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ABSTRACT
This paper presents the XML/XSL approach to the develop-
ment of a web environment for the formal speci�cation lan-
guage Object-Z. The projection techniques and tools from
Object-Z (in XML) to UML (in XMI) are developed us-
ing XSL Transformations (XSLT). Furthermore, Object-Z
(itself) is used to specify and design the essential function-
alities of the web environment and the projection tools to
UML. In a sense, the paper also demonstrates a formal ap-
proach to modeling web applications.
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1. INTRODUCTION
Object-Z [7, 12] is an object-oriented extension to Z and

has an active research community but lacks of tools support.
In this paper, we �rstly use eXtensible Markup Language
(XML) [14] and eXtensible Stylesheet Language (XSL) [15]
to develop a web environment and various browsing and
syntax checking facilities for the Object-Z language. With
the emergence of XML Metadata Interchange (XMI) as a
standard, e.g., Rational Rose UML supports XMI input, it
is possible to build up a transformation link and projection
tools from Object-Z web speci�cations to UML via XSLT
[13] technology.
In our project, Object-Z itself is used to formally spec-

ify the essential functionalities of the Object-Z web envi-
ronment and projection tools to UML. The Object-Z spec-
i�cation models are used as an initial design document to
guide our XML/XSL implementation. In a sense, the paper
demonstrates a formal approach to modeling web applica-
tions. Consequently, we eat our own medicine.
The remainder of the paper is organized as follows. Sec-

tion 2 briey introduces the Object-Z notation. Section 3
formally speci�es the functionalities of the Object-Z web en-
vironment and projection tools in Object-Z itself, Section 4
outlines the main approach and techniques of the paper,
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discusses related work. Section 5 presents the implementa-
tion issues of the web environment and browsing facilities
for Object-Z notation. Section 6 presents the implementa-
tion issues of the projection tools from Object-Z (in XML)
to UML (in XMI). Section 7 concludes the paper.

2. OBJECT-Z OVERVIEW
Object-Z is an extension of the Z formal speci�cation lan-

guage to accommodate object orientation. The main reason
for this extension is to improve the clarity of large speci�-
cations through enhanced structuring. Object-Z has a type
checker, but other tools support for Object-Z is limited in
comparison to Z. We believe the browsing facilities are par-
ticularly useful to Object-Z since the notation supports cross
references and various inheritance techniques for large spec-
i�cations.

2.1 Class
The essential extension to Z in Object-Z is the class con-

struct which groups the de�nition of a state schema and the
de�nitions of its associated operations.
Consider the following speci�cation of the class Collection

which denotes a collection of elements of a given type [T ].
The class contains operations to add elements to, and delete
elements from, the collection. The total elements in the
collection cannot be more than max (say, a number larger
than 100). The global constant max can be de�ned using Z
axiomatic de�nition as:

max : N

max > 100

Collection

elemts : PT

#elemts � max

Init

elemts = ?

Add

�(elemts)
x? : T

x? 62 elemts

elemts 0 = elemts

[fx?g

Delete

�(elemts)
x ! : T

x ! 2 elemts

elemts 0 = elemts

nfx !g

In this example, the class has one attribute elemts denot-
ing a set of elements of the prede�ned type T . The class
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invariant stipulates that the size of the set cannot exceed the
constant number max . An initialized collection contains no
elements (i.e. elemts is the empty set).
Operation schemas have a �-list of those attributes whose

values may change. By convention, no �-list means no at-
tribute changes value. Every operation schema implicitly in-
cludes the state schema in un-primed form (the state before
the operation) and primed form (the state after the opera-
tion). Hence the class invariant holds at all times: in each
possible initial state and before and after each operation.
In this example, operation Add adds a given input x? to

the existing set provided the set has not already reached its
maximum size (an identi�er ending in `?' denotes an input).
Operation Delete outputs a value x ! de�ned as one element
of elemts and reduces elemts by deleting x ! from the original
set (an identi�er ending in `!' denotes an output).

