highly structured and modular,

manner. In consequence, the blending of
state-modeling and process languages has
become an active area of research [22, 51,
53, 25].

Object-Z [20] is an object oriented ex-
tension of the Z formal specification lan-
guage. Z is a model-oriented specification
language with powerful features for de-
scribing complex data structures and their
operations. Object-Z improves the clar-
ity of large Z specifications through en-
hanced structuring. However, the process
semantics of Object-Z mean that: process
execution is single threaded; operations
are atomic, there is no notion of the du-
ration of operations; and process control
logic is tightly coupled with class struc-
ture. Therefore, it is difficult to use Object-
Z to model concurrent real-time reactive
systems.

Timed CSP [48] is an extension of
Hoare's Communicating Sequential Pro-
cesses (CSP) notation. It builds on CSP's
strengths in modeling process control is-
sues, such as concurrency and synchro-
nisation, by adding primitives for model-
ing real-time issues. However, CSP has
only the most rudimentary mechanisms for
modeling data and algorithmic issues and
it is cumbersome to capture the state of a
complex system.

This paper describes an integration of
Object-Z and Timed CSP, called Timed
Communicating Object Z (TCOZ), and
presents a case study on using TCOZ
to specify a real-time multi-lift system.
TCOZ builds on the respective strengths
of the Object-Z and Timed CSP notations
in order to provide a single notation for
modeling both the state and process as-
pects of complex systems. The notion
of blending Object-Z with CSP has been

1

NUS
IEEE TSE 26(2):150-177, Feb 2000

suggested independently by Fischer [22]
and Smith [51]. The most obvious nov-
elty of TCOZ is that it is built on Timed
CSP and includes primitives for treating
timing issues, however in addressing the
issue of time it has been necessary to
make several inovations which impact pos-
itively even on the treatment of `untimed
systems'. TCOZ adopts a finer grain of
atomicity than either Fischer or Smith.
Operations are considered to represent a
sequence of (unspecified) update events,
rather than to constitute atomic events in
themselves. This opens the possibility of
treating operation composition and refine-
ment in TCOZ, including the introduction
of multithreaded concurrency at the opera-
tion level. TCOZ adopts an explicit mech-
anism for enabling operations (and indeed
arbitrary processes) which is distinct from
the operation definition itself. This in-
creases the potential for reuse of operation
specifications and allows the notions of
operation and process refinement to be rec-
onciled. TCOZ adopts the CSP channel-
based communications paradigm in its full
generality and enhances it by the introduc-
tion of a novel network topology opera-
tor that allows the communications inter-
faces of complex TCOZ processes to be vi-
sualised through simple network-topology
graphs. This improves decoupling of class
definitions by simplifying the interfaces
between objects. For the most part, these
topics can be touched on only briefly in
this paper and they will be the subjects of
future more detailed correspondences.

The TCOZ notation has been briefly de-
scribed and exercised in introductory pa-
pers by these authors [41, 42, 14]. This
paper combines elements of these papers,
but describes the notation and its use in
greater detail. Important issues such as
formal syntax and semantics are explained
for the first time.

The remainder of the paper is organised
as follows. In Section 2, Object-Z and
Timed CSP notations are briefly intro-
duced. The advantages and disadvantages
of the two notations in modeling timing,
concurrency, complex data and algorith-
mic aspects are demonstrated using a com-
mon example, a timed collection. In Sec-

tion 3, the blended notation, TCOZ, is in-
troduced and the timed collection example
used to show how it uses the strengths of
the individual notations to address their re-
spective weaknesses. In Section 4, the case
study on specifying a real-time multi-lift
system is presented. In Section 5, a dis-
cussion of related work is presented. Fi-
nally, a syntax for TCOZ is presented as
Appendix A.

2 Object-Z and Timed CSP

The common example of a generic timed
collection is used through out this section
and the next section to to illustrate the
differences between and to demonstrate
the advantages and disadvantages of the
Object-Z, Timed CSP, and TCOZ nota-
tions respectively.

2.1 Generic timed-collection exam-
ple

The generic timed-collection denotes a
collection of elements of type X with a
time stamp. Operations are allowed to add
elements to and delete elements from the
collection. When deleting an element from
the collection, the oldest element should
be removed and output to the environment.
The collection has the following timing
properties. Firstly, that it takes a small
but non-zero time (ta and td respectively1)
to update the internal state during a add
or delete operation. Secondly, each ele-
ment of the collection becomes stale if it
is not passed on within to time units of be-
ing added to the collection. Stale elements
should never be passed on, but are instead
purged from the collection upon becoming
stale. The purge operation has a duration
of tp.

2.2 A model of time

In this paper, all timing information is rep-
resented as real valued measurements in

1For ease of presentation (especially in the
Object-Z and Timed CSP versions) we adopt exact
timing constraints in the timed-collection example.

2

seconds, the SI standard unit of time [31].
Describing time and other physical quanti-
ties in terms of standard units of measure-
ment is an important aspect of ensuring the
completeness and soundness of specifica-
tions of real-time, reactive, and hybrid sys-
tems. In order to support the use of stan-
dard units of measurement, extensions to
the Z typing system suggested by Hayes
and Mahony [28] are adopted. Under this
convention, time quantities are represented
by the type

�������
s �

which represents real-valued time mea-
sured in seconds. Time literals consist of a
real number literal annotated with a sym-
bol representing a unit of time. For ex-
ample, �	� s is a literal representing a pe-
riod of three microseconds. All the arith-
metic operators are extended in the obvi-
ous way to allow calculations involving
units of measurement.

The timing constants associated with the
timed-collection example are introduced
via axiomatic definitions.

ta � td � tp � to
 �

2.3 Object-Z

The main Object-Z construct is the class
definition. A class is a template for objects
of that class: for each object of a class, the
object's states are instances of the class'
state schema and the object's state transi-
tions are instances of the class' operation
schemas. An object is said to be an in-
stance of a class and to evolve according
to the definitions of its class.

Since Object-Z has no standard conven-
tions for handling timing and process con-
trol issues, it is necessary to model these
issues explicitly in the class state. One
such approach is Timed Object-Z [11],
which incorporates ideas from various Z-
based approaches for specifying real-time
requirements [21, 43]. The Timed Object-
Z approach consists of two conventions.
Firstly, environmental factors are modeled
as functions of time and are included in
the system state. In the timed-collection

example, the environment is modeled by
functions left and right. These functions
represent the participation of the environ-
ment in Add and Delete operations respec-
tively. The second extension is to include a
global real-time clock, conventionally rep-
resented by a distinguished state attribute
now. The clock may only be updated dur-
ing an operation and the next operation
must start as soon as the previous one is
finished. In order to model the time taken
between operations it is thus necessary to
introduce a Wait operation.

2.3.1 Timed-collection in Object-Z

The use of Timed Object-Z is illustrated by
the TimedCollection class in Figure 1.

The generic function ps (purge stale) is de-
fined in Figure 2.

�
X �

ps
�������������� X ������������� X �
ps � t ��� �"!#�$

t
%�'& s
(�)����� X ��*
ps � t � s �+!-,.� to � e �/
 s 0

to 1 t *2� to 3 t � e �54

Figure 2. purge stale function

e.g. ps 6�7	� s �98:6<;=� s � a >9�(6��	� s � b >��?6�@"� s � c >BAC>� 8:6<;=� s � b >��?6�D"� s � c >5A .
The first schema of a class is called the
state schema. It describes the various
state attributes and the class invariant.
The class attributes are divided into pri-
mary attributes and secondary attributes,
which appear below a E separator placed
in the declaration section of the state
schema. The important aspect of sec-
ondary attributes in the context of the
TimedCollection classes is the fact that
they are subject to change by every op-
eration. For a detailed discussion of sec-
ondary attributes see Dong et al [15].
The predicate below the line in the state
schema is called the class invariant. It de-
scribes the state properties that must be es-
tablished initially and preserved by every
operation.

In the TimedCollection class, the primary

3

TimedCollection
�
X �

left � right ������ X
mems �
	��
��� X ��
now ��� [current time]
ti � idle ��� [idling parameters]
t ��� [oldest item]
oldest � X

mems ������ � t � oldest ��� mems � t � min dom mems
let rm ��� � � dom � left ! right ��" �$# now % �'& now ()! dom mems %

rm ��*�+� idle � min � rm �
INIT

mems ��� � now ��,.- s
ti
�/,.- s

Add� � mems �
e 01� X

now � dom left
left � now � � e 0
now 2 & now � ta � t 2i �/,.- s
mems 2 � ps � ti 3 ta � mems �

! � � to � e 04�5(

Delete� � mems �
e 67� X

mems ��*�
now � dom right
right � now � � e 6
now 2 & now � td

t 2i �/,.- s
e 6 � oldest
mems 2 � ps � ti 3 td �

mems 8 � � t � oldest �5(4�

Purge� � mems �
ti � dom mems
now 2 & now � tp � t 2i �/,.- s
mems 2 � ps � ti 3 tp � mems �

Wait
idle 9 ,.- s
now 2 & now � idle
t 2i � ti 3 idle

Figure 1. Object-Z model of the Timed Collection

attribute mems denotes a finite set of time-
stamped elements of the generic type X.
The other primary attributes are the left
and right environment variables. Since
these variables represent interactions with
the environment, they are not subject to
change by any of the class operations.

In the TimedCollection class, the sec-
ondary attributes are now, denoting the
current time; and ti, denoting the idle time
since the completion of the last operation;
the tuple 6 t � oldest > denoting the oldest el-
ement being in the collection, when it is
non-empty; and the time variable idle, de-

noting the time until the next operation.

The INIT schema describes the allowed
initial values for the class attributes, in this
case mems. The initial schema implicitly
includes the state schema, so that the ini-
tial state includes all the class attributes
and satisfies the class invariant. The timed-
collection initially contains no elements.

The remaining four schemas are operation
schemas which describe the allowed state
transitions for the class. The declaration
parts of operation schemas may include a
E -list of those (primary) attributes whose
values may change. By convention, any

4

primary attribute not appearing in the E -
list may not change value. The values of
the secondary attributes are always subject
to change. Every operation schema im-
plicitly includes the state schema in un-
primed form (the state before the opera-
tion) and primed form (the state after the
operation).

The timing behaviour of the
TimedCollection requires careful ex-
planation. The Add operation may occur
only when there is an item available on
left. It updates timeouts in the existing
collection and purges any stale items (this
is described in the ps funtion definition),
and adds the new item with the maximum
timeout of to. This activity must take
exactly ta and the idle time is set to

� � s.
The Delete operation is enabled only when
the right environment is willing to accept
the oldest item, it communicates the item
and then deletes it from the collection.
The Purge operation is envoked when
no communication is possible before the
first item goes stale (ti � dom mems).
Each of these operations also implicitly
updates the idle attribute according to the
requirement in the data invariant. The
idle attribute always records the amount
of idling required before the next action
is enabled and the Wait operation simply
consumes this idle time.

2.3.2 Transition system interpretation

Object-Z has a three-stage semantics. The
various operations in a class are given a
standard Z semantics, then this is used
to develop a transition-system semantics,
which then determines an event-based pro-
cess semantics [50]. The Z operation se-
mantics is best viewed as describing a re-
lation between initial and final states for
each operation. The operations of a given
class thus form a named collection of re-
lations, which determines a transition sys-
tem in which a given operation may fire
exactly when its Z precondition is satis-
fied. The Z precondition of an opera-
tion schema describes the initial states for
which there exists some final state satis-
fying the schema predicate. The process
model for the class consists of all the se-

quences of operations/events which can be
performed by objects of the class.2

For example, the TimedCollection ob-
ject starts with mems empty then evolves
by successively performing either Add,
Delete, Purge, or Wait operations. This is
sometimes expressed semi-formally by an
equation such as

TCbeh �� 6 Add � Delete �
Purge � Wait >�� TCbeh �

Here TCbeh represents the behaviour of
the TimedCollection, 6 � > is Object-
Z choice between operations,3 and 6 � >
is Object-Z sequential composition. The
choice of which operations are enabled at
each point is determined by which precon-
ditions are satisfied by the current state. As
an example of a precondition calculation
consider the Purge operation. The Z pre-
condition is defined to be

�
mems �

	 6 ���

X >��
now ��� t �i � idle �
 � �
6 t � oldest >
 ���

X
 Purge �
By expanding the predicate part of the
Purge schema and simplifying, it can be
shown that this is equivalent to

now � ti � dom mems

Thus the Purge operation may only oc-
cur when the oldest member of the timed-
collection has expired.

This entwining of behavioural control mat-
ters with algorithmic matters creates un-
necessary complexity in the design process
and fails to promote a clear separation of
concerns. For example, in order to ensure
that operations occur in some desired or-
der the designer must painstakingly craft
the preconditions of all the operations in
a class so as to ensure the desired interac-
tions and may even need to add unneces-
sary process state in order to represent con-
trol state. Since there is no way to progress
time except through the action of an oper-
ation, it is necessary to introduce pseudo-
operations such as Wait whose sole pur-
pose is to make sure that there is some-
thing to do at each point in time and deep

2Smith's semantics also includes ready sets which
record the enabled events at each step.

3Note the clear influence of CSP.

