Semantic Web and Formal Methods

Jin Song DONG
Computer Science Department
National University of Singapore

(Joint work with Hai WANG, Yuan Fang LI and Jing SUN)

September 2003




Semantic Web

“The Semantic Web is an extension of the current Web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation. It is the idea of having data on the Web defined and linked in a way
that it can be used for more effective discovery, automation, integration, and reuse

across various applications.” — W3C (www.w3.org/2001/sw)

Formal Specification

“The use of notations and languages with a defined mathematical meaning enable
specifications, that is statements of what the proposed system should do, to be
expressed with precision and no ambiguity. ” — FME (www.fmeurope.org/fm.html)

Overview

e Introduction to Semantic Web
— RDF
— DAML+OIL
- OWL

e Semantic Web Environment for Formal Specifications
— Formal Specification Languages and Their Integrations
— Linking Different Formalisms through Semantic Web
— Specification Comperhension via RDF Query

e Formal Methods for Semantic Web
— Extracting DAML ontology from Z requirement models
— Checking Web ontology in Z/EVES
— Analysing and reasoning Web ontology in Alloy

e Conclusion and Further Work




Semantic Web

o Goals
— Realizing the full potential of the Web
— Making it possible for tools (agents) to effectively process information.
— Ultimate goal - effective and efficient global information/knowledge
exchange
e Building on proven ideas

— Combines XML, RDF, hypertext and metadata approaches to linked

information

— Focuses on general principles of Web automation and data aggregation

Semantic Web Architectural Dependencies

Trust
H Proof
n Logic

Ontology vocabulary

Digital Signature

Unicode

www.w3c.org (by Tim Berners-Lee)




RDF, DAML+OIL and OWL

e Resource Description Framework (RDF) — 1999

— An RDF document is a collection of assertions in subject verb object form
for describing web resources

— Provides interoperability between applications that exchange
machine-understandable information on the Web

— Use XML as a syntax, include XMLNS, and URIs
e DARPA Agent Markup Language (DAML+OIL) — 2001

— Semantic markup language based on RDF, and

— Extends RDF(S) with richer modelling primitives

— DAML currently combines Ontology Interchange Language (OIL).
e OWL Web Ontology Language — 2003

— Based on DAML+OIL

— Three levels support: Lite, DL, Full

HTML and XML

e HTML

<H1> Semantic Web and Formal Methods</H1>
<UL>
<LI> Teacher: Jin Song Dong
<LI> Students: s19908, s20015
<LI> Requirements: discrete maths
</UL>

o XML

<course>
<title> Semantic Web and Formal Methods </title>
<teacher> Jin Song Dong </teacher>
<students> s19908, s20015 </students>
<req> discrete maths </req>
</course>




Lack semantics in XML

e The XML is accepted as the emerging standard for data interchange on the
Web. XML allows authors to create their own markup (e.g. <course>), which

seems to carry some semantics.

e However, from a computational perspective tags like <course> carries as much
semantics as a tag like <H1>. A computer simply does not know, what a

course is and how the concept course is related to other concepts.

e XML may help humans predict what information might lie “between the tags”
in the case of <students> </students>, but XML can only help.

e Only feasible for closed collaboration, e.g., agents in a small and stable

community/intranet

RDF Basics

e Resources — Things being described by RDF expressions. Resources are
always named by URIs, e.g.

— HTML Document
— Specific XML element within the document source.
— Collection of pages

e Properties — Specific aspect, characteristic, attribute or relation used to
describe a resource, e.g. Creator, Title ...

o Statements —
Resource (Subject) + Property (Predicate) + Property Value (Object)




RDF Statement Example 1
Dong, Jin Song is the creator of the web page
http://www.comp.nus.edu.sg/cs4211
e Subject (Resource) - http://www.comp.nus.edu.sg/cs4211
e Predicate (Property) - Creator
e Object (Literal) Dong, Jin Song

Creator -
http://www.comp.nus.edu.sg/cs4211 Dong, Jin Song

10

RDF Statement Example 2

Dong, Jin Song whose e-mail is dongjs@comp.nus.edu.sg is the creator of the web
page http://www.comp.nus.edu.sg/cs4211

http://www.comp.nus.edu.sg/cs4211

Dong, Jin Song

‘ dongjs@comp.nus.edu.sg

11




RDF in XML syntax

<rdf:RDF xmlns:rdf="http://wwuw.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description about="http://www.comp.nus.edu.sg/cs4211">
<dc:creator>Dong, Jin Song</dc:creator>
<dc:title>Advanced Software Engineering</dc:title>
<dc:date>2000-07-01</dc:date>

</rdf:Description>

</rdf :RDF>

12

RDF Containers

e Bag - An unordered list of resources or literals
e Sequence - An ordered list of resources or literals

e Alternative - A list of resources or literals that represent alternatives for the

value of a property

13




Container example: Sequence

Statement: The students of the course CS4211 in alphabetical order are Yuanfang
Li, Jun Sun and Hai Wang .