2.2 Inheritance
Inheritance is a mechanism for incremental speci�cation,

whereby new classes may be derived from one or more ex-
isting classes.
Essentially, all de�nitions are pooled with the following

provisions. Inherited type and constant de�nitions and those
declared in the derived class are merged. The state and ini-
tialization schemas of derived classes and those declared in
the derived class are conjoined. Operation schemas with the
same name are also conjoined.
Inheritance in Object-Z can be used to de�ne a new class

by extending an existing class. For instance, the class DAG
denoting a directed acyclic graph can be de�ned by inher-
iting Collection with renaming of the attribute elemts to
nodes.

DAG

Collection[nodes=elemts]

linkto : T $ T

dom linkto [ ran linkto � nodes

@n : nodes � (n;n) 2 linkto+

Delete

�(linkto)

linkto0 = fx !g �C linkto �B fx !g

AddLink

�(linkto)
from?; to? : T

ffrom?; to?g � nodes

linkto0 = linkto [
f(from?; to?)g

DeleteLink

�(linkto)
from?; to? : T

(from?; to?) 2 linkto

linkto0 = linkton
f(from?; to?)g

The class DAG inherits the state variable elemts (renamed
to nodes) and the operation Add from Collection. It also in-
cludes explicitly the state variable linkto denoting the links
between members of nodes and the extra operations AddLink
and DeleteLink . The operation Delete for DAG is de�ned
as the conjunction of the operation Delete inherited from
Collection and the operation Delete declared explicitly in
DAG. The expanded version of DAG is as:

DAG

nodes : PT
linkto : T $ T

#nodes � max

dom linkto [ ran linkto � nodes

@n : nodes � (n;n) 2 linkto+

Init

nodes = ?

Add

�(nodes)
x? : T

x? 62 nodes

nodes 0 = nodes [ fx?g

Delete

�(nodes; linkto)
x ! : T

x ! 2 nodes

nodes 0 = nodes� fx !g
linkto0 = fx !g �C linkto�B fx !g

AddLink

�(linkto)
from?; to? : T

ffrom?; to?g � nodes

linkto0 = linkto [
f(from?; to?)g

DeleteLink

�(linkto)
from?; to? : T

f(from?; to?)g 2 linkto

linkto0 = linkton
f(from?; to?)g

It's necessary to view a full expanded version of an inher-
iting class, perhaps for the purpose of reasoning a class in
isolation. It is desirable to have a case tool to automatically
support the inheritance zoom-in/out feature.

3. FORMAL MODELS OF THE WEB
ENVIRONMENT AND PROJECTIONS

Now, let's start with the formal design of what we are
going to build. The construction of a formal model of the
Object-Z web environment and projection tools must start
with formalizing the related Object-Z syntax de�nitions.
The typing and dynamic semantics issues are not related
since the web environment only concerns some syntax checks.
Therefore, the static and dynamic semantics of Object-Z
were deliberately left out in the following model.

3.1 Formal models of the web environment
Firstly, the character sets are de�ned by the Z free type

de�nition as:

Char ::= `a' j `b' j ::: j `1' j `2' j ::: j `:' j `/' j `#' j :::

The string type is de�ned as a sequence of characters:

String == seqChar

At the syntactic level, a type constructor and a type are
similar which are modelled as:

Constructor

content : String

Type

name : String

Type identi�es a type de�nition. Besides the given type
such as N and B, there are also user de�ned types. The
name attribute indicates the name of the new type.
A mixed type is either a constructor or a de�ned type

which is modelled by a class union [4], where # Type de-
notes a union of all classes de�ned by inheriting Type. A
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declaration type can be composed of a sequence of mixed
types, i.e. PA;A! B and so on. A predicate occupies the
similar syntactic category as a type declaration in our level
abstraction.

MixType b= Constructor[ # Type
Dtype == seqMixType

Predicate == seqMixType

A global de�nition can be either a type de�nition or an
axiom de�nition.

Globaldef b= Typedef [Axiomdef

Type de�nition Typedef is for de�ning user given types
such as simple type, abbreviation and free types. Axiom
de�nition Axiomdef is used to de�ne global constants or
functions such as liberal, generic and unique functions.