5

reasoning is required to demonstrate that
time does indeed always progress. Per-
haps most inconvenient, is the fact that
this use of preconditions to control the
sequencing of transitions is incompatible
with aspects of Z algorithmic refinement.
In particular, refinement by weakening an
operation's precondition is disallowed in
Object-Z. Weakening an operation's pre-
condition would result in it being enabled
more often, thus playing havoc with the
process control structure of the original
specification. For example, if the precon-
dition for the Purge operation was weak-
ened it would be possible for it to occur ei-
ther before or after the expiry timestamp of
data element, a result completely at odds
with the purpose of the timestamp.

2.3.3 Summary

The TimedCollection class describes the
data state (mems) and operations of the
timed collection well. However, Timed
Object-Z requires interactions with the en-
vironment and the progress of time to
be micro-managed in an intrusive manner.
The proliferation of additional attributes
required to deal with process control and
time result in significant over specification
of the system. All too frequently deep rea-
soning is required to comprehend the sub-
tle and complex interplays between opera-
tions and environment.

2.4 Timed CSP

Timed CSP [48] extends the well-known
CSP (Communicating Sequential Pro-
cesses) notation of Hoare [30] with timing
primitives. CSP is an event based notation
primarily aimed at describing the sequenc-
ing of behaviour within a process and the
synchronisation of behaviour (or commu-
nication) between processes. Timed CSP
extends CSP by introducing a capability
to quantify temporal aspects of sequencing
and synchronisation.

CSP adopts a symmetric view of process
and environment. Events represent a co-
operative synchronisation between process
and environment. Both process and en-
vironment may control the behaviour of

the other by enabling or refusing certain
events or sequences of events. Although
CSP semantics are symmetric with respect
to process and environment, we find it
helpful in the following to use the words
request and block as synonyms for enable
and refuse respectively when referring to
the environment.

2.4.1 Process primitives

A process which may participate in event
a then act according to process description
P is written

a@t � P 6 t >��
The event a is initially enabled by the pro-
cess and occurs as soon as it is requested
by its environment, all other events are re-
fused initially. The event a is sometimes
referred to as the guard of the process. The
(optional) timing parameter t records the
time, relative to the start of the process,4

at which the event a occurs and allows the
subsequent behaviour P to depend on its
value.

The second form of sequencing is process
sequencing. A distinguished event

�
is

used to represent and detect process ter-
mination. The sequential composition of
P and Q, written P � Q, acts as P until P
terminates by communicating

�
and then

proceeds to act as Q. The termination sig-
nal is hidden from the process environment
and therefore occurs as soon as enabled by
P. The process which may only terminate
is written SKIP.

The parallel composition of processes P
and Q, synchronised on event set X, is
written

P ��� X ��� Q �

No event from X may occur in P ��� X ��� Q
unless enabled jointly by both P and Q.
When events from X do occur, they occur
in both P and Q simultaneously and are re-
ferred to as synchronisations. Events not
from X may occur in either P or Q sepa-
rately but not jointly. For example, in the

4This may be non-zero because the process must
wait until the event is requested by its environment.

6

process described by

6 a � P > ��� a � ��6 c � a � Q >
all a events must be synchronisations be-
tween the two processes. Since a is not
enabled initially by the right hand process,
a cannot occur in the left hand process un-
til the right hand process has performed a
c event and the a event becomes enabled in
both processes.

In an asynchronous parallel combination

P ��� � Q

both components P and Q execute concur-
rently without any synchronisations.

Diversity of behaviour is introduced
through two choice operators. The ex-
ternal choice operator allows a process
a choice of behaviour according to what
events are requested by its environment.
The process

6 a � P > � 6 b � Q >
begins with both a and b enabled. The
environment chooses which event actually
occurs by requested one or the other first.
Subsequent behaviour is determined by the
event which actually occurred, P after a
and Q after b respectively. When the range
of choices is large (possibly infinite), ex-
ternal choice may be written in an inten-
tional form,

�
a
 A
 P 6 a >9�

which allows the environment to choose
any event a from a set A and subsequent
behaviour is determined by P 6 a > .
Internal choice represents variation in be-
haviour determined by the internal state of
the process. The process

a � P � b � Q

may initially enable either a, or b, or
both, as it wishes, but must act subse-
quently according to which event actually
occurred. The environment cannot affect
internal choice. Again an intentional form
is allowed.

An important derived concept in CSP is
the notion of channel. A channel is a col-
lection of events of the form c � n: the pre-
fix c is called the channel name and the

collection of suffixes is called the values
of the channel. When an event c � n oc-
curs it is said that the value n is commu-
nicated on channel c. When the value of a
communication on a channel is determined
by the environment (external choice) it is
called an input and when it is determined
by the internal state of the process (internal
choice) it is called an output. It is conve-
nient to write c � n
 N � P 6 n > to describe
behaviour over a range of allowed inputs
instead of the longer

�
n
 N
 c � n �

P 6 n > . Similarly the notation c � n
 N �
P 6 n > is used instead of � n
 N
 c � n �
P 6 n > to represent a range of outputs. Ex-
pressions of the form c � n and c � n do not
represent events, the actual event is c � n in
both cases.

The interrupt process P ��� e � P � be-
haves as P � until the first occurrence of in-
terrupt event e, then the control passes to
P � .
Recursion is used to given finite represen-
tations of non-terminating processes. The
process expression

� P
 a � n

	 � b � f 6 n > � P

describes a process which repeatedly in-
puts a natural on channel a, calculates
some function f of the input, and then out-
puts the result on channel b. CSP specifi-
cations are typically written as a sequence
of simultaneous equations in a finite col-
lection of process variables. Such a speci-
fication �X �
���F 6��X > is implicitly taken to
describe the solution to the vector recur-
sion � �X
 �F 6 �X > .
In general, the behaviour of a process at
any point in time may be dependent on
its internal state and this may conceivably
take an infinite range of values. It is often
not possible to provide a finite representa-
tion of a process without introducing some
notation for representing this internal pro-
cess state. The approach adopted by CSP
is to allow a process definition to be pa-
rameterised by state variables. Thus a def-
inition of the form

Pn � N �� Q 6 n >
represents a (possibly infinite) family of
definitions, one for each possible value of

7

n. There is no inherent notion of process
state in CSP, but rather these annotations
are a convenient way to provide a finite
representation of an infinite family of pro-
cess descriptions.

2.4.2 Timing primitives

To the standard CSP process primitives,
Timed CSP adds two time specific prim-
itives, the delay and the timeout.

A process which allows no communica-
tions for period t then terminates is written
WAIT t. The process

WAIT t � P

is used to represent P delayed by time t.

The timeout construct passes control to an
exception handler if no event has occurred
in the primary process by some deadline.
The process

6 a � P > � 8 t A Q

will try to perform a � P, but will pass
control to Q if the a event has not occurred
by time t, as measured from the invocation
of the process.

2.4.3 The timed collection example

The timed collection can be modeled as a
process with two channels, left and right
respectively. Elements are added to the
collection through communications on the
left channel and removed through commu-
nications on the right channel. The tim-
ing issues of the timed-collection can be
described using (Timed CSP's) delay and
timeout constructs.

The initial state is represented by the
empty set.

TimedCollection �� TC � �
When the first element joins the collection
it is stamped with a timeout and the time
taken to update the process state is repre-
sented by a delay.

TC � �� left � e
 X �
WAIT ta � TC ��� to � e ���

When the collection is non-empty the pro-
cess is ready to accept left or right events.
The staleness stamps are updated with
each communication and state update de-
lays are introduced. In the event of no
communication occurring before the old-
est element becomes stale, all stale ele-
ments are purged (see Figure 3).

TC 	�
 t � a
���� s ���
left � e � X@ti � WAIT ta �

TCps
 ti � ta � 	�
 t � a
���� s
�� 	�
 to � e
����
right � a@ti � WAIT td �
TCps
 ti � td � s
����! t "

WAIT tp � TCps
 t � tp � tl

where

�
t # a � � find oldest

� � t # a � "%$ s � .
&
X '

find oldest �)(+* �-,/.
X � ��-,/.

X �0
s �1(* �2,/.

X �4365 � t # e � � s 3
t � min

�
dom s �

find oldest
�
s � � �

t # e �

Figure 3. behaviour when non-
empty

2.4.4 Summary

For such an example Timed CSP is su-
perior to Object-Z as a means of describ-
ing process control. Timed CSP also han-
dles the timing issues of delays and time-
outs simply and elegantly. The allowed se-
quences of events are clearly and concisely
determined by the CSP code, there is no
need to calculate preconditions nor is any
other form of deep reasoning required to
understand the ways in which the timed-
collection may evolve. The Timed Object-
Z approach results in a too complex model
which over specifies this simple system,
even though the timed collection example
does not make use of the multi-threading
and synchronisation capabilities of Timed
CSP which are clearly well beyond the
scope of Object-Z's atomic state transi-
tion semantics. On the other hand, the
syntactic treatment of internal state in the

8

above is complex and unwielding, dis-
tracting strongly from the basically ele-
gant treatment of the delay and timeout
issues. Although, for example, Roscoe's
�����

M language [46] includes some pow-
erful data modeling primitives, CSP still
has no standard support for state modeling
in the form of mathematical toolkits and
libraries nor are there modular techniques
for constructing and reasoning about com-
plex internal state.

3 TCOZ

In many ways, Object-Z and Timed CSP
complement each other in their capabili-
ties. Object-Z has strong data and algo-
rithm modeling capabilities. The Z mathe-
matical toolkit is extended with object ori-
ented structuring techniques. Timed CSP
has strong process control modeling capa-
bilities. The multi-threading and synchro-
nisation primitives of CSP are extended
with timing primitives. Moreover, both
formalisms are already strongly influenced
by the other in their areas of weakness.
Object-Z supports a number of primitives
which have been inspired by CSP notions
such as external choice and synchronisa-
tion. CSP practitioners tend to make use
of notation inspired by the Z mathemati-
cal toolkit in the specification of processes
with internal state. This is not surprising
given their joint associations in the Pro-
gramming Research Group, Oxford. An-
other important connection is the well-
known duality between the state transition
behavioural model and the event based be-
havioural model [29] which makes it a
simple matter to develop complementary
semantics for the two languages.

Given these factors it is natural to consider
the possibility of blending the two nota-
tions into a more complete approach to
modeling real-time and/or concurrent sys-
tems. Fischer [22] and Smith [51] have in-
dependently suggested CSP-style seman-
tics for Object-Z classes in which oper-
ation calls become CSP events. Opera-
tion names take on the role of CSP chan-
nels, with input and output parameters be-
ing passed down the operation channel as

values. This view fits nicely with the
Object-Z interpretation of operations be-
ing atomic, but is not well suited to consid-
ering multi-threading and real-time. Re-
stricting operations to atomic events col-
lapses the spatial and temporal aspects of
operations, everything happens at a sin-
gle point and instantaneously. Identifying
channel names with operation names cre-
ates unnecessary tensions between the data
and process views of objects and consider-
ably reduces the potential for reuse of op-
eration definitions. Another approach is
that taken by Galloway in his CCZ lan-
guage [24], based on Z and (value-passing)
CCS. There Z operation schemas do not
appear as events, but instead appear as
prefixes to parameterised CCS output pro-
cesses. The effect of the operation schema
is to restrict the allowed output values
in the associated process and to update
the values of the process state parameters.
Whilst this approach effectively disentan-
gles the communication interface from the
operational structure, the need to associate
every occurance of an operation with a fol-
lowing output process is a major syntactic
inconvenience.

The approach taken in the TCOZ notation
is to identify operation schemas (both syn-
tactically and semantically) with (termi-
nating) CSP processes that perform only
state update events; to identify (active)
classes with non-terminating CSP pro-
cesses; and to allow arbitrary (channel-
based) communications interfaces be-
tween objects.

The syntactic implications of this ap-
proach is that the basic structure of a
TCOZ document is the same as for Object-
Z. A document consists of a sequence of
definitions, including type and constant
definitions in the usual Z style. TCOZ
varies from Object-Z in the structure of
class definitions, which may include CSP
channel and processes definitions. In fact,
all operation definitions in TCOZ are con-
sidered to define CSP processes. The
CSP view of an operation schema is that
it describes all the sequences of update
events which change the system state as
required by the schema predicate. The
exact nature and granularity of these up-

9

date events is left undetermined in TCOZ
(at least at the syntactic level), but by al-
lowing an operation to consist of a num-
ber of events, it becomes feasible to spec-
ify its temporal properties when describing
the operation. Since operation schemas
take on the syntactic role of CSP pro-
cesses, they may be combined with other
schemas and even CSP processes using the
standard CSP process operators. Thus it
becomes possible to represent true multi-
threaded computation even at the opera-
tion level, something that would not be
possible with CCZ approach. The Fis-
cher/Smith approach of identifying oper-
ation names with CSP channels is not fol-
lowed, channels are given an independent,
first class role. This allows the commu-
nications and control topology of a net-
work of objects to be designed orthogo-
nally to their class structure. The CSP
channel mechanism is the only (dynamic)
way to pass information between objects
as the state of objects is encapsulated by
hiding all update events.