<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax—ns#
xmlns:s="http://www.schemas.org/Course/">
<rdf:Description about=http://www.comp.nus.edu.sg/ cs4211>
<s:students>
<rdf:Seqg>
<rdf:1i rdf:resource="http://www.comp.nus.edu.sg/~liyf"/>
<rdf:1i rdf:resource="http://www.comp.nus.edu.sg/ sunj"/>
<rdf:1i rdf:resource="http://www.comp.nus.edu.sg/ wangh"/>
</rdf:Seq>
</s:students>
</rdf :Description>
</rdf :RDF>

14

RDF Schema

e Basic vocabulary to describe RDF vocabularies, e.g.,

Class, subClass0f, Property, subProperty0f, domain, range
e Defines properties of the resources (e.g., title, author, subject, etc)
e Defines kinds of resources being described (books, Web pages, people, etc)

e XML Schema gives specific constraints on the structure of an XML document
RDF Schema provides information about the interpretation of the RDF
statements

e RDF schema uses XML syntax, but could theoretically use any other syntax

15




RDF Schema Example (Class)

<?xml version="1.0"7>
<rdf:RDF xmlns:rdf="http://wuw.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Person">
<rdfs:comment>Person Class</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Resource" />
</rdfs:Class>

<rdfs:Class rdf:ID="Student">
<rdfs:comment>Student Class</rdfs:comment>
<rdfs:subClass0f rdf:resource="#Person"/>
</rdfs:Class>

16

RDF Schema Example (Property)

<rdf :Property rdf:ID="teacher">
<rdfs:comment>Teacher of a course</rdfs:comment>
<rdfs:domain rdf:resource="#Course"/>
<rdfs:range rdf:resource="#Person"/>

</rdf :Property>

<rdf :Property rdf:ID="students">
<rdfs:comment>List of Students in alphabetical order</rdfs:comment>
<rdfs:domain rdf:resource="#Course"/>
<rdfs:range rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Seq"/
</rdf:Property>

17




Why RDF(S) is not enough

Only range/domain constraints on properties (need others)

e No properties of properties (unique, transitive, inverse, etc.)

No equivalence, disjointness, etc.

e No necessary and sufficient conditions (for class membership)

18

DAML+OIL

e Europe: Ontology Inference Language (OIL) extends RDF Schema to a
fully-fledged knowledge representation language.

e US: DARPA Agent Markup Language (DAML)
e Merged as DAML+OIL in 2001

logical expressions
— data-typing

— cardinality

quantifiers

e Becomes OWL — W3C standard in March 2003

19




DAML: Setting up the namespaces

<rdf :RDF
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.0rg/2000/10/XMLSchema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

20

DAML: Define Classes

<rdfs:Class rdf:ID="Animal"> <rdfs:label>Animal</rdfs:label> </rdfs:Class>
<rdfs:Class rdf:ID="Male">
<rdfs:subClassOf rdf:resource="#Animal"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Female">
<rdfs:subClass0f rdf:resource="#Animal"/>
<daml:disjointWith rdf:resource="#Male"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Man">
<rdfs:subClass0f rdf:resource="#Person"/>
<rdfs:subClass0f rdf:resource="#Male"/> </rdfs:Class>

21




DAML: Define Properties

<rdf :Property rdf:ID="hasParent">
<rdfs:domain rdf:resource="#Animal"/>
<rdfs:range rdf:resource="#Animal"/>

</rdf :Property>

<rdf :Property rdf:ID="hasFather">
<rdfs:subProperty0f rdf:resource="#hasParent"/>
<rdfs:range rdf:resource="#Male"/>

</rdf :Property>

22

DAML: Define Restrictions

<rdfs:Class rdf:ID="Person"> <rdfs:subClass0f rdf:resource="#Animal"/>
<rdfs:subClass0f>
<daml:Restriction>
<daml:onProperty rdf:resource="#hasParent"/>
<daml:toClass rdf:resource="#Person"/>
</daml:Restriction> </rdfs:subClass0f>
<rdfs:subClass0f>
<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="#hasFather"/>
</daml:Restriction> </rdfs:subClass0f>
<rdfs:subClass0f>
<daml:Restriction daml:maxcardinality="1">
<daml:onProperty rdf:resource="#hasSpouse"/>
</daml:Restriction> </rdfs:subClass0f>
</rdfs:Class>