Typedef

Type

defs : Dtype

Axiomdef

Type

decpart : String ! Dtype

axpart : PPredicate

The declaration part decpart is a set of pairs, where the
�rst element of a pair is a variable name and the second is the
variable's type declaration. Note that the function is used
here to indicate that one variable can only have one type
declaration. The axiom part axpart consists a set of predi-
cates, which states the properties of a particular schema.
The Object-Z state, initial and operation schemas are

modeled as:

Statedef

depart : String ! Dtype

axpart : PPredicate

Initdef

axpart : PPredicate

Opdef

Statedef

name : String
delta : PString

The match function is used to �nd the corresponding item
in an item list. Note that if an item is not in the given list
it returns itself.

match : (String � (String ! String))! String

8old : String; l : String ! String �
old 2 dom l ) match(old ;l) = l(old)
old 62 dom l ) match(old ;l) = old

The function rename captures the class renaming facili-
ties. Given a class and a renaming list, and the function
returns the renamed class.

rename : (Classdef � (String ! String))! Classdef

8 c : Classdef ; l : String ! String � dom l 2
(dom c:state:decpart [ fop : c:ops � op:nameg))

l = ?) rename(c; l) = c

l 6= ?) rename(c; l):name = c:name
rename(c; l):inherit = fi : c:inherit

� (fst(i); f(a;b) : snd(i) �
(a;match(b; l))g)g

rename(c; l):state:decpart = f(na;dt) :
c:state:decpart � (match(na; l); dt)g

rename(c; l):state:axpart =[fp :

c:state:axpart j 8(n;mt) : p �
(n;match(mt ; l))g

rename(c; l):init :axpart = :::
rename(c; l):ops = :::

Function classify takes in a set of operation de�nitions
and divides them into subsets, which within each subset the
name of the operation is the same.

classify : POpdef ! P(POpdef )

8(s; ss) : classify � s =[ ss ^

8 ops : ss � 8 op1;op2 : ops �
op1:name = op2:name

The function merge merges a set of same named opera-
tions into only single operation de�nition.

merge : POpdef ! Opdef

8ops : POpdef �
merge(ops):name 2 fop : ops � op:nameg

merge(ops):delta =[fop : ops � op:deltag

merge(ops):decpart =[fop : ops � op:decpartg

merge(ops):axpart =[fop : ops � op:axpartg

The expand function expands a class de�nition according
to its inheritance list, and outputs the expanded class.

expand : Classdef ! Classdef

8 c : Classdef �
expand(c):name = s:name

expand(c):state:decpart =[fc0 : classdef ;

t : Type j c0:name = t :name ^
t 2 dom c:inherit � rename(c0;
c:inherit(t)):state:decpartg[ c:state:decpart

expand(c):state:axpart =[fc0 : classdef ; t : Type

j c0:name = t :name ^ t 2 dom c:inherit
� rename(c0; c:inherit(t)):state:axpartg
[c:state:axpart

expand(c):init:axpart = :::
expand(c):ops = :::
expand(c):expand = false

The Object-Z class is modelled as:
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Classdef

Type

inherit : Type 7! (String ! String)
[inherit classes with rename list]

state : Statedef [state schema]
init : Initdef [initial schema]
ops : POpdef [operation schemas]
isExpand : B

[inheritance expansion mode]
�
display : Classdef

[class de�nition display]

inherit = ?) isExpand = false

isExpand = false) display = self

isExpand = true) display = expand(self)

Init

isExpand = false

Switch

�(isExpand)

isExpand 0 = : isExpand

As for the inheritance expansion purpose we introduced
two more attributes. The boolean attribute isExpand records
the current status of expansion. Depending on the value of
isExpand , a secondary variable1 display references the corre-
sponding class de�nitions (either expanded or non-expanded
version). An operation Switch that changes the status of the
expansion mode will implicitly change the displaying class.
An Object-Z speci�cation is a collection of global de�ni-

tions and class de�nitions.

OZSpec == P(Globaldef [Classdef )

Finally, the web browsing environment is modeled as:

WebBE

S : OZSpec� String

[a speci�cation and its URL]
currpage : String [the current page URL]
�
references : PString

[valid type references]
expands : PString

[valid expandable class names]

references = fs : fst(S) � s:nameg
expands = fc : Classdef \ fst(S) j

c:inherit 6= ? � c:nameg

Init

currpage = snd(S)

1Attributes of a class are partitioned into primary and sec-
ondary. The values of the primary attributes determine the
state of an object; the values of the secondary attributes
depend upon the primary attributes of this or other objects
in the system and enable an object to retain information
about various aspects of the state of the system. For a de-
tailed discussion on secondary attributes see [6].