3.1 Defining operations

The operation schema is the basic tool for
describing state change in TCOZ. In or-
der to allow treatment of timing issues in
schema definitions, a distinguished iden-
tifier

�
is introduced to represent the du-

ration of the state calculations performed
by the operation. When

�
does not appear

in the definition of an operation, the de-
fault interpretation is that there be no con-
straint on the duration of the operation, al-
though individual specification documents
may choose to adopt a different conven-
tion.

Although the schema is the basic tool, the
true power of TCOZ comes from the abil-
ity to make use of Timed CSP primitives
is describing the process aspects of an op-
eration's behaviour. All operation defini-
tions in TCOZ are in fact Timed CSP pro-
cess definitions, with operation schema be-
ing given the syntactic status of terminat-
ing Timed CSP processes.

As an example, consider the specifica-
tion of the Add operation (see Figure 4)
of the timed-collection example. The ac-

tual state-change allowed by the opera-
tion schema remains unchanged from the
Timed Object-Z version, but the timing
characteristics of the operation are ex-
pressed by the condition

� �
ta, rather

than now � � now
�

ta.

Add ����
mems �

e ��� X
ti �	��
��

ta

mems �

ps
�
ti ��� ta � mems ����� � to � e �����

Add �
��
e � X � ti ��
 �"!

left � e@ti # Add �
Figure 4. add operation

Since TCOZ operations are identified with
terminating CSP processes, it is natural to
allow their definition in terms CSP primi-
tives, such as event sequencing, as well as
through the schema calculus. The novelty
of the full TCOZ version of Add lies in the
adoption of CSP primitives in its defini-
tion. Item inputs are communicated to the
Add operation along a channel left. This
definition of Add says that after the param-
eter e has been input on channel left at time
ti, the state-calculation Add $ is performed.
Several aspects of TCOZ name-space con-
ventions are raised by this definition.

Firstly, observe that the parameters e and
ti occur in Add $ with Z-style input dec-
orations and in Add without them. In
TCOZ the convention is adopted that the
true name of all parameters is the undeco-
rated version. In an operation schema, the
� and � decorations are used solely to dis-
tinguish between inputs and outputs for the
purposes of defining the binding semantics
of the operation. This is analogous to the
convention of using primed and unprimed
versions to indicate the final and initial val-
ues of a state attribute. In fact, all param-
eters are treated in the same way as state
attributes, with the exception that state at-
tributes are available in every name envi-
ronment in a class definition. The reason

10

for this convention may be clearly seen in
the following example.

� y �
 	 � y � � f 6 x > � � c � y �
� E 6 x >�� y �

	 � x � � g 6 y � > �

Clearly it does not make sense to decorate
the y in c � y with either the � or the � , any
more than it would make sense to use a �
decoration on an attribute variable appear-
ing in a communication.

This leads to the second observation that
may be made of the Add definition. The
� e
 X � ti
 � �
 construct is a lo-
cal block definition in the state guard style
(state guards are explained further below).
The other forms of local blocks are the in-
tentionial forms of both internal and ex-
ternal choice, which use the usual Z-style
schema-text conventions. For example,

� n

	 � n � D

c � n � P

or

�
n

	 � n � D

c � n � P

The state guard serves as an alternate form
of external choice, so that the Add process
is equivalent to

�
e
 X � ti
 �

left � e@ti
� Add $

In TCOZ, the internal and external choice
operators must be used explicitly. Dec-
orated communications of the form c � n
and c � n have no conventional meaning in
TCOZ, simply being syntactic sugar for
c � n. They are allowed simply as a form of
comment to emphasise the intended direc-
tion of communication.

In TCOZ, the local name space may be
changed either by a local block definition
as above or else by the occurance of an op-
eration schema. An operation schema re-
moves all its input parameters from scope
and replaces them with its output parame-
ters. The output parameters then become
available for use in subsequent communi-
cation events or as inputs to subsequent
operation schemas.

In the case of the Delete operation (see
Figure 5), the communication of the delet-
ing element must precede the updating of
the collection state and in fact is the en-
abling event for the operation. Since the
name convention is that outputs are only
available to the right of a schema, this be-
haviour cannot be described using an out-
put parameter. Instead, the update oper-
ation is described as a simple state up-
date which removes the oldest item (and
any others that become stale). The over-
all delete operation consists of this schema
guarded by a communication on the right
channel.

Delete ����
mems �

ti ���
	
mems ���
������ td

mems � � ps
�
ti � td �

mems ��� � t � oldest �����

Delete ���� ti � 	"! mems ��#
%$'&
right (oldest@ti) Delete �

Figure 5. delete operation

The first part of the definition of Delete
is a novel process control primitive known
as a state guard.5 The adoption of a state
guard mechanism allows TCOZ to adopt a
proper seperation between algorithm and
process design issues. The sequencing
of activities in an object is controlled ex-
plicitly through state guards rather than
implicitly through the operation precondi-
tions. In this way it becomes possible to
reclaim the Z-style operation design and
decomposition techniques abandoned by
standard Object-Z.

Every process definition has (at least) an
initial state which may be addressed us-
ing schema notation. This is the function
of the first part of the expression defining
Delete. It is a schema-based method of re-

5Although if-then style commands appear in sev-
eral dialects of CSP, for example *,+.- M [46], we be-
lieve that TCOZ is unique in adopting the state guard
as a seperate primitive in the style of Morgan's ver-
sion of the guarded command language [45].

11

stricting the action of the process to ini-
tial states for which the collection is non-
empty. For other states this process will
deadlock or block, which is to say refuse
any communication.

Note that the precondition requirement
in the Delete $ schema, though identical,
could not achieve the desired restriction on
the behaviour of Delete. Failure to sat-
isfy a precondition when control is passed
to an operation instead results in diver-
gence, which is to say unspecified subse-
quent behaviour. Delete $ places no restric-
tions at all on its behaviour when the ini-
tial queue is empty. The precondition is
the state-based equivalent of process di-
vergence and the guard is the state-based
equivalent to process deadlock.

For every operation P (even those con-
structed using the process calculus) the
collection of initial states for which the
process will not diverge is called its pre-
condition (written pre P) and the collection
of states for which it will not deadlock is
called its guard (written grd P).

3.2 Schemas and Processes

A schema expression describes a rela-
tionship on or between process state/s,
whilst a process expression describes the
overall behaviour or evolution of a pro-
cess. The Z semantic model for opera-
tion schemas consists of sets of variable
bindings, mappings from variable names
to values. An important point is that these
sets may be infinite when the operation al-
lows unbounded nondeterminism. Timed
CSP has a number of semantic models,
but the most common consists of sets of
tuples consisting of a timed trace (a se-
quence of time stamped events) and a re-
fusal (a record of when events are re-
fused by the process). The trace/refusal
pair is called a failure and the model
the timed failures model. The basic ap-
proach taken in the TCOZ semantics is to
adopt the timed failures semantic model
and to provide an interpretation of the Z
semantic model in terms of failures and
divergences, though some variations are
required to make this possible. Firstly,
a variable binding is added to represent

the initial values of all the process at-
tributes. Secondly, a new class of events,
referred to as update events, is introduced
to represent changes to the process at-
tributes. The resulting model is called
the state/failures/divergences model. The
state of the process at any given time is
the initial state updated by all of the up-
dates that have occurred up to that time.
If an event trace terminates (that is if a

�
event occurs), then the state at the time of
termination is called the final state. Fi-
nally, since the unbounded nondetermin-
ism potentially present in Z schemas can-
not be treated properly using finite-traces,
an infinite-trace variation of the timed-
failures model, due to Mislove et al [44],
is adopted.

The process model of an operation schema
consists of all initial states and update
traces (terminated with a

�
) such that the

initial state and the final state satisfy the
relation described by the schema. If no le-
gal final state exists for a given initial state,
the operation diverges immediately. In the
timed-failures model, divergence is rep-
resented by allowing arbitrary behaviour
from the time of divergence.

The process model for the state guard con-
sists of replacing the trace part of every be-
haviour of the guarded process whose ini-
tial state does not satisfy the state guard
with the empty trace. The empty event
trace describes the process being blocked
by the failure of the state guard. In addi-
tion, divergence cannot occur if the state
guard is not satisfied.

Since schema calculus operators cannot
sensibly be applied to arbitrary CSP pro-
cesses, it is necessary to strictly distin-
guish the schema calculus from the pro-
cess calculus (see Appendix ??). The two
exceptions to this are the type-casting of
operation schema expressions as terminat-
ing processes and of initial state schema
expressions as state guards. In all other
circumstance the schema and process cal-
culi are separate and distinct. For example,
if P and Q are operations schema expres-
sions, the expression a � 6 P �

Q > is le-
gal whilst the expression 6 a � P > �

Q is
not. The full power of the schema calculus
may be used to construct schema expres-

12

sions, but once a schema expression has
been cast into a process-like role it may no
longer act in a schema-like role.

Some existing Object-Z schema calculus
operators, such as � ,

�
, and � ,

have name-sakes with similar semantics in
the CSP process calculus. The convention
adopted in TCOZ is that the CSP operator
is intended, only `pure logic' schema cal-
culus operators are allowed in TCOZ. This
is justified by the superior algebraic prop-
erties of the CSP operators.

When operations are combined using the
concurrency primitives

�
and � ��� ,

the designer is exposed to all the usual
dangers of shared variable concurrency.
The operation OS � � OS � , where OS �
and OS � are operation schema, will syn-
chronise on all state update events on vari-
ables in the respective delta-lists. Thus
OS � � OS � will have much the same pro-
cess properties as OS ��� OS � , with the ex-
ception that when the operations are incon-
sistent for a given initial state, the concur-
rent composition will deadlock while the
logical composition with diverge. For ex-
ample, consider

SQRT �
� � x � x �
�	 � x � � �
x � � � x �

HALF �
� � x � x �
 	 � x ��� 7 � x � �

The operations SQRT and HALF can agree
only in the case where x

���
. When ei-

ther of the operations is undefined (for ex-
ample when x

� 7�� SQRT is undefined)
SQRT

�
HALF will diverge. When both

are defined but in disagreement (for exam-
ple when x

� ;	�) SQRT
�

HALF will
deadlock at some unspecified time. The
process SQRT

�
HALF is just � x � x �
 	 �

x
�
� �

x � � 7 � and will never deadlock.
The concurrent composition OS � ��� � OS �
is even less well behaved, every variable
may be updated in any way allowed by ei-
ther OS � or OS � . Such a situation is likely
to be very difficult to analyse. We strongly
recommend that concurrent composition
of operations be used sparingly, preferably
only in cases where the operations have
disjoint delta-lists. Shared data structures
should only be utilised when properly pro-
tected by the object encapsulation mecha-
nism.

3.3 Active and passive objects

The definition in a class of the distin-
guished process name MAIN indicates that
the class is being defined as active. As in
CCZ [24], the MAIN process is used to de-
termine the behaviour of objects of an ac-
tive class after initialisation. Initialisation
is treated in the usual way through the INIT

schema. Active objects have their own
thread of control and their mutable state at-
tributes and operation definitions are fully
encapsulated (update events are hidden).
Distinct objects, even of the same class,
share no data and can experience no shared
variable interference. Other objects can
neither reference an active object's state at-
tributes nor invoke any of its local oper-
ations. Only local constants, such as the
object identity attribute self , may be ac-
cessed by other classes. All dynamic in-
teractions with an active object must take
place through the CSP channel communi-
cation mechanism. Active objects are con-
sidered to have the syntactic properties of
process identifiers and may be composed
using CSP operators.

The MAIN operation is optional in a class
definition. If a class is defined without a
MAIN process it is called a passive class.
Passive objects are controlled by other ob-
jects in a system and their state and op-
erations are fully available to the control-
ling object (unless explicitly hidden). The
appearance of MAIN clearly distinguishes
the definition of active objects and passive
objects in a system.

Returning to the timed-collection exam-
ple, the existence of environmental obliga-
tions and the need to purge stale elements
means that the timed-collection class must
have its own thread of control. Assum-
ing that the class operations are defined
as in Section 3.1, the timed-collection be-
haviour is defined by a MAIN process sim-
ilar to the Timed CSP version presented in
Section 2.4.3.

MAIN �� � TC

� mems

��� �
 Add � TC �
� mems
��� �
 6�6 Add � Delete >� 8 t A Purge >�� TC

The most striking difference lies in the use

13

of the operation schemas to subsume the
role of the complex annotations present in
the Timed CSP version. This represents
a clearer and more structured presentation
of the basic control logic. A second dif-
ference lies in the use of the state guard
construct to distinguish between the empty
and non-empty behaviours of the timed-
collection, thus saving the need to define
separate empty and non-empty processes.

3.4 Communication channels

The class state-schema convention is ex-
tended to allow the declaration of commu-
nication channels. If c is to be used as a
communication channel by any of the op-
erations of a class, then it must be declared
in the state schema to be of type chan.
Channels are type heterogeneous and may
carry communications of any type.