23




DAML: UniqueProperty and Transitive

<daml:UniqueProperty rdf:ID="hasMother">
<rdfs:subProperty0f rdf:resource="#hasParent"/>
<rdfs:range rdf:resource="#Female"/>
</daml:UniqueProperty>

<daml:TransitiveProperty rdf:ID="hasAncestor">

<rdfs:label>hasAncestor</rdfs:label>
</daml:TransitiveProperty>

24

DAML: oneOf

<rdf :Property rdf:ID="hasHeight">
<rdfs:range rdf:resource="#Height"/>
</rdf:Property>

<rdfs:Class rdf:ID="Height">
<daml:one0f rdf:parseType="daml:collection">
<Height rdf:ID="short"/>
<Height rdf:ID="medium"/>
<Height rdf:ID="tall"/>
</daml:one0f>
</rdfs:Class>

25




DAML: hasValue and intersectionOf

<rdfs:Class rdf:ID="TallThing">
<daml:sameClassAs>
<daml:Restriction>
<daml:onProperty rdf:resource="#hasHeight"/>
<daml :hasValue rdf:resource="#tall"/>
</daml:Restriction>
</daml:sameClassAs>
</rdfs:Class>
<rdfs:Class rdf:ID="TallMan">
<daml:intersectionOf rdf:parseType="daml:collection">
<rdfs:Class rdf:about="#TallThing"/>
<rdfs:Class rdf:about="#Man"/>
</daml:intersection0Of>
</rdfs:Class>

26

DAML: instances

<Person rdf:ID="Adam">
<rdfs:label>Adam</rdfs:label>
<rdfs:comment>Adam is a person.</rdfs:comment>
<hasHeight rdf:resource=#medium/>

</Person>

27




OWL: The three sublanguages

OWL Lite supports those users primarily needing a classification hierarchy and
simple constraints. For example, while it supports cardinality constraints, it

only permits cardinality values of 0 or 1.

OWL DL supports those users who want the maximum expressiveness while
retaining computational completeness and decidability. OWL DL includes all
OWL language constructs, but they can be used only under certain restrictions
(for example, while a class may be a subclass of many classes, a class cannot be

an instance of another class).

OWL Full is meant for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees. For example, in
OWL Full a class can be treated simultaneously as a collection of individuals

and as an individual in its own right.

28

OWL: Changes from DAML+ OIL

With respect to the three sublanguages, the DAML+OIL semantics is closests
to the OWL DL semantics.

The namespace was changed to http://www.w3.0rg/2002/07/owl
Cyclic subclasses are now allowed
multiple rdfs:domain and rdfs:range properties are handled as intersection

Various properties and classes were renamed, e.g., daml:UniqueProperty is

replaced by owl:FunctionalProperty

... http://www.w3.0org/TR/owl-ref/

29




Recall: Overview

e Introduction to Semantic Web
— RDF
— DAML+OIL
— OWL

v' Semantic Web Environment for Formal Specifications
— Formal Specification Languages and Their Integrations
— Linking Different Formalisms through Semantic Web
— Specification Comperhension via RDF Query

e Formal Methods for Semantic Web
— Extracting DAML ontology from Z requirement models
— Checking Web ontology in Z/EVES
— Analysing and reasoning Web ontology in Alloy

e Conclusion and Further Work

30

Formal Specification Languages and Their Integrations

e Many formal specification techniques exist for modeling different aspects of

software systems, however,

e it is difficult to find a single notation that can model all functionalities of a
complex system.

e E.g., B/VDM/Z are designed for modeling system data/states, while
CSP/m-calculus are designed for modeling system behaviour/interactions.

e Various formal notations are often extended and combined for modeling large
and complex systems. In recent years, integrated formal method (IFM) has
been a popular research topic, i.e.

IFM’99 (York), IFM’00 (Dagstuhl), IFM’02 (Turku), IFM’04 (Kent).

e Due to different motivations, there are possible different semantic links between
two formalisms, which can lead to different integrations between the two.