Clicklink

�(currpage)
l? : references

currpage 0 = snd(S)a h`#'iahl?i

Clickexpand b= [e? : expands; c : Classdef j
c:name = e?] � c:Switch

There are two major operations for clicking on either type
links or on the derived class names. The Clicklink operation
will jump from the current context position (a type decla-
ration) to its corresponding type de�nition position within
the scope of the speci�cation. The operation Clickexpand

will change the status of the expansion mode and eventu-
ally change the displayed class de�nition.

3.2 Formal model of the projection facilities
A UML class consists of a class name, a set of attributes

and a set of operation names.

UMLClass

name : String
attris : String ! Dtype

ops : PString

A UML diagram UMLDiagram is a collection of UML
classes and together with their relationships to each other
such as inheritance and aggregation.

UMLDiagram

classes : PUMLClass

inh;agg : UMLClass $ UMLClass

dom(inh [ agg) [ ran(inh [ agg) � classes

8 h : classes � (h;h) 62 inh+

A function project models the transformation from an
Object-Z speci�cation to a UML class diagram.

project : OZSpec! UMLDiagram

8(oz ;uml) : project �
fc : oz \Classdef � c:nameg = fc : uml :classes

� c:nameg � 8 c1; c2 : oz \Classdef � 9
1
c0 :

uml :classes � c0:name = c1:name
c0:attris = fcls : Classdef j cls 2 oz �

cls:nameg�C c1:state:decpart
c0:ops = fo : Opdef j o 2 c1:ops �

o:nameg
c2:name 2 ft : ran c1:state:decpart �

t :nameg ) 9
1
(c0

1; c
0

2) : uml :agg �
c0

1:name = c1:name ^
c0

2:name = c2:name
c2:name 2 finh : dom c1:inherit �

inh:nameg) 9
1
(c0

1; c
0

2) : uml :inh �
c0

1:name = c1:name ^
c0

2:name = c2:name
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Note that our projection function from Object-Z speci�ca-
tions to UML diagrams focus on UML class diagrams at the
current stage. The projection to UML behaviour diagrams
such as statecharts may not be uniquely determined given
an Object-Z speci�cation. We will discuss the projection to
statechart diagrams further in Section 6.

4. MAIN IMPLEMENTATION ISSUES AND
RELATED BACKGROUND

Pure Z notation on the web based on HTML and Java
applet has also been investigated by Bowen and Chipping-
ton [1] and Ciancarini, Mascolo and Vitali [2]. HTML has
been successful in presenting information on the Internet,
however, the lack of content information and overburdened
of all kinds of tags have made the retrieval and exchange of
resource become more and more di�cult to perform.
Our work uses the latest technology of XML and XSL for

displaying and transforming object-Z notation on the web.
The users only need to follow the de�ned syntax in writ-
ing the XML document; the layout part is user transpar-
ent. Our XML format is inspired by the work (Java applet)
of Ciancarini et al. [2] however we use di�erent technol-
ogy XML/XSL. The developed XML/XSL web environment
covers not only the pure Z notation but also Object-Z with
inheritance expansion facilities. Furthermore, the projection
tools from Object-Z to UML are built into our system. The
conceptual projection techniques are derived from our re-
search on linking UML with Object-Z [9], which are similar
to the translation rules developed by Kim and Carrington
[8]. The di�erence is that we are working on the projection
from Object-Z to UML where Kim and Carrington focus
on translating UML to a partial Object-Z speci�cation (a
di�erent direction from ours). Other work on linking Z and
UML mainly concentrates on using Z to de�ne the semantics
for UML class diagrams.
The reason that we chose XML rather than MathML is

due to its extensibility. Though MathML is rich in writ-
ing mathematical expressions, the document structure is not
suitable for authoring formal speci�cation language such as
Object-Z. For example, the Object-Z schemabox is more dif-
�cult to be constructed in MathML. Furthermore, MathML
usually consists of a heavy load of de�ned tags, which is un-
bearable for the authors whose focus is on the abstraction of
the model rather than the structure of the expressions them-
selves. Furthermore, we want to construct a web environ-
ment as close as possible to the LATEX style �le for Object-Z
(oz.sty) so that a simple translation tool can be developed
to map existing Object-Z speci�cations in LATEX to our web
XML format.
The main process and techniques for developing Object-