We have decided on this convention in
TCOZ, primarily because we see no com-
pelling reason to associate types with
channels and can see some minor advan-
tages in not doing so. Certainly the timed-
failures semantics does not require that
channels be typed. Channel communica-
tion events are simply pairs consisting of
the channel name and the value commu-
nicated. Neither does the Z bindings se-
mantics require the value be typed, the Z
semantics are modelled in untyped set the-
ory. The main argument in favour of ex-
tending the typing conventions to channels
is that it provides redundancy which will
guard against silly errors such as trying to
read an input of one type when the output
was of another type. Balanced against this,
we believe that the ability to send many
forms of data over a channel plays a vi-
tal role in lowering the complexity of class
interfaces and this lower complexity also
reduces the likelihood of errors such as lis-
tening for an input on the wrong channel.
Furthermore we believe it is more instruc-
tive to group logically related communica-
tions (such as those pertaining to a partic-
ular protocol) than to group communica-
tions with identical type but logically un-
related function. Thus, we currently adopt
the untyped convention with the intention
of evaluating our position again as our ex-

perience using the notation increases. An
interesting analysis of the general bene-
fits of typed and untyped syntax has been
made by Lamport and Paulson [37].

Contrary to the conventions adopted for in-
ternal state variables, channels are viewed
as global rather then as encapsulated en-
tities. This is an essential consequence of
their role as communications interfaces be-
tween objects. In the situation of multiple
instances of objects of the same class in
a system, those objects will all share the
same channel. For example, if

�
is a se-

quence of objects of class C with channel
c, then in the process

�����
i
 dom

�
 � 6 i >
each of the objects

� 6 i > communicates
with the environment by sharing channel
c with every other object. In the general
case there is no way for the environment
to know which of the objects it is commu-
nicating with when using channel c. If it is
necessary to know which object the envi-
ronment is communicating with, the object
identity attribute self [18] can be included
in the communication, for example

c � 6 self � message >��
(This technique is used frequently in the
lift case study.) The introduction of chan-
nels to TCOZ reduces the need to ref-
erence other classes in class definitions,
thereby further enhancing the modularity
of system specifications.

Consider once again the timed-collection
example. Using the TCOZ conventions,
the class state can be significantly simpli-
fied from the Timed Object-Z version (see
Figure 6). The sole remaining primary
class attribute is the actual collection it-
self, none of the timing attributes are re-
quired. In addition to the list of mems,
the state schema must declare channels left
and right. These channels serve much the
same role as the corresponding environ-
ment variables in the Timed Object-Z ver-
sion, but here that role is better defined in
terms of the CSP process model. The sec-
ondary attributes oldest and t remain use-
ful in simplifying the operation definitions
and are retained.

14

TimedCollection
�
X �

mems �������
	 X �
left � right � chan

t ���
oldest � X
mems ������ � t � oldest ��� mems � t � min dom mems

INIT

mems ���

Add �
 � mems �
e ��� X
ti ������ � ta �
mems � � ps � ti ��� ta � mems � �! � to � e ���#"

Delete �
 � mems �
ti ���
mems ���� � � � td

mems � � ps � ti � td �
� mems $! � t � oldest �#"%�

Add &� �
e � X ' ti �����)(left � e@ti * Add �

Delete &� �
ti �+�-, mems ���� �.(right / oldest@ti * Delete �

Purge
 � mems �
� � tp � mems � � ps � t � tp � mems �

MAIN &�10 TC (�mems �2� �.(Add ' TC 3�
mems ���� �4(5�6� Add 3 Delete ��7 ! t " Purge �8' TC

Figure 7. Timed Object-Z model of the Timed Collection

mems 9;:=<?>A@ X B
left C right 9 chanD
t 9�>
oldest 9 X
mems EF�G
H

< t C oldest BJI mems
t F min dom mems

Figure 6. delete operation

3.5 The timed-collection

Bringing together the various aspects of
the TCOZ timed-collection introduced
above, we are able to present the entire
class definition in Figure 7.

This specification represents a more con-

cise, flexible, and scalable treatment of
both process and state than is possible in
either Object-Z or Timed CSP. The struc-
ture of the process' internal state and com-
munications interfaces are prominently
documented. The structured schema based
approach to describing state transitions,
supported as it is by the full power of the
Z toolkit and the schema calculus, is better
able to handle large and complex process
state than the essentially ad hoc state an-
notation conventions of CSP. Making use
of the Timed CSP process definition con-
ventions removes the need to consider pro-
cess control matters in operation schemas.
There is a clear separation of process con-
trol and algorithmic matters which simpli-
fies the description of both.

15

3.6 Composing classes

Inheritance is a mechanism for incremen-
tal specification, whereby new classes may
be derived from one or more existing
classes.

Essentially, all definitions are pooled with
the following provisions. Inherited type
and constant definitions and those de-
clared in the derived class are merged.
The state and initialisation schemas of in-
herited classes and those declared in the
derived class are conjoined. Operation
schemas with the same name are also con-
joined.

TCOZ extends Object-Z with two new
class constructs, channels `chan' and main
behaviour `MAIN'. Channels are treated
as normal state constant attributes, there-
fore, they are pooled into the derived
classes. Channel renaming is the same as
state attribute renaming. Since new classes
will generally have new behaviours, the
MAIN class definition is never inherited.
As for all other class definitions, a class
extension must include a MAIN definition
if the class is to be active. The rules for
(active and passive) class inheritance are:

 A new active class may be derived
from an existing active class by defin-
ing a new MAIN process.

 A new active class may be derived
from an existing passive class by
defining a MAIN process.

 A new passive class can also be de-
rived from an existing active class by
not defining a new MAIN process.

 A new passive class can be derived
from an existing passive class by not
defining a MAIN process.

A composite object which contains active
objects is also an active object (a MAIN

definition must appear in the composite
object class). Active objects are respon-
sible for their own intialisation, so a com-
posite object will often not require an ex-
plicit INIT schema. An the example of this
is the Buffered-Consumer/producer class

in Section 3.7. Since it has no passive in-
ternal state it requires no explicit initiali-
sation. Another result of the encapsulation
of local state in active objects is the inabil-
ity of a composite class to refer to the local
state attributes and operations of a compo-
nent object. Only class constants such as
the object identity self may be accessed.

3.7 A multi-threaded example

The timed-collection example made no
use of the multi-threaded capabilities of
the TCOZ notation. In this section, a
specification of a standard buffered con-
sumer/producer process is presented (see
Figure 9) as a demonstration these aspects
of TCOZ.

A simple consumer/producer process ac-
cepts inputs of type L on its left channel,
calculates some function of the inputs, and
outputs the result on its right channel.

ConProd

f � L � R

left � right � chan

Process
i
� � L

o � � R
���

tp � o � � f 	 i ��

MAIN ���
 C ��� i � L ���

left
�
i � Process �

right � o � C

Figure 9. delete operation

To ensure that all inputs are accepted
and outputs are received, the process
is buffered left and right with timed-
collection processes (see Figure 10). The
buffered process consists of a left buffer,
a right buffer, and an internal con-
sumer/producer, as graphically depicted in
Figure 8.

Correct hookup of the timed-collection
buffers to the consumer/producer is
achieved by renaming the various internal
channels. The renaming convention is the

16

mrmlleft right

BufConProd

cpl r

Figure 8. Buffered consumer producer

BufConProd

l � TimedCollection
�
L � � ml � right �

r � TimedCollection
�
R � � mr � left �

cp � ConProd
�
ml � left � mr � right �

MAIN ��
l � � ml ��� cp � � mr �	� r
 ml � mr

Figure 10. buffered cons/prod
model

same as for Object-Z and Timed CSP, that
is P � a � b � is P with all occurrences of b re-
placed by a. Intermediate channels ml and
mr are introduced as the internal interfaces
to the left and right buffers respectively.
In order to retain a consumer/producer
like interface, the right channel of the left
buffer is renamed to ml, the left channel
of the right buffer renamed to mr and
the left and right channels of the internal
consumer/producer are renamed to ml and
mr respectively.

The internal interfaces are protected
from environmental interference by hiding
them. The hiding notation is the same as
for both Object-Z and Timed CSP, that is
6 P � c > is P with c protected from external
influence. In the case where P is process-
like and c is a channel this has the impor-
tant result of freeing communications on
c from the requirement of synchronising
with the environment. Thus communica-
tions on mr and ml occur as soon as the
local processes are ready and cannot be
blocked by any other entity.

The BufConProd class definition allows
true multithreading of the two buffers and
the consumer/producer. For example, the
left buffer may be accepting a new item at

the same time as the consumer/producer is
processing another item, at the same time
as the right buffer is releasing yet another
item to the environment. This concur-
rency is coerced into smooth co-operation
through the requirement for synchronisa-
tion between the processes when commu-
nication occurs on the internal channels ml
and mr.

The addition of these CSP process struc-
turing features represents a significant ad-
vance in the scope and size of systems
which may be addressed by the Object-Z
approach.

3.8 Complex network topologies

The syntactic structure of the CSP syn-
chronisation operator is convenient only
in the case of pipe-line like communica-
tion topologies. Expressing more com-
plex communication topologies generally
results in unacceptably complicated ex-
pressions. For example, consider the com-
munication topology shown in Figure 11,
processes A and B communicate privately
through the channel ab, processes A and C
communicate privately through the chan-
nel ac, and processes B and C communi-
cate privately through the channel bc. One
CSP expression for such a network com-
munication system is

6 A � bc �
� bc� ��� ab � ac ���
6 B � ac �
� ac � � � bc ��� C � ab ��� ab��>
� ab � ac � bc > � ab � ac � bc � ab � � ac ��� bc � � �

The hiding and renaming is necessary in
order to cover cases such as C being able
to communicate on channel ab.

The above expression not only suffers
from syntactic clutter, but also serves
to obscure the inherently simple network

17

A

ab bc

ac
C

B

Figure 11. Two dimensional communication topology

topology described so elegantly by Fig-
ure 11. One reason for this is that it artifi-
cially suggests a dominant role for process
A. Equivalent, but superficially very dif-
ferent, formulations of the network could
be used to assign this “dominant” role
to either B or C. We believe that net-
work topologies can be better described by
adopting a notation inspired by the graph-
based approach embodying in Figure 11.

A network topology abstraction is an ex-
pression of the form (Figure 12).

���
v ��� v ��� v �	�
���
�

v � ch ���� � v ���
v � ch ���� � v ���
v � ch ���� � v �������
�����

The variables v � � v � � v � �����
� are called the
formal network parameters and the net-
work connections

v � ch ���� � v ���
v � ch ���� � v ���

v � ch ���� � v � �������
are called the formal network topology.

Figure 12. network topology
abstraction

The formal network parameters are ab-
stract names that represent the process that
form the nodes of the network topology.
It is necessary to use abstract names to
allow separate incarnations of processes
with identical definition. The formal net-
work topology describes a finite graph in
which each edge or network connection
generally represents a private channel con-
nection between network nodes. Multiple

connections between processes and con-
nections between multiple processes over
a single channel are represented by mul-
tiple connection expressions. In this case
the channel becomes a party line between
the various participating processes.

A network topology abstraction describes
a function, which we call a network con-
structor, that builds a process network
using its process arguments as nodes.
The network constructor associated with
a given network abstraction is built by
processing the formal parameters sequen-
tially. At each stage there is a list of re-
maining formal parameters. Suppose v is
the next remaining formal parameter. The
local channels on which v is not synchro-
nising are decorated to avoid unwanted
synchronisations. The local channels on
which it is synchronising with any of the
remaining parameters are used to create
a synchronisation with the remaining net-
work. Then the rest of the formal parame-
ters are treated one at a time to construct an
expression for that remaining network. Fi-
nally all the local channels are hidden and
any decorations removed.

The above network topology abstraction
thus describes the following network con-
structor (Figure 13).

The system in Figure 11 can be described
by applying a suitable network topology
abstraction to the processes A, B, and C.

6�� v � � v � � v �

v � ab� v � �
v � bc� v � �
v � ac� v � >�6 A � B � C >

The processes A � B � C are the actual net-
work parameters. When the actual net-
work parameters are all process names, the
syntactic conventions are relaxed to allow

18

�
v ��� v ��� v �����	�
���

v ��� ch ������ ch �������	�
� ���
� ch ����� ch �������	�
�����

v � � ch � ��� � ch ��� ���	�
� ���
� ch ��� ���	�
�����

v � � ch � ��� � ch ��� ���	�	� �������
�	�����
...�

�
�

ch ����� ch ����� ch �������	�
� �
� ch ��� � ch � ��� � ch ��� � ch � ��� ���	�	� �

Figure 13. network topology
abstraction

the formal network topology to act in the
guise of a process operator. For example,
the network topology of Figure 11 may be
described by the lax usage

�"6 A ab� B � B bc� C � C ca� A > �
Such usage is considered acceptable since
the names representing the actual parame-
ter can serve the dual purpose of also iden-
tifying the formal parameters. Other forms
of lax usage allow network connections
with common nodes to be run together, for
example

�"6 A ab� B bc� C ca� A >9�
and multiple channels above the arrow, for
example

�"6 A ab � � ab �� B >��

We believe this TCOZ network topology
convention to be novel and potentially use-
ful addition to the basic CSP notation. For
example, the directed parallel operator in
the

�����
M language, whilst adopting sim-

ilar syntax, addresses the different prob-
lem of synchronising on differently named
channels without burdensome use of re-
naming.