31




Integrated Formal Methods

e Unlike UML, an industrial effort for standardising diagrammatic notations, a
single dominating integrated formal method may not exist in the near future.
The reason may be partially due to the fact that

— there are many different well established individual schools,

— the open nature of the research community, i.e. FME, which is different
from the industrial ‘globalisation’ community, i.e. OMG.

e Regardless of whether there will be or there should be an ultimate integrated
formal method (like UML), diversity seems to be the current reality for formal
methods and their integrations. Such a diversity may have an advantage, that
is, different formal methods and their combinations may be suitable for

different kinds of complex systems modeling.

e Challenge: to develop environment/tools for extending and combining various
formal specification techniques —  Semantic Web

32

Semantic Web environment for Z

<rdf :RDF
xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml = "http://www.daml.org/2001/03/daml+oil#"
xmlns:z = "http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#">
<l-- ... ==
<rdfs:Class rdf:ID="Schemadef">
<rdfs:label>Schemadef</rdfs:label> </rdfs:Class>
<rdfs:Class rdf:ID="Schemadefbox">
<rdfs:label>Schemadefbox</rdfs:label>
<rdfs:subClass0f rdf:resource="#Schemadef"/>
<rdfs:subClass0f>
<daml:Restriction daml:cardinalityQ="1">

<daml:onProperty rdf:resource="#name"/></daml:Restriction></rdfs:subClass0f>

<rdfs:subClass0f>
<daml:Restriction daml:minCardinality="0">
<daml:onProperty rdf:resource="#delta"/>

<daml:toClass rdf:resource="#Schemadef"/></daml:Restriction></rdfs:subClass0f>

<l—- ... ==

33




Example: Semantic Web environment for Z

_ Buffer
Mazx : 7
items : seq MSG rdf:type

F#items < Max £.0ame »  Buffer

z:pred

Z Semantic Web environments can be easily extended for Object-Z. Similarly, other
formalisms, i.e. CSP and TCSP, can be also constructed. Linking different
formalisms is an interesting issue.

34

Semantics Links

e Various modeling methods can be used in an effective combination for
designing complex systems if the semantic links between those methods can be
clearly established and defined.

— e.g. ‘mapping sets of Z operations into CSP actions’ A. Hall [FME’02]

e Given two sets of formalisms, say state-based ones and event-based ones, it’s
not too surprising to see that different possible integrations are more than the
cross-product of the two sets. This is simply because the different semantic
links between the two formalisms lead to different integrations.

e Furthermore, the semantic links can be directional and bi-directional.

35




Object-Z ™ CSP : class = process (Smith and Derrick, FME’97)

—_ Buffer
INIT
maz : N; items : seq MSG liz'tems =()
F#items < maz
_Join _ Leave
A(items) A(items)
i?7: MSG il MSG
#items < mazx #items # 0
items’ = (i?) " items items = items’ ™ (i!)

Buffer; = Buffer|[Transfer | Leave]
Buffers = Buffer|Transfer/ Join)]
TwoLinkedBuffers = Buffer; |[ Transfer || Buffers

36

Object-Z ™ CSP : operation <= process (Mahony and Dong, ICSE’98)

_ TBuffer
Buffer

left, Tight : chan [input and output channels]

MAIN =y Q o ([i : MSG] e left?i — Join O
[#items # 0] e rightllast(items) — Leave); Q

Two Communicating Buffers

TwoLinkedBuffers,

[ : TBuffer[middle/right)
r : TBuffer[middle/left]

MAIN = [ |[ middle]| r

37




Semantic Web for linking Object-Z and CSP

class = process

<daml:0Ontology rdf:about="">
<daml:imports rdf:resource="http://nt-appn.comp.nus.edu.sg/fm/zdaml/0Z"/>
<daml:imports rdf:resource="http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP"/>
</daml:0Ontology>
<rdfs:Class rdf:about="oz:Classdef">
<rdfs:subClassOf rdf:resource="csp:Pro"/> </rdfs:Class>

operation <=> process

<daml:0bjectProperty rdf:ID="MAIN">

<rdfs:range rdf:resource="csp:Process"/>

<rdfs:domain rdf:resource="#Classdef"/> </daml:0bjectProperty>
<rdfs:Class rdf:about="oz:0P">

<daml:sameClassAs rdf:resource="csp:Process"/> </rdfs:Class>

38

RDE Query Analyzer - [tbuffer.rql]

@ File Edit View Server Query ‘Window Help - 8 x
=== P |7
“#zelect all class name derived from Buffer ~