Z web environment and projections to UML are depicted
by Figure 1. In the following sections, we use Object-Z
graph example to facilitate the detailed discussion of our
implementation approaches.
The formal model de�ned in Section 3 is acted as a pre-

cise design reference document and provides clear guidelines
to our XML/XSL implementations. For example, the XSL
codes for implementing inheritance expansion in Section 5
is based on the expand function de�ned in Section 3.1; the
XSLT codes for projecting Object-Z to UML in Section 6 is
based on the project function de�ned in Section 3.2.

5. OBJECT-Z WEB ENVIRONMENT
Firstly, we de�ne a customized XML document for Object-

Z according to its syntax de�nitions of the previous sec-
tion. This document is used for checking the syntax va-
lidity of the user input speci�cations in XML. The World
Wide Web Consortium (W3C) has provided two mecha-
nisms for describing XML structures: Document Type Def-
inition (DTD) and XML Schema. The former originated
from SGML Recommendation and used a total di�erent syn-
tax. XML Schema is a kind of XML �le itself and is going to
play the role of DTD in de�ning customized XML structure
in the future. It is consistent with XML syntax and easy to
write over DTD. We use XML Schema to de�ne our XML
structure syntax for Object-Z. Part of the XML Schema (for
de�ning an Object-Z operation schema) is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<!-- some definition omitted -->

<ElementType name="op" content="eltOnly" order="seq">

<element type="name" minOccurs="1" maxOccurs="1"/>

<element type="delta" minOccurs="0" maxOccurs="1"/>
<element type="decl" minOccurs="0" maxOccurs="*"/>

<element type="st" minOccurs="0" maxOccurs="1"/>
<element type="predicate" minOccurs="0"

maxOccurs="*"/>
<AttributeType name="layout" dt:type="enumeration"

dt:values="simpl calc" default="simpl"/>

<attribute type="layout"/>
</ElementType> <ElementType name="classdef"

content="eltOnly">
<!-- some definition omitted -->

<element type="op" minOccurs="0" maxOccurs="*"/>

<!-- some definition omitted -->
</ElementType>

<!-- some definition omitted -->
</Schema>

It states that the op tag is an element of classdef and
consists of one name, a delta list, a number of declarations
decl , a horizontal line st and some predicate de�nitions. An
attribute layout is de�ned to distinguish between vertical
layout schemas simpl and horizontal layout schemas calc.
Object-Z languages consists of a rich set of mathemati-

cal symbols. Those symbols can be presented directly in
Unicode which is supported by XML. We have de�ned all
entities in the DTD so that users do not have to memorize
all the Unicode numbers when authoring their XML doc-
uments. Part of the entity declaration DTD is de�ned as
follows:

<?xml version="1.0" encoding="UTF-8"?>

<!-- some definition omitted here -->

<!ENTITY emptyset "&#x2205;">

<!ENTITY mem "&#x2208;">
<!ENTITY pset "&#x2119;">

As most existing Object-Z speci�cations were constructed
in LATEX, translating them to our format can be a trivial task
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Figure 1: overall diagram

due to that each entity is given a Object-Z LATEX compat-
ible name. DTD is chosen to de�ne our entity declaration
because XML Schema does not support entity declaration
at the moment. When authoring XML �les, the user sim-
ply declares the name space of the XML schema and Entity
DTD �le as follows.

<?xml version="1.0" encoding="UTF-8"?>

<! --some definition omitted here -->
<!DOCTYPE unicode SYSTEM

"http://nt-appn.comp.nus.edu.sg/fm/zml

/unicode.dtd">
<objectZnotation xmlns="x-schema:

http://nt-appn.comp.nus.edu.sg/fm/zml
/objectZschema.xml"

xmlns:HTML="http://www.w3.org/Profiles
/XHTML-transitional">

<!-- some definition omitted here -->

</objectZnotation>

With the above name space links, the XML editing tools
can check the validity of the �le via XML Schema de�nition
and the DTD entity declarations. Any unspeci�ed struc-
tures and entity symbols would be reported as a syntax er-
ror. The following is the Web browsing environment for the
DAG class (of the graphs speci�cation example) in our XML
format.