4 The lift case study

The multi-lift system is a standard ex-
ample used to demonstrate the expressive
power of various specification techniques

in modeling concurrent reactive systems.6

People are familiar with the user require-
ment of a lift system, so they can concen-
trate on the modeling notations. However,
the lift case study is not a trivial exam-
ple because of the complexity caused by
inherent concurrent interaction in the sys-
tem [54]. We chose the specification of
the lift system as the TCOZ case study
also because both CSP and Object-Z have
been applied to the lift system allowing
a comparison to be drawn. The CSP
`lift' model [49] describes the sequences
of events for the lift system well, how-
ever, it struggles to capture the data as-
pects of the lift system. Furthermore, the
CSP model has a flat and in places awk-
ward structure and the communications
interfaces between the lift system com-
ponents (i.e. floor-buttons and lifts) are
not clearly documented. The Object-Z
`lift' model [16] demonstrates the power
of modeling the state change of the lift sys-
tem in a structured way. However, it is
complicated by the need to represent pro-
cess state as data and it uses a complex,
centralised control-model because of the
Object-Z's single thread semantics. Nei-
ther the CSP or Object-Z model addresses
the real-time issues for the lift system.

Our goals for the TCOZ specification of
the lift system include:

 a model that captures both the data
structures and the behaviour of the lift
system;

 a true multi-threaded specification
that captures the concurrent, reactive,
and real-time aspects of the lift sys-
tem; and

 a component based incremental style
specification that is extendible and
reusable.

This case study aims to demonstrate the
TCOZ approach for modeling timed re-
active systems. Other detailed (lift spe-
cific) issues, such as the efficiency of lift
scheduling, are not considered in this pa-
per.

6Many formal notations have been applied to the
lift system. For example, the UNITY model [7, 9],
Raddle [23], and Constraint Nets [55].

19

enter

Controller

LiftsFloors

LiftSystem

service

request int_request
check

select

Figure 14. Lift system communication diagram

4.1 System overview

A lift system for a building consists of
multiple lifts each providing transport be-
tween the various floors of the building
as dictated by the pressing of a range of
service-request buttons. Inside each lift
there is a panel of buttons, one for request-
ing travel to each of the building's floors.
The panel buttons of any lift must be in
one-to-one correspondence with the floor
numbers. In general there are two service-
request buttons on each floor, for upward
and downward travel respectively, though
on the first floor and the top floor there
is only one button. Any service-request
button can be pushed at any time. Once
pushed the button is said to be on and it
remains on until the requested service is
provided. Pressing an internal button re-
quests the lift to visit the corresponding
floor. Pressing an external button requests
a lift to visit the floor with the desired di-
rection of travel. The lift controller has
a queue which stores all current (exter-
nal) floor requests. When a request ar-
rives from a floor, the system will put the
request at the end of the external request
queue. When a lift becomes available, the
controller will assign the first request of
the queue to the lift for service. When
visiting a floor, a lift door operates in the
order of open-door, wait, then close-door.
This normal process can be interrupted by
a customer crossing the door as detected
by some sensors.

Furthermore, the following timing proper-

ties must be captured in the model:

 lift travel time between two conse-
quent floors is a constant, however
there is a constant time delay for ac-
celeration and braking;

 without interrupts, the lift door
should be kept at the `open' state for
a fixed time period before closing.

4.2 Specification structure

The lift specification is developed in a
bottom-up manner, beginning with mod-
els of basic (passive) component objects,
such as `buttons', which are then used to
develop more complex (active) component
objects such as `floors (requests)', `lifts'
and a `controller'. Then the lift system
is modeled as an active composite object
which composes the component objects
with their interactions (through channels).

Figure 14 illustrates the communication
interfaces between lift system compo-
nents. There are three major compo-
nents, the service-request panels on each
floor, the lifts themselves, and the central
controller which mediates service requests
from the floors. External requests received
by a floor on the request channel cause the
floor's corresponding service button to be
lit and the request is communicated to the
controller on the enter channel. The button
remains lit until a confirmation is received
on the service channel. Requests received
by the controller on the enter channel are
enqueued and sent to idle lifts on the select

20

channel on a first-in-first-out basis. When-
ever a lift receives an internal request on
the int request channel, the corresponding
button is lit and the requested entered into
its itinerary. Whilst the lift has local re-
quests pending it services them in strict or-
der according to its current movement di-
rection, reversing direction at the extreme
floors. The behaviour of the active lifts
is monitored on the check channel and if
a request can be serviced en route it is
dispatched to the lift in question and de-
queued. Once the lift becomes idle, it may
accept an external request on the select
channel, move to the requested floor, and
send a confirmation to the floor panel on
the service channel.

4.3 Buttons

A basic component of the lift system is the
button panels on the floors or inside the
lifts. Buttons have a common behaviour;
they can be pushed `On' by people and
turned `Off' by the system.

ButtonStatus

 � On � Off

Buttons are modeled using a simple pas-
sive class (Figure 15) which records their
current state and provides operations for
turning them on and off.

Button

state � ButtonStatus

INIT

state � Off

TurnOn���
state �

state ��� On

TurnOff���
state �

state ��� Off

Figure 15. button model

4.4 The building

Our model of the building concentrates on
the behaviour of the service-request pan-
els on each floor, as depicted in Figure 16,
other floor related issues are elided.

4.4.1 Floor panels

Floors may be divided into two classes,
those from which it is possible to travel
upward and those from which is possible
to travel downward.

MoveDir

 � Up � Down

The TopFloor (Figure 17) is a floor from
which only downward travel is possible,

TopFloor

num �
	

downbutton � Button � C
request � enter � service � chan

INIT

downbutton
 INIT

PressDown ��
request ��� num � Down ����
downbutton
 state � Off ���

downbutton
 TurnOn �
enter ��� num � Down ��� SKIP ��
downbutton
 state � On ��� SKIP

DownOff �� service ��� num � Down �
� downbutton
 TurnOff

MAIN ���� T �
� PressDown � DownOff � � T

Figure 17. top floor model

and the BottomFloor (Figure 18) is a floor
from which only upward travel is possible.

A MiddleFloor is a floor from which both
upward and downward travel is possible.
Object-Z's class inheritance features are
used to allow both upward and down-
ward travel for the MiddleFloor class (Fig-
ure 19).

Inheritance provides a subclassing mech-
anism for specification reuse (not a true

21

service

request enterMiddleFloor

BottomFloor

TopFloor

Floors

Figure 16. External service request panels.

BottomFloor

upbutton � Button � C
request � enter � service � chan

num ���

INIT

upbutton � INIT

PressUp ��
request �
	 num � Up �
��
upbutton � state � Off ���
upbutton � TurnOn �
enter ��	 num � Up �
� SKIP ��
upbutton � state � On ��� SKIP

UpOff �� service ��	 num � Up �
� upbutton � TurnOff

MAIN ���� B �
	 PressUp � UpOff ��� B

Figure 18. bottom floor model

subtyping mechanism). When a new ac-
tive class is derived from an existing active
class, the objects of the new class often
have different behaviour to the objects of
the existing class. As a consequence, the
MAIN process must always be redefined
explicitly.

The subscript ` � C' (object contain-

MiddleFloor
TopFloor � BottomFloor

downbutton �� upbutton

MAIN ���� M �
PressDown !

DownOff !
PressUp ! UpOff "�# M

Figure 19. middle floor model

ment7 [12]) indicates that the button
objects are contained in their correspond-
ing floor object.

As a floor can be either top-floor or
bottom-floor or middle-floor, the general
type of a floor is defined as a class-
union [10].

Floor �� TopFloor $ BottomFloor
$ MiddleFloor

4.4.2 The building

The building is modeled as an aggregate
of active floor objects (Figure 20). In-
dividual floors do not communicate with
each other, but rather with the central con-
troller and with the lifts. Thus the MAIN

7Object containment ensures that no object di-
rectly or indirectly contains itself; and no object is
directly contained in two distinct objects. For a de-
tailed discussion see [12].

22

processes of the individual floor objects
are combined using asynchronous compo-
sition,

� ���
.

Building

height ���

floors � seq Floor � C
height ��� floors�

i � dom floors �
floors 	 i
�� num � i

floors 	�
�
�� BottomFloor
floors 	 height
�� TopFloor�

i � 	�������	 height ��
�
�
��
floors 	 i
�� MiddleFloor

MAIN ������ � f � ran floors

Figure 20. building model

4.5 Lifts

A lift consists of four parts as depicted in
Figure 21, a door for allowing access to
and from the lift, a shaft for transporting
the lift, an internal queue for determining
the lift itinerary, and a controller for coor-
dinating the behaviour of the other compo-
nents. This division structures the specifi-
cation in such a way as to limit the com-
plexity of the individual components and
to highlight the potential for concurrency.

4.5.1 Lift door control

The lift door controller is treated as a sepa-
rate class so as to ensure a clear description
of its timing and safety properties. Un-
der this limited aim, the class may be de-
scribed entirely within the Timed CSP id-
iom.

The controller interfaces on a channel
servo with a servomechanism that acti-
vates the door to open or close and on a
channel sensor to determine when the door
is open, closed, or blocked from closing.
The messages that may be set on these

channels are then

DoorMess

 � ToOpen � Opened �
ToClose � Closed � Interrupt �

The timing property of the door is that
once it is open, it must remain open for
time period

to
 � [open time]

before closing. The safety property is that
if the closing of the door is blocked (as in-
dicated by receipt of an Interrupt message)
the door must be reopened.

The door cycle is initiated by receipt of
an open signal from the lift controller and
completed by sending a close signal. As
soon as the door is open, a conf signal
must be sent to the lift controller so as to
indicate fulfillment of a service request.

Door

open ! conf ! close " chan
servo ! sensor " chan

OpenDoor #$
servo %'& self ! ToOpen (�)
sensor *+& self ! Opened (�) SKIP

CloseDoor #$
servo %'& self ! ToClose (�)
sensor *+& self ! Closed (,) SKIP

CycleDoor #$
OpenDoor - conf)&/. CD 0 WAIT to - CloseDoor1 & sensor *+& self ! Interrupt () OpenDoor - CD (�(

MAIN #$. D 0 open)
CycleDoor - close) D

Figure 22. door model

In the CycleDoor process we make use
of the CSP interrupt primitive which al-
lows an exception handling behaviour to
be triggered by the occurrence of an un-
usual event. The normal door cycle fol-
lows the order of open-door, wait to, then
close-door. This normal cycle can be in-
terrupted and re-started by the event which
detects a message Interrupt from the chan-

23

int_sched

int_serv

open

conf

close

move arrive

Lift_Control

Shaft
Internal_Q

Door

Lift

int_request

service

select

Figure 21. Internal lift communication diagram

nel sensor. This message acts as an inter-
rupt on the normal cycle and control is re-
turned to the start of the normal cycle.

4.5.2 Moving the lift

The essentially analog nature of the move-
ment of the lift presents something of a
modeling problem. The technique used
throughout this specification has been to
abstract real-world interactions as CSP
events (eg the request and int request)
channels, but the movement betweens
floors is by its nature a time-consuming
process. We thus adopt the common tech-
nique of delimiting the period of move-
ment by start and finish events. The start
event of the movement process is a com-
munication to the lift-shaft apparatus of
the number of floors to be moved. The
finish event is a communication from the
lift-shaft apparatus that the lift has arrived
at the destination floor. The timing proper-
ties of lift movement are described by two
time constants:

 maximum time to move one floor Up
or Down

�
t
 �

 acceleration and braking delay

delay
 �

The maximum time to pass from one floor
to another is

�
t for each floor travelled plus

a delay of delay caused by initial accelera-
tion and final braking of the lift. The shaft
model is captured in Figure 23.

Shaft

move � arrive � chan

MAIN
���� S ��

n 	��

� � move � n ��
�������� n �����t � delay ���
arrive � S

Figure 23. shaft model

Such event based models are highly ab-
stract and perhaps are less satisfying when
applied to the complex process of mov-
ing the lift, than when applied to the more
event-like process of pressing a button.
However, the channel based interfaces of
TCOZ processes mean that such models
must be used. In their favour it must be
pointed out that from the point of view of
the lift controller the matters of essential
interest are precisely when the movement
commences and when it finishes.

4.5.3 Lift itinerary

The itinerary of the lift is determined by
the requests made by passengers using the

24

Internal Q

height ���

panel � seq Button � C
int request � int sched � int serv � chan�
irs �����
ups � dns �	��
� �
�

height ��� panel � irs ��� f � dom panel � panel � f ��� state � On �
ups ��� fl � dom panel ��� n � irs � n � fl �
dns ��� fl � dom panel ��� n � irs � n � fl �

NextUp
fl !� dest " � dom panel

� ups � fl #�%$��&
dest "'� min ups � fl (�)�*
� ups � fl #�+��&,� dns � fl #�-$��&,�
dest "'� max dns � fl #�)�

NextDown
fl !� dest " � dom panel

� dns � fl #�.$��&
dest "/� max dns � fl #�)�*
� dns � fl #�0��&1� ups � fl #�-$�,&,�
dest "/� min ups � fl #�2�

Next 3�4
md � MoveDirection � md %� Up 56� NextUp

*
4
md � MoveDirection � md %� Down 56� NextDown

MAIN 3�87 IQ �4
fl � dom panel 59� int request �� self � fl � � panel � fl �:� TurnOn ; IQ <4
fl � dom panel 59� int serv fl � panel � fl ��� TurnOff ; IQ <4
fl � dom panel ; md � MoveDirection � irs $�,&-5=�

int sched �� fl � md � � Next ; int sched " dest � IQ

Figure 24. internal queue model

internal floor-request panel and those dis-
patched from the central control. For the
purposes of limiting design complexity a
separate class is defined to determine the
lift's internal service itinerary.