=elect Yc_name uszing buffer where
{[http: wwww w3 org-1999-02-22-rdf —syntaz-n=ftype]
?c [http:~“nt—apph.comp . nus.edu. =g fnzdanl 0ZfCla=z=defl]}
and {[http: “nt—appn.conp.nus.edu. =g ' fnzdanl - Z#nans] 7c 'Buffer'?}
and {[http: “nt—appn.comnp.nus.edu. =g/ fnzdanl  0Z#inherit] ?deriwvedc "}
and {[http: nt—appn.comp.nus.edu. sg inzdanl-Z#nanse] ?derivedc ?c_namel}

v
< ¥
c_nane ~

TBuffer
completed: 1 records in 0.0 seconds 3
< b4
JReady Ln 44, Col 1

Find all the sub-classes of the Buffer

Specification Comprehension

39




Recall: Overview

e Introduction to Semantic Web
— RDF
— DAML+OIL
— OWL

e Semantic Web Environment for Formal Specifications
— Formal Specification Languages and Their Integrations
— Linking Different Formalisms through Semantic Web
— Specification Comperhension via RDF Query

v' Formal Methods for Semantic Web
— Extracting DAML ontology from Z requirement models
— Checking Web ontology in Z/EVES
— Analysing and reasoning Web ontology in Alloy

e Conclusion and Further Work

40

Problems in designing Semantic Web ontology /services

e Semantic Web languages are not expressive enough for designing Semantic Web
complex ontology properties and service/agents.

Require a systematic design process with expressive high level modeling techniques

Solution: formal specifications

41




Some DAML constructs in Abstract Form

Abstract DAML constructs | Description
daml_class classes
daml_subclass|C] subclasses of C
daml_objectproperty[D < R) relation properties with domain D, range R
daml_objectproperty[D — R] function properties with domain D, range R
daml_subproperty|P] sub properties of P
instanceof [ C] instances of the DAML class C
42

Extracting DAML ontology from the Z model

Z can be used to model web-based ontology at various levels. The conceptual
domain Z models can be transformed to DAML+OIL ontology via XSLT
technology.

Given type transformation

[T]

T € daml_class

e.g.
[Author]

<daml:class rdf:ID="author">
<rdfs:label>Author</rdfs:label> </daml:Class>

43




Z schema transformation

S
{X:Tl; Y :PTs

T, T2 € daml_class

S € daml_class, X € daml_objectproperty[S — T1], Y € daml_objectproperty[S < T2]

Paper
Ftitle : Title; authors : P Author

<daml:class rdf:ID="paper"> <rdfs:label>Paper</rdfs:label> </daml:Class>
<daml:0bjectProperty rdf:ID="paper_title"> <rdf:type rdf:resource="
http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>

<rdf:domain rdf:resource="#paper"/>

<rdf:range rdf:resource="#title"/> </daml:0bjectProperty>
<daml:0bjectProperty rdf:ID="paper_authors">

<rdf :domain rdf:resource="#paper"/>

<rdf:range rdf:resource="#author"/> </daml:0bjectProperty>

44

Z axiomatic definition transformation (relation/functions)

R:B <+ (—,+)C B, C € daml_class

R € daml_objectproperty[B + (—,+)C]

| reference : Paper <> Paper <daml:0bjectProperty rdf:ID="paper_reference">
<rdfs:domain rdf:resource="#paper"/>
<rdfs:range rdf:resource="#paper"/>
</daml:0bjectProperty>

45




Z axiomatic definition transformation (subset)

M:PN N € daml_class

M € daml_subclass[N]

Biannual : P ConfSeries <daml:class rdf:ID="biannual">
<rdfs:subClass0f rdf:resource="#confseries"/>

</daml:class>

46

Improve the ontology quality through Z tools

Z/EVES tool is an interactive system for composing, checking, and analyzing Z
specifications. It supports the analysis of Z specifications in several ways: syntax
and type checking, schema expansion, precondition calculation, domain checking,
and general theorem proving. Some ontology related flaws in Z model can be
detected and removed with the assistance of Z/EVES so that the transformed
DAML ontology from checked Z model will have better quality.

Alternatively, one can develop reverse transformation tools from DAML ontology
to the formal specifications then to use formal specification tools to detect domain

and logical errors that the current DAML reasoner is not able to detect.

47




Ecoding DAML semantics in Z/EVES

Basics
[Resource]
| Class : P Resource

‘ Property : P Resource

‘ Class N Property = {}
| instances : Class — P Resource

| sub_val : Property — (Resource <+ Resource)

48

Class Relationships

subClassOf : Class <> Class
disjointWith : Class <> Class
sameClassAs : Class <> Class

Vei,ea: Class
c1 subClassOf cy < instances(c1) C instances(cz)
c1 disjointWith ca < instances(c1) N instances(c2) = {}
c1 sameClassAs co < instances(ci1) = instances(cz)

unionOf : seq Class < Class

V¢l : seq Class; ¢ : Class o cl unionOf ¢ <
instances(c) = |J{z : Class | z € ran cl e instances(z)}

disjointUnionOf : seq Class <> Class

V cl : seq Class; c1 : Class e cl disjointUnionOf ¢ <
cl unionOf ¢ AV z,y :rancl e z disjointWith y

49




Class and Property

toClass : (Class