<classdef layout="simpl" align="left">

<name>DAG</name>
<inherit>

<type>Collection</type>
<rename>nodes/elemts</rename>

</inherit>

<state>
<decl>

<name>linkto</name>
<dtype>

<type>T</type>&rel;<type>T</type>

</dtype>
</decl>

<st/>
<predicate>&dom;linkto&uni;&ran;linkto

&subset;nodes</predicate>

<predicate>&nexi;n:nodes&dot;(n,n)
&mem;linkto+</predicate>

</state>
<op layout="simpl">

<name>Delete</name>
<delta>(linkto)</delta>

<st/>

<predicate>linkto'={x!}&dsub;linkto
&rsub;{x!}</predicate>

</op>
<op layout="simpl">

<name>AddLink</name>

...
</op>
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<op layout="simpl">
<name>DeleteLink</name>

...
</op>

</classdef>

With a valid XML �le in hand, the next step is to trans-
form the XML �le into HTML format and display it on
the web. XSL is a stylesheet language to describe rules for
matching and transforming XML documents. An XSL �le
is a XML document itself and it can perform the transfor-
mation between XML to HTML, XML to XML, XSL to
XSL and so on. This kind of transformation can be done on
the server side or the client side. Since Internet Explorer 5
(IE5) has already supported XSL technology, our environ-
ment is based on client side (browser) transformation. A
partial XSL stylesheet segment for displaying operation op

and class de�nition classdef are de�ned as below.

<xsl:template match="op[@layout='simpl']">
<html>

<tr>
<!-- some definition omitted here -->

<td height="24" valign="middle" align="left"

nowrap="true">
<i><xsl:value-of select="name"/></i>

<!-- some definition omitted here -->
</td>

<!-- some definition omitted here -->
</tr>

<xsl:for-each select="delta | decl">

<xsl:apply-templates select="."/>
</xsl:for-each>

<xsl:apply-templates select="st"/>
<xsl:for-each select="predicate">

<xsl:apply-templates select="."/>

</xsl:for-each>
<tr>

<!-- some definition omitted here -->
</tr>

</html>
</xsl:template>

<xsl:template match="classdef[@layout='simpl'] |
classdef[@layout='gen']">

<html>
<!-- some definition omitted here -->

<a><xsl:attribute name="name"><xsl:value-of

select="name"/></xsl:attribute></a>
<!-- some definition omitted here -->

<xsl:apply-templates select="tydef"/>
<xsl:apply-templates select="state"/>

<xsl:apply-templates select="init"/>

<xsl:apply-templates select="op"/>
<!-- some definition omitted here -->

</html>
</xsl:template>

XSL stylesheet de�nes match method for each customized
tag in the XML structure and describes the correspond-
ing HTML codes. From the example above, in matching
the op tag the XSL will display the operation name, delta
list, declaration and predicates accordingly; in matching the
classdef tag the XSL will �rst convert the class name into

a HTML bookmark for the type reference usage and then
apply the templates of drawing local type de�nition, state
schema, initiation schema, operations and so on. To apply
a template in XML is like making a function call in pro-
gramming, and each template will perform its own trans-
formation. When authoring Object-Z speci�cations in our
XML format, the users only need to construct their XML
�les and add an URL to the de�ned XSL stylesheet location
as follows.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl"
href="http://nt-appn.comp.nus.edu.sg/fm/zml

/objectzed.xsl"?>

With this link, the browser (IE5) will automatically trans-
form XML document into desired HTML output. This pro-
cess is totally user transparent and much faster than those
Java applet approaches [1, 2]. For example, the Collection

and DAG classes in XML format speci�ed previously is
transformed into HTML as in Figure 2.
A full demonstration of the graph speci�cation example

is available at

http://nt-appn.comp.nus.edu.sg/fm/zml/

xml-web/graph.xml.