This internal queue makes use of a panel
of buttons to communicate with passen-
gers and to maintain a record of the floor-
requests pending (Figure 24). A depen-
dent (secondary) variable irs records the
set of destinations that have been selected
by the passengers at any given time. This
set may in turn be split into those destina-
tions above a given floor, ups, and those
below, dns. Floor services are requested
on the int request channel and confirmed
on the int serv channel. Scheduling ser-

vices are requested by passing the current
floor fl � and movement direction md � on
the int sched channel.

The operations of the controller are turning
the panel buttons on and off, in response
to service requests and confirmations, and
determining the next destination for the lift
itinerary. The next destination is the first
requested destination in the current direc-
tion of movement, reversing at either ex-
tremity of movement. A scheduling re-
quest is only serviced if there are pending
floor-service requests.

25

LiftControl

fl ���
md � MoveDirection
move � arrive � chan [shaft]
open � conf � close � chan [door]
int sched � int serv � chan [internal Q]
select � check � service � chan [external channels]

SetFloor���
fl �

dest � �	�

fl
�� dest �

SetDir���
md �

dir � � MoveDirection

md
�� dir �

CalDir
dest � �	�
dir
 � MoveDiection

dest ��� fl � dir
�� md �
dest ��� fl � dir
�� Up �
dest ��� fl � dir
�� Down

Move ���
dest �	��� dest �� fl ��� move
 � dest � fl ��� arrive � open � conf � SetFloor �
dest �	��� dest � fl ��� open � conf � SKIP

Internal �� CalDir ! SetDir ! Move ! int serv
 fl � close � SKIP

Get Internal ��
int sched
 � fl � md �"� �

dest �	� �"� int sched � dest � check
 � fl � dest � md �"�
check � Internal �
dest �	� �"� check � dest � External

External �� Move ! service
 � fl � md �"� close � SKIP

Get External �� �
dest �	� ! dir � MoveDirection ��� select � � dest � dir �#� SetDir ! External

MAIN ��%$ LC � Get Internal � WAIT tp ! Get External �&! LC

Figure 25. individual lift controller model

4.5.4 Lift controller

The lift controller keeps record of the cur-
rent floor and movement direction and pro-
vides the interface between the lift en-
vironment and the other lift components.
The lift controller exhibits of three modes
of behaviour. It is modeled in Figure 25.

The lift begins at rest awaiting either a
passenger destination request or a dispatch
from the central controller. Any passen-
gers inside the lift are given a period of
time

tp
 �
[wait for passenger input]

to make an internal request before the lift
accepts any external requests.

The controller determines that an internal
request is pending through the willingness
of the internal queue to perform a schedul-
ing transaction. Once the queue has indi-

cated the next destination the central con-
troller is checked to see if there is an ex-
ternal request from an intermediate floor.
If so the liftservices the external request
first. If not it services the internal request:
the new direction is calculated and set; the
lift is moved to the new floor and the door
is opened; the internal queue and the cen-
tral controller are notified; and then once
the door is closed control is returned to the
rest mode.

If, after waiting tp, an external request
becomes available before any internal re-
quest: the new move direction is set; the
lift is moved to the new floor and the
door is opened; the floor service-request
panel is notified; and then, once the door is
closed, control is returned to the rest mode.

26

Controller

reqQ � seq
�����

MoveDirection �
enter � select � check � service � chan�
req � �
	 MoveDirection
ups � dns � �����

����
req � ran reqQ ��� f ��� f � � �
�

ups
�
f ��� f ������� f � ��� f req Up � f � � f � f !#"

dns
�
f ��� f ������� f � ��� f req Down � f � � f � f !#"

INIT

reqQ �%$'&

Join� �
reqQ �

req (� ����� MoveDirection �
on enter

reqQ)*� reqQ +
$ req (�&
Remove� �

reqQ ��
dest (,� md (�� � ��� MoveDirection

reqQ) �.-0/21435-76 �
reqQ 89:� � dest (,� md (��;"��

Find
fl (,� d (� �
md (� MoveDirection
dest < � �
suc < �>=
md (?� Up � suc <#� � ups

�
fl (,� d (��A@��B?�C�

suc <2D dest <E� min ups
�
fl (,� d (��F

md (?� Down �
suc <2� � dns

�
fl (,� d (��A@��B?�C�

suc <2D dest <E� min dns
�
fl (,� d (��

Dispatch G�HI�
dest � md � � ��� MoveDirection

�
reqQ @�J$*&K� � dest � md ���
6ML�3,N reqQ O �

select < � dest � md �
 Remove

CheckServ G�H
fl � d � �QP md � MoveDirection O � check (� fl � d � md �
 Find

P
H
suc O � check < dest

Remove R H S

suc O � check

SKIP

MAIN G�UT C
�V�

Join R Dispatch R CheckServ � P C

Figure 26. lift system controller model

4.5.5 The bank of lifts

Each lift consists of a door, a shaft, and a
controller (Figure 27).

The collection of all the lifts (Figure 28) in
the system is modeled as an aggregate of
the individual lifts acting autonomously.

4.6 The central controller

The responsibility of the central controller
is to dispatch floor requests to idle lifts
(modeled in Figure 26). It consists of a re-
quest queue with channels that connect the
floors and the lifts. The network topology
is described graphically in Figure 14.

The controller receives requests from the
floors and enters them into the reqQ queue
(Join operation). In the ordinary case these
requests are dispatched in first-in-first-out
manner (Dispatch operation) as idle lifts
become available, but if in the course of
servicing internal requests a lift can visit
a floor whilst moving in the floor required
direction, the request is removed from the
queue (CheckServ operation).

4.7 The lift system

The lift system consists of the floors of the
building, the bank of lifts and the central
controller. The number of floor-service

27

Lift

iq � Internal Q � C
lc � LiftControl � C
s � Shaft � C
d � Door � C

MAIN ������
t � lc move 	 arrive
 � s �
t � lc open 	 close 	 conf
 � d �
t � lc int sched 	 int serv
 � iq

Figure 27. shaft model

Lifts

lifts ��� Lift � C
MAIN �������� l � lifts

Figure 28. shaft model

buttons in each lift must be exactly the
number of floors in the building. It is mod-
eled in Figure 29.

LiftSystem

bd � Building
ls � Lifts
contr � Controller�

l � ls � lifts �
l � iq � height � bd � height

MAIN ������ bd enter ! contr
select " check ! ls service ! bd #

Figure 29. final lift system
model

The lift system behaviour MAIN describes
the communication channels between the
independent concurrently executing sys-
tem components: the lifts, the floors, and
the controller. The floors communicate
service requests to the controller through
the enter channel, the controller dispatches
these requests to the lifts through the select

and check channels, and the lifts indi-
cate successful servicing of requests to the
floors through the service channel.

4.8 Discussion

The application of TCOZ to the multi-lift
system has been convincingly successful,
despite the relatively modest real-time as-
pects of the specification. The powerful
combination of object-oriented structur-
ing, data modeling, and process modeling
features available in TCOZ has allowed
the clean presentation of an ambitiously
detailed (when compared to versions de-
scribed in other languages) treatment of
the multi-lift system. This strongly sup-
ports our claims that TCOZ represents a
highly scalable and reusable method for
describing real-time and concurrent sys-
tems. As an example, consider modify-
ing the specification so as to allow `oppor-
tunistic' servicing of requests entered after
a lift starts moving. The modular nature of
the specification immediately draws atten-
tion to the Shaft class which controls the
movement of the lift between floors. The
interface of this class needs to be expanded
to include events to indicate the lift is ap-
proaching the next floor and to stop the lift
at the next floor. Armed with these ad-
ditional controls the LiftControl class can
easily be modified to react opportunisti-
cally to new service requests.

One surprise in the development of the
TCOZ lift was the degree to which the pro-
cess model idiom came to dominate. The
starting point of the development had been
a data oriented standard Object-Z speci-
fication [16]. Rather than being a sim-
ple matter of adding real-time and concur-
rent features to the existing specification it
soon became clear that much of its `data'
was in fact being used to represent `pro-
cess' behaviour which could be more ele-
gantly represented using the CSP process
modeling features of TCOZ. The final ap-
proach adopted was to model the system
primarily as a network of communicat-
ing processes and to make use of Object-
Z's data modeling features to simplify
and structure the specification by abstract-
ing away from algorithmic specifics and

28

reusing common data components such as
buttons.

A perceived weakness of the TCOZ ap-
proach was identified in its handling of
the interface between TCOZ processes and
the real world. Although the abstrac-
tion of button presses as communications
on external channels is reasonably accept-
able, the inability to describe `continu-
ously' changing aspects of the system such
as `lift position' is particularly disturbing.
Whilst modeling the moving process by
start and finish events provides an ade-
quate interface to the TCOZ specification
it goes no way at all toward ensuring that
lift shaft satisfies our informal intuitions as
to its behaviour. The specification is thus
strictly speaking not of a system for mov-
ing people between floors of a building,
but rather simply a description of a method
of controlling such a system in a satisfac-
tory manner.

One advantage of choosing the lift system
to exercise the TCOZ language is the avail-
ability of existing lift specifications in both
CSP [49] and Object-Z [16]. Apart from
the ability of TCOZ to describe timing as-
pects not addressed by either of these spec-
ifications, such as the correct behaviour of
the door opening cycle, TCOZ represents
an improvement in expressibility, modu-
larity, and reusability over both existing
specifications.

The CSP `lift' model [49] is similar in
spirit to the TCOZ lift presented here, ex-
cept that it does not consider the door cy-
cle nor the movement of the lift. However,
in contrast to the highly modular approach
of the TCOZ specification, the CSP ver-
sion is forced to adopt a quite flat structure
because the only structuring facility avail-
able is the process definition. The chan-
nel interface declarations and the network
topology operator provide valuable infor-
mation to the reader of the TCOZ specifi-
cation regarding the source and destination
of communications, which is not available
to the reader of the CSP specification. Al-
though some attempt is made to structure
the CSP specification document through
the use of section headings to distinguish
system components, the essentially global
nature of all process definitions and com-

munication channels makes it difficult to
comprehend individual process definitions
without extensive reference to the rest of
the specification. The standard CSP syn-
chronisation operator 6 � > is a partic-
ular point of weakness as it offers no vi-
sual feedback as to the interface between
network components. The use of the net-
work topology operator (and associated
diagrams) is a particular strength of the
TCOZ specification.

The weaknesses in CSP's treatment of data
and algorithms not only adds syntactic
clutter to the CSP lift, but also appears to
influence the structure of the specification.
In particular, the difficulty in abstracting
various calculations away from the spe-
cific direction of travel results in a `split'
specification, with many features being re-
peated for both the `up' and `down' direc-
tions of travel. For example, the specifi-
cation of a single lift [49, p 26] includes
subprocesses Lift 6 f � up > and Lift 6 f � down >
which differ primarily in the method of
calculating the next floor on the itinerary.
In contrast the TCOZ version abstracts this
calculation into the Next operation of the
Internal Q class allowing the description
of the lift's gross behaviour to be indepen-
dent of the direction of travel, even despite
using a more complex method of deter-
mining the itinerary. Although a specifi-
cation of this form is possible in CSP, the
lack of strong, modular data modeling fa-
cilities acts as a strong disincentive to this
form of abstraction.

The Object-Z `lift' model [16] provided
a structured and reusable model and was
able to describe the sequence of state
changes of the overall lift system. How-
ever, Object-Z's process semantics forces
the specification to include extra data for
describing process state and all system
components to be viewed passively (ex-
cept the lift system class) which leads to
a complex, centralised control-model. The
lift components, such as the shaft and the
door, were abstractively modeled as inter-
nal state components (rather than compo-
nent objects) of the lift. The system class
LiftSystem [16, pp 146,147] became very
complex (and lengthy) because the global
ordering of synchronisations between lifts,

29

floor requests and request queue must be
explicitly determined. In the TCOZ model
only the local ordering of these events
need be specified, the global ordering is
implicit in the CSP event synchronisation
model. In addition, the TCOZ model gives
the freedom of viewing the lift system
components as active entities allowing a
more natural, modular, and reusable de-
scription of the lift system.

5 Related work

The basis for the successful blending of
the Timed CSP and Object-Z notations is
the duality between state transition seman-
tics and event semantics. This has long
been recognised [29, 35, 4, 6] and has un-
doubtedly helped shape the development
of Object-Z's behavioural semantics. Per-
haps the most mature formalism based on
this duality is Butler's [6] blending of CSP
with Back's Action Systems [3]. An im-
portant lesson from this work is the need
to distinguishstrongly between the notions
of guard and precondition in the state-
transition view. The failure to do so in
Object-Z has made it impossible to rec-
oncile the usual Z precondition refinement
techniques with the default behavioural se-
mantics. The adoption of a distinct notion
of state guards in TCOZ makes possible
a full blending of Z-style algorithm and
CSP-style process refinement.