The aim of class inheritance expansion is to allow the user
to view the full de�nition of a derived class. In the DAG

class case (in the right hand side of the Figure 2), when
a user clicks the `�' link, (the concrete representation of
isExpand attribute of the class Classdef in Section 3.1), the
full de�nition of class ofDAG will be shown. This implemen-
tation is based on the inheritance expansion rules de�ned in
the expand function of Section 3.1. Clicking `�' link (when
isExpand is true) is for going back to the un-expanded ver-
sion.
The core part of the expansion techniques uses the match

facilities provided by XSL to �nd the corresponding de�-
nitions in the parent class and merge them in the derived
class. Part of the XSL for merging the declarations in the
state schema of a class is as follow.

<xsl:for-each select="//classdef[name=

context(-1)/inherit/type]/state/decl">

<!-- some definition omitted here -->
</xsl:for-each>

<xsl:for-each select="state/decl">

<!-- some definition omitted here -->

</xsl:for-each>

<!-- some definition omitted here -->

The next section is focused on projecting Object-Z models
(in XML) to UML diagrams (in XMI).

6. UML PHOTOS
UML can be used to visualize the Object-Z models. As

introduced earlier, the Object-Z models can be constructed
in XML format. The textual speci�cations of UML models
are in XMI format. Based on XSL Transformations (XSLT)
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Figure 2: Collection and DAG

[13] technology, we de�ne an XSL �le to capture all trans-
lation rules from Object-Z XML to UML XMI. XT [3] is
chosen as the XSLT processor and Rational Rose 2000 is
used as the UML tool. By now we have fully implemented
the visualization of static parts with UML class diagrams
and are looking into the dynamic parts with UML state-
charts. In our approach, all elements from the static view,
such as attributes, operations, classes and their relationships
(inheritance and aggregation), can be successfully captured
through the transformation process.
The XML �le for formal speci�cations and the XMI �le

for UML diagrams have similar structures (an observation
from their formal models de�ned in Section 3). An XMI �le
has the structure as follows:

<XMI xmi.version="1.0">
<XMI.header>

<XMI.content>
<XMI.extensions>

</XMI>

The XMI :header section includes some optional informa-
tion about UML model. Elements in UML diagrams, such
as classes in class diagrams and states in the statecharts,
are speci�ed in the XMI :content section, while their layout,
colors and other displaying properties are speci�ed in the
XMI :extensions section.
The XSL �le used in this section is the implementation of

the transformation rules (abstractly de�ned in formal mod-
els, the project function, in Section 3.2) and the �le is con-
sistent with UML:DTD. The template technology plays a
key role in implementing the translation rules. Considering
the implementation issues and the translation rules based
on the formal model, the following guidelines are formed:

� Each class in Object-Z XML models corresponds to a
class in UML XMI models. They have the same name,
attributes and operations.

� If a type value in the inherit part of a class matches the
name of any other class in the current XML �le, we

regard that former class inherits the second one and
illustrate the inheritance relationship between these
two classes in the UML class diagram. In the case
of spelling mistakes or missing reference of the inherit
type, we ignore the relationship.

� If a type value in the decl part, that is, the type of
an attribute, matches the name of any class in current
XML �le, this is regarded as aggregation relationship
between these two classes. The cardinality of the ag-
gregation will be calculated and classi�ed into UML
aggregation ranges.

Due to the space limitation (XMI �les for UML models
are normally very large and complex with all details about
property speci�cations), only the sketch of a simpli�ed XMI
unit|class Collection, is given as an example in the paper.

<Foundation.Core.Class xmi.id = ' S.10001 '>
<name> Collection </name>

<namespace>

<xmi.idref = 'G.1'/>
</namespace>

<GeneralizableElement.specialization>
<xmi.idref = ' G.8 '/>

<!-- { DAG -> Collection }-->

</GeneralizableElement.specialization>
<Classifier.feature>

<Attribute xmi.id = ' S.10002 '>
<name> name </name>

<multiplicity>1

</multiplicity>
<DataType xmi.idref =

' G.5 '/>
<!-- N -->

</Attribute>
<Attribute xmi.id = ' S.10003 '>

<name> elemts </name>

<multiplicity>1
</multiplicity>

<DataType xmi.idref =
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Figure 3: Generated Class Diagram

' G.6 '/>
<!-- T -->

</Attribute>
<Operation xmi.id = ' S.10004 '>

<name>Init</name>

</Operation>
<Operation xmi.id = ' S.10005 '>

<name> Add </name>
</Operation>

...

</Classifier.feature>
</Foundation.Core.Class>

As in Figure 3, the UML class diagram depicts the static
view of the four graph classes constructed from the previous
sections. All attributes and operations match their de�ni-
tions in the formal model. Now we demonstrate how the
relationships between classes are captured during the trans-
formation.
The relationship between Collection and DAG is Inheritance.

This relationship in XMI segment is as following (simpli�ed):

<Foundation.Core.Generalization xmi.id = ' G.8 '>

<name/>
<Generalization.subtype>

<Class xmi.idref = ' S.10007 '/>
<!-- DAG -->

</Generalization.subtype>

<Generalization.supertype>
<Class xmi.idref = ' S.10001 '/>

<!-- Collection -->
</Generalization.supertype>

</Foundation.Core.Generalization>

Currently we are investigating the dynamic view trans-
formation. The semantic links between Object-Z class and
UML statecharts are:

� the Object-Z operation names are corresponding to
UML statechart transition links between states,

� the Object-Z operation pre-conditions are correspond-
ing to the guards of the UML state transition links,
and

� the boundary values of the state variables of an Object-
Z class determine the states of the UML statechart
diagram.

Based on these semantic links, a statechart diagram for
the class Collection may be constructed as Figure 4. Unlike

the projection from Object-Z to UML class diagram, the
projection to UML behaviour diagrams such as statecharts
may not be uniquely determined. A certain level of user
interaction may be necessary in the projection tool. We are
in the process of developing an interaction tool based on the
rules above.
Brief structures of a simplestate Empty and a transition

(from Collecting to Empty) in the statechart in XMI are:

<State_Machines.SimpleState xmi.id="G.21">

<name>Empty</name>
</State_Machines.SimpleState>

<State_Machines.Transition xmi.id="G.24">

<name />

<source>
<SimpleState xmi.idref="G.22" />

<!-- Collecting -->
</source>

<target>
<SimpleState xmi.idref="G.23" />

<!-- Empty -->

</target>
<trigger>

<SignalEvent xmi.idref="G.28" />
<!-- Delete -->

</trigger>

<guard>
<Guard xmi.id = 'G.30' />

<expression>
#elements = 1

</expression>

</guard>
</State_Machines.Transition>

The documentation about Object-Z to UML transforma-
tion and downloadable codes are available at:

http://nt-appn.comp.nus.edu.sg/fm/zml

/xmi-uml/xmi.htm

7. CONCLUSION
The �rst contribution of this paper is the demonstration

of the XML/XSL approach to the development of a web en-
vironment for Object-Z. The web environment includes the
auto referencing and browsing facilities for the Object-Z in-
heritance expansions2 . Very recently, we extended this web

2Z schema calculus has also been supported similarly, but
the discussion is left out.
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environment to accommodate the newly developed formal
modeling notation Timed Communicating Object Z (TCOZ)
[10] (an integration of Object-Z and Timed-CSP [11]). Ad-
ditional inheritance rules for active class de�ned in TCOZ
[5] have been added to our web environment. Our ideas for
putting Z family (Z/Object-Z/TCOZ) on the Web can be
easily adopted by other formal speci�cation notations, such
as VDM and VDM++. In fact, since TCOZ includes most
Timed CSP constructs, its web environment can be used for
process algebra (CSP/Timed-CSP) speci�cations. Perhaps
this may create a new culture for constructing formal speci-
�cations on the web in XML rather than in LATEX. We hope
it can be the starting point for developing a standard XML
environment for all formal notations | Formal speci�cation
Markup Language (FML). This may also make an impact
on formal methods education through the web.
The second contribution of this work is the investiga-

tion of the semantic links and web transformation environ-
ment (XSLT) between Object-Z (in XML) with UML dia-
grams (in XMI). Although we have some ideas on Object-
Z behaviour projections to statecharts, the development of
the Web environment for systematic transformation from
Object-Z/TCOZ to statechart/collaboration diagrams re-
mains a challenge.
The third contribution of this paper is the demonstration

of a formal approach to modeling web applications. Object-
Z (itself) has been used to specify and design the essential
functionalities of the Object-Z web environment and projec-
tion tools to UML. We've found that the formal model can
be used as a precise design document and also provide clear
guidelines to our XML/XSL implementations.
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