The notion of blending the untimed CSP
and Object-Z has been proposed indepen-
dently by Fischer [22] and Smith [51].
Both take the approach of identifying the
notion of channel with that of opera-
tion and operation invocations with atomic
communications of both inputs and out-
puts. The latter prevents the modeling
of timing and concurrency at the opera-
tion level and complicates the CSP se-
mantics through the mixing of elements
of external (inputs) and internal (outputs)
choice in a single event. The former
is undesirable from a theoretical stand-
point because it confuses communications
interfaces which are essentially process
related attributes with algorithmic struc-
tures which are essentially data related

attributes. An object's communications
interface should be determined by high-
level considerations of the overall system
structure, whilst the operational interface
should be determined by consideration of
the internal data structures. The purpose
of the class envelope is to resolve such ten-
sions locally, not to propagate them up and
down the design hierarchy. The practical
consequences of the identification of chan-
nel and operation is the promotion of both
high degrees of coupling between classes
and unnatural class structures. Neither for-
malism makes a thorough distinction be-
tween preconditions, guards, and opera-
tions and consequently refinement issues
are complicated in both. Smith adopts a
semantics which is unable to model pro-
cess divergence and as a consequence must
identify preconditions with guards, mak-
ing process and precondition refinement
incompatible. The semantics adopted by
Fischer does allow a distinction between
guards and preconditions, but guards are
tightly coupled with operations so that the
same operation may not be used in differ-
ing circumstances as is the Remove oper-
ation in the Controller class. Moreover,
a convention is introduced whereby when
an operation guard is not explicitly defined
the precondition is used by default, thus
complicating both the understanding of the
process behaviour and the refinement of
the operation. Issues, such as real-time and
the distinction between active and passive
objects, are not addressed by either for-
malism.

More generally, the need for specifica-
tion notations capable of addressing both
data/algorithmic issues and process con-
trol issues is widely recognised. Sev-
eral notations now exist aimed at bridg-
ing this divide. These fall essen-
tially into two classes, those that adopt
a process-algebra/event-based style (LO-
TOS [33], ESTEREL [5], RAISE [26])
and those that adopt a transition system
style (UNITY [7], Action Systems [3],
TLA [36]). We consider two real-time spe-
cific languages, E-LOTOS [32] and AS-
TRAL [8], as being representative of their
respective classes and having similar aims
to TCOZ.

30

The LOTOS specification language [33]
is very similar in approach to TCOZ,
blending CSP-like process primitives with
a declarative-style data-specification lan-
guage. E-LOTOS [32] is a recently de-
veloped real-time extension to LOTOS.
The process and real-time primitives of
E-LOTOS are influenced by Timed-CSP,
therefore these aspects of E-LOTOS are
similar to TCOZ. The major differences
lie in the data-modeling and structuring
aspects of the two formalisms. The data
modeling language of E-LOTOS is an al-
gebraic/functional hybrid, whilst TCOZ is
model based. The module construct of E-
LOTOS is similar to the class construct
of TCOZ in that it can encapsulate states
and operations. Modules can be reused
via the imports mechanism which is sim-
ilar to the class inheritance. However E-
LOTOS modules cannot be instantiated as
a type, while TCOZ classes can. There-
fore, the notions of object and composi-
tion of objects (aggregation) are missing
from E-LOTOS. In TCOZ this adds an-
other dimension of potential for reuse of
specifications. E-LOTOS's subtyping is a
simple record-type extension mechanism
which is less powerful than the TCOZ's
polymorphic typing (inheritance hierarchy
and class union).

ASTRAL is developed based on the ideas
of RT-ASLAN [2] and TRIO [27]. AS-
TRAL also has a module construct that
encapsulates the variables and transac-
tions. The ASTRAL module has the
two dimensions of reuse, importing and
type instantiation. Therefore the ASTRAL
module is very close to the TCOZ class
construct except that the names of in-
stances of a module are modeled explic-
itly, while the object identity is implic-
itly included in the TCOZ class seman-
tics (a class is a collection of object iden-
tities). In ASTRAL, object composition
is generally modeled by the (program-
ming language flavoured) list type con-
struct, array � � � of � � � . In TCOZ, object
composition may have various (mathemat-
ics flavoured) abstract forms, i.e. collec-
tions `

� � � � ' and list `seq � � � '. The timing as-
pects are similar to the TLA approach [1]
and the Timed Object-Z approach [11].

That is, a global clock NOW is intro-
duced and system environments are mod-
eled explicitly. Therefore sequential real-
time systems can be captured well by AS-
TRAL, while truly concurrent active sys-
tems are difficult to describe in ASTRAL.

6 Conclusions and further
work

Timed CSP and Object-Z complement
each other not only in their expressive ca-
pabilities, but also in their underlying se-
mantics. In addition, the object oriented
flavour of Object-Z provides an ideal foun-
dation for promoting modularity and sep-
aration of concerns in system design. The
combination of the two, TCOZ, treats data
and algorithmic concerns in the Object-
Z style and treats process control, timing,
and communication concerns in the CSP
style. The notion of active and passive ob-
jects are clearly distinguished in the TCOZ
model.

This powerful modeling combination,
TCOZ, has been successfully applied to
a comprehensive case study on specifying
a real-time multi-lift system. In compar-
ison to the CSP model [49] and the stan-
dard Object-Z model [16] of the lift sys-
tem, the TCOZ model not only describes
the complex system state and behaviour
within a cleaner and less coupled structure,
but also captured the true concurrent real-
time interactions between various system
components of the lift system. The lift
case study also provides feedback to the
development of TCOZ. For example, the
development of the modeling notation for
complex network topologies is motivated
by the lift case study. A particular weak-
ness of the language has been identified
in its ability interface with `real-world' as-
pects of a system. This clearly limits the
applicability of the notation to the soft-
ware aspects of a system. Future work
will be directed toward improving its ca-
pabilities in this direction so as to integrate
it into a more holistic approach to real-
time and embedded systems design. One
promising approach is to enhance TCOZ
with features of the Timed Refinement

31

Calculus [40, 43] which allow convinc-
ing descriptions of continuously varying
real-world observables. Some results on
this work have been recently reported in
[39, 13].

TCOZ preserves in large part both the syn-
tax and semantics of the individual no-
tations and hence can potentially benefit
from the large body of experience devel-
oped in the use of and tool support for
the individual notations and their parents.
These benefits might include: the full ap-
plication of the Z schema calculus, struc-
tured design, and refinement techniques;
the application of Timed CSP process
equivalence and refinement techniques, es-
pecially the Timed CSP model hierar-
chy for moving between timed and un-
timed models; the extension of existing Z,
Object-Z, and CSP tools and model check-
ers. For example, we are currently plan-
ning a project to construct a parser/type-
checker for TCOZ based on the Object-Z
parser of Johnson [34].

A separate paper details the blended
state/event process model which forms the
basis for the TCOZ semantics [38]. Ad-
ditional planned work includes develop-
ing refinement rules for the TCOZ speci-
fication language based on existing Z and
CSP refinement systems. Schneider has
described a system for capturing and ver-
ifying abstract temporal requirements of
Timed CSP processes [47], it is hoped that
this might also form a valuable addition to
the TCOZ notation.

Acknowledgements

We would like to thank John Colton, Ian
Hayes, Keith Gallagher, Neale Fulton, and
the anonymous referees for many useful
comments. This work has been supported
in part by the DSTO/CSIRO Fellowship
programme.

References

[1] M. Abadi and L. Lamport. An Old-
Fashioned Recipe for Real Time. In
J.W. de Bakker, , C. Huizing, W.-P.

de Roever, and G. Rozenberg, edi-
tors, Proc. REX Workshop on Real-
Time: Theory in Practice, volume
600 of LNCS, pages 1–27. Springer-
Verlag, 1991.

[2] B. Auernheimer and R.A. Kemmerer.
Rt-aslan: A specification language
for real-time systems. IEEE Trans.
Software Eng., 12(9), September
1986.

[3] R. J. R. Back and J. von Wright.
Refinement calculus, part II: Par-
allel and reactive programs. In
J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, editors, Step-
wise Refinement of Distributed Sys-
tems: Models, Formalism, Correct-
ness, volume 430 of Lecture Notes
in Computer Science, pages 42–66.
Springer Verlag, 1990.

[4] M. Benjamin. A message passing
system: An example of combining
CSP and Z. In J. E. Nicholls, edi-
tor, Z User Workshop: Proceedings
of the Fourth Annual Z User Meet
ing, Oxford, December 1989, Work-
shops in Computing, pages 221–228.
Springer-Verlag, 1990.

[5] G. Berry and G. Gonthier. The
ESTEREL synchronous programming
language: design, semantics, imple-
mentation. Science of Computer Pro-
gramming, 19(2):87–152, November
1992.

[6] M. J. Butler. A CSP Approach
to Action Systems. PhD thesis,
Wolfson College, Oxford University,
Michaelmas Term 1992.

[7] K. M. Chandy and J. Misra. Paral-
lel Program Design: A Foundation.
Addison Wesley, 1988.

[8] A. Coen-Porisini, C. Ghezzi, and
R. Kemmerer. Specification of Real-
time Systems Using ASTRAL. Tech-
nical Report 96-30, Computer Sci-
ence Department, University of Cal-
ifornia, Santa Barbara, US, January
1997.

32

[9] H. C. Cunningham, V.R.Shan, and
S. Shen. Devising a formal specifi-
cation for an elevator controller. TR
94-10, Department of Computer and
Information Science, University of
Mississippi, USA, 1994.

[10] J.S. Dong. Living with free type
and class union. In The 1995 Asia-
Pacific Software Engineering Con-
ference (APSEC'95), pages 304–312.
IEEE Computer Society Press, De-
cember 1995.

[11] J.S. Dong, J. Colton, and L. Zucconi.
A formal object approach to real-
time specification. In the 3rd Asia-
Pacific Software Engineering Con-
ference (APSEC'96), Seoul, Korea,
December 1996. IEEE Computer So-
ciety Press.

[12] J.S. Dong and R. Duke. The geom-
etry of object containment. Object-
Oriented Systems, 2(1):41–63, Chap-
man & Hall, March 1995.

[13] J.S. Dong, B. Mahony, and N. Ful-
ton. Capturing Periodic Concur-
rent Interactions of Mission Com-
puter Tasks. In The 6th Asia-
Pacific Software Engineering Con-
ference (APSEC'99), pages 538–545.
IEEE Computer Society Press, De-
cember 1999.

[14] J.S. Dong and B. P. Mahony. Ac-
tive objects in TCOZ. In J. Sta-
ples, M. G. Hinchey, and S. Liu,
editors, Proceedings Second Inter-
national Conference on Formal En-
gineering Methods (ICFEM '98),
pages 16–25. IEEE Computer Soci-
ety, 1998.

[15] J.S. Dong, G. Rose, and R. Duke.
The role of secondary attributes
in formal object modelling. In
Alex Stoyenko, editor, The First
IEEE International Conference on
Engineering Complex Computer Sys-
tems (ICECCS'95), pages 31–38, Ft.
Lauderdale, USA, November 1995.
IEEE Computer Society Press.

[16] J.S. Dong, L. Zucconi, and R. Duke.
Specifying parallel and distributed

systems in Object-Z. In G. Agha and
S. Russo, editors, The 2nd Interna-
tional Workshop on Software Engi-
neering for Parallel and Distributed
Systems, pages 140–149, Boston,
Massachusetts, 1997. IEEE Com-
puter Society Press.

[17] R. Duke, P. King, G. Rose, and
G. Smith. The Object-Z specification
language: Version 1. Technical Re-
port 91-1, Software Verification Re-
search Centre, Australia, 1991.

[18] R. Duke and G. Rose. Modelling
object identity. In Proc. 16th Aus-
tralian Comput. Sci. Conf. (ACSC-
16), pages 93–100, February 1993.

[19] R. Duke and G. Rose. Formal Object
Oriented Specification. Macmillan,
2000. forthcoming.

[20] R. Duke, G. Rose, and G. Smith.
Object-Z: a specification language
advocated for the description of stan-
dards. Computer Standards and In-
terfaces, 17:511–533, 1995.

[21] C. Fidge, P. Kearney, and M. Ut-
ting. A formal method for building
concurrent real-time software. IEEE
Software, 14(2), 1997.

[22] C. Fischer. CSP-OZ: A combination
of Object-Z and CSP. In H. Bow-
mann and J. Derrick, editors, For-
mal Methods for Open Object-Based
Distributed Systems (FMOODS '97),
volume 2, pages 423–438. Chapman
& Hall, 1997.

[23] I. R. Forman. Design by decom-
position of multiparty interactions in
Raddle87. In The 5th IEEE Interna-
tional Workshop on Software Spec-
ification and Design (IWSSD'89),
pages 2–10. IEEE Computer Society
Press, 1989.

[24] A. J. Galloway. Integrated For-
mal Methods with Richer Method-
ological Profiles for the Develop-
ment of Multi-Perspective Systems”.
PhD thesis, University of Teesside,
School of Computing and Mathemat-
ics, August 1996.

33

[25] A. J. Galloway and W. J. Stoddart.
An operational semantics for ZCCS.
In M. Hinchey and S. Liu, edi-
tors, the IEEE International Confer-
ence on Formal Engineering Meth-
ods (ICFEM'97), pages 272–282,
Hiroshima, Japan, November 1997.
IEEE Computer Society Press.

[26] C. George, P. Haff, K. Havelund,
A. E. Haxthausen, R. Milne,
C. Bendix Nielson, S. Prehn, and
K. R. Wagner. The Raise Specifica-
tion Language. Prentice Hall, New
York, 1992.

[27] C. Ghezzi, D. Mandrioli, and
A. Morzenti. Trio: A logic language
for executable specifications of
real-time system. J. Systems and
Software, June 1990.

[28] I. J. Hayes and B. P. Mahony. Using
units of measurement in formal spec-
ifications. Formal Aspects of Com-
puting, 7(3), 1995.

[29] Jifeng He. Process simulation and
refinement. Formal Aspects of Com-
puting, 1(3):229–241, 1989.

[30] C. A. R. Hoare. Communicating Se-
quential Processes. Prentice-Hall In-
ternational, 1985.

[31] International Organization for Stan-
dardization, Geneva. Units of mea-
surement: handbook on interna-
tional standards for units of measure-
ment, 1979.

[32] ISO. SC21/WG7 Working Draft
on Enhancements to LOTOS, ISO
Working Group 7. December 1997.

[33] ISO 8807. LOTOS – A formal de-
scription technique based on the tem-
poral ordering of observational be-
haviour, 1989.

[34] W. Johnston. A type checker for
Object-Z. Technical report 96-24,
Software Verification Research Cen-
tre, School of Information Technol-
ogy, The University of Queensland,
Brisbane 4072. Australia, July 1996.

[35] M. B. Josephs. A state-based
approach to communicating pro-
cesses. Distributed Computing, 3:9–
18, 1988.

[36] L. Lamport. The temporal logic of
actions. ACM Transactions on Pro-
gramming Languages and Systems,
16:872–923, 1994.

[37] L. Lamport and L. C. Paulson.
Should your specification language
be typed? Technical Report 147,
Systems research Center, 1997.

[38] B. Mahony and J.S. Dong. Overview
of the semantics of TCOZ. In
K. Araki, A. Galloway, and
K. Taguchi, editors, IFM'99:
Integrated Formal Methods, York,
UK, pages 66–85. Springer-Verlag,
June 1999.

[39] B. Mahony and J.S. Dong. Sensors
and Actuators in TCOZ. In J. Wing,
J. Woodcock, and J. Davies, editors,
FM'99: World Congress on Formal
Methods, volume 1709 of Lect. Notes
in Comput. Sci., pages 1166–1185,
Toulouse, France, September 1999.
Springer-Verlag.

[40] B. P. Mahony. Networks of pred-
icate transformers. Technical Re-
port 95-05, Software Verification Re-
search Centre, Department of Com-
puter Science, The University of
Queensland, St. Lucia, QLD 4072,
Australia, February 1995.

[41] B. P. Mahony and J.S. Dong. Blend-
ing Object-Z and Timed CSP: An in-
troduction to TCOZ. In The 20th In-
ternational Conference on Software
Engineering (ICSE'98). IEEE Com-
puter Society Press, April 1998. (ac-
cepted).

[42] B. P. Mahony and J.S. Dong. Net-
work topology and a case-study in
TCOZ. In ZUM'98 The ;%; th Interna-
tional Conference of Z Users, volume
1493 of Lecture Notes in Computer
Science. Springer-Verlag, September
1998.

34

[43] B. P. Mahony and I. J. Hayes. A
case-study in timed refinement: A
mine pump. IEEE Transactions
on Software Engineering, 18(9):817–
826, 1992.

[44] M. Mislove, A. Roscoe, and
S. Schneider. Fixed Points With-
out Completeness. Theoretical
Computer Science, 138:273–314,
1995.

[45] C. C. Morgan. Programming from
Specifications. Prentice Hall, second
edition, 1994.

[46] A. W. Roscoe. Theory and Practice
of Concurrency. International Series
in Computer Science. Prentice-Hall,
1997.

[47] S. Schneider. Correctness and Com-
munication in Real-Time Systems.
PhD thesis, Oxford University Com-
puting Laboratory, Programming Re-
search Group, 1990. Available as
Technical Monograph PRG-84.

[48] S. Schneider and J. Davies. A brief
history of Timed CSP. Theoretical
Computer Science, 138, 1995.

[49] M. D. Schwartz and N. M. Delisle.
Specifying a lift control system with
CSP. In The 4th IEEE International
Workshop on Software Specification
and Design (IWSSD'87), pages 21–
27, Monterey, California, April 1987.
IEEE Computer Society Press.

[50] G. Smith. A fully abstract semantics
of classes for Object-Z. Formal As-
pects of Computing, 7(3):289–313,
1995.

[51] G. Smith. A semantic integration
of Object-Z and CSP for the spec-
ification of concurrent systems. In
Proceedings of FME'97: Industrial
Benefit of Formal Methods, Graz,
Austria, September 1997. Springer-
Verlag.

[52] G. Smith. The Object-Z Specification
Language. Kluwer Academic Pub-
lishers, 2000.

[53] K. Taguchi and K. Araki. The State-
Based CCS Semantics for Concur-
rent Z Specification. In M. Hinchey
and S. Liu, editors, the IEEE Interna-
tional Conference on Formal Engi-
neering Methods (ICFEM'97), pages
283–292, Hiroshima, Japan, Novem-
ber 1997. IEEE Computer Society
Press.

[54] J.C.P. Woodcock, S. King, and I.H.
Sorensen. Mathematics for specifi-
cation and design: The problem with
lifts. In The 4th IEEE International
Workshop on Software Specification
and Design (IWSSD'87), pages 265–
268. IEEE Computer Society Press,
1987.

[55] Y Zhang and A. K. Mackworth. De-
sign and analysis of embedded real-
time systems: An elevator case study.
Technical Report 93-04, Computer
Science Department, University of
British Columbia, 1993.

The following TCOZ syntax is based on
the Object-Z syntax [17, 19, 52].

35

A TCOZ Concrete Syntax

A.1 Notation

The syntax is described in an extended
BNF with the following metasymbols:

�����
produces�
alternative�

x � optional x�
x � zero or more x’s�
x �
	 one or more x’s

Nonterminals ending in List have produc-
tions according to:

xList
�����

x
��

x �
Nonterminal names are typically com-
pound and abbreviated, each part com-
mencing with an upper-case letter, e.g.
OpExpDef . Abbreviations are listed be-
low.

Terminal symbols are shown directly as
they appear in TCOZ. Metasymbols are
larger than terminal symbols of the same
shape as seen by:����� �����
�����
�� � [] and� ����� .
A.2 Abbreviations

The following abbreviations are used in
the productions listed in Section A.3.

Abb Abbreviation Gen Generic
Ax Axiomatic Inv Invariant
Bool Boolean Op Operation
Chan Channel Pred Predicate
Dec Declaration Prim Primary
Def Definition Sec Secondary
Des Designator Sep Separator
Exp Expression Var Variable

A.3 Productions

The order of presentation of productions
is top down with definitions for nontermi-
nals appearing after their last application,
except for recursive definitions.

Specification
�����

Def
�

Sep Def �
Def

�����
ClassDef

�
NonClassDef

ClassDef
�����

ClassHeading�
Visibility ��
Inheritance ��
LocalDefs ��
StateSchema ��
InitialSchema ��
Operations �

ClassHeading
�����

ClassName
�
GenFormals �

Visibility
����� ���

NameList �
NameList

�����
Name

��

Name �

Inheritance
�����

ClassDes
�

Sep ClassDes �
LocalDefs

�����
NonClassDef

�
Sep NonClassDef �

NonClassDef
�����

GivenTypeDef
�

FreeTypeDef
�

AbbDef
�

AxDef
�

GenDef

GivenTypeDef
�����!

NameList "
FreeTypeDef

�����
Name

�����
Branch

�#�
Branch �

Branch
�����

Name
�%$ $

Exp & &��
AbbDef

�����
Name

�
GenFormals �(')' Exp

AxDef
�����

Decs�
Pred �

36

GenDef
����� �

GenFormals �
Decs�
Pred �

GenFormals
�������

NameList 	
StateSchema

�����
�
ChanDecs ��
PrimVarDecs ���

SecVarDecs ��
ClassInv �

ChanDecs
�����

ChanDec ��
 ChanDec �
ChanDec

�����
NameList � chan

PrimVarDecs
�����

Decs

SecVarDecs
�����

Decs

ClassInv
�����

Pred

InitialSchema
�����

INIT

Pred

Operations
�����

OpDef � Sep OpDef �
OpDef

�����
OpSchemaDef � OpExpDef

OpSchemaDef
�����

OpName�
Deltalist ��
Decs ��
Pred �

OpExpDef
�����

OpName �� OpExp

OpExp
�����

�
SchemaText � OpExp

��� SchemaText � OpExp

� ����� SchemaText � OpExp

� NetworkTopology

� � SchemaText 	�� OpExp�������������������
� OpExp
 OpExp L�������������������
� OpExp � OpExp L

� OpExp � OpExp L�������������������
� OpExp ! ! OpExp L

� OpExp � Exp 	� OpExp L

� OpExp " OpExp L

� OpExp #%$ Exp & OpExp L

� OpExp '($ Event & OpExp L

� OpExp) OpExp L

� OpExp � DEADLINE Exp

� OpExp � WAITUNTIL Exp

� WAIT Exp

� Event
�
@Exp �+* OpExp

�-, OpName � OpExp�������������������
� OpExp Renaming

� OpExp .0/ NameList 1�������������������
� OpSchemaExp

�2/ OpExp 1
� � Exp 3 � OpName

�546� STOP � SKIP

37

OpSchemaExp
������

SchemaText � OpExp���
SchemaText � OpExp	
	
	
	
	
	
	
	
	�	�

OpExp � OpExp L	
	
	
	
	
	
	
	
	�	�
OpExp
 OpExp L	
	
	
	
	
	
	
	
	�	�����

Deltalist � � Decs � ��� Pred ������
Exp � � OpName���
OpExp �

NetworkTopology
������ �

Connection � � Connection !"�
Connection

�����
NameList NameList# $ NameList

Event
�����

Name
� � Exp �

Productions are in equal-precedence
groups (separated by 	%	%	&) and the
precedence of groups increases down the
page. The ‘L/R’ indication determines left
or right associativity of binary operators.

OpName
�����

Name
�

MAIN

Deltalist
���'�)(�

NameList �
SchemaText

�����
Decs

�*�
Pred �

Decs
�����

Dec � � Dec !
Dec

�����
NameList + Exp

Pred
�����,
SchemaText � Pred�.-

SchemaText � Pred�.-0/
SchemaText � Pred�214365
LetDefs � Pred	
	
	
	
	
	
	
	
	�	�

Pred 7 Pred L	
	
	
	
	
	
	
	
	�	

�
Pred 8 Pred R	
	
	
	
	
	
	
	9	&	�
Pred : Pred L	
	
	
	
	
	
	
	9	&	�
Pred ; Pred L	
	
	
	
	
	
	
	9	&	�=<

Pred�
Name � INIT�
true

�
false�

BoolExp���
Pred �

The nonterminal Deltalist cannot be writ-
ten DeltaList as the construct represented
does not conform to the List convention.

Iff (7), disjunction (:) and conjunction
(;) are associative. ‘R’ indicates right-to-
left association.

BoolExp
�����

Exp

Exp
���'�
> SchemaText

� � Exp ��.?
SchemaText � Exp�21@3A5
LetDefs � Exp�2BDC

Pred
5�E03AF

Exp
3G14H�3

Exp	
	
	
	
	
	
	
	9	&	�
Exp �JI Exp ! /	
	
	
	
	
	
	
	9	&	�LK

Exp	
	
	
	
	
	
	
	9	&	�
Exp Infix Exp L	
	
	
	
	
	
	
	9	&	�
Exp Exp L	
	
	
	
	
	
	
	9	&	�
Prefix Exp	
	
	
	
	
	
	
	9	&	�
Exp Postfix	
	
	
	
	
	
	
	9	&	

38

�
ClassHierarchy�
Exp � Name�
Name � GenActuals ���� � ExpList ������

SchemaText �	� Exp �����

�
�

Exp ��� Exp ������
� � ExpList ����
Number���������

�
�
Exp �

LetDefs � �"!
LetDef ��# LetDef �

LetDef � �$! Name %&% Exp

ClassHierarchy � �$!
�(')� ClassDes

ClassDes � �$!
ClassName � GenActuals �*� Renaming �

ClassName � �$! Name

GenActuals ���"!,+ ExpList -
Renaming ���"!.+ RenameList -
Rename � �$! Name / Name

The syntax does not define the details of
the productions for

Infix � Prefix � Postfix � Number � Name � Sep �
Elision of end-of-line semicolons, end-of-
line conjunction symbols and ‘such that’
bars in 2-D structures without predicates,
is not shown in the syntax.

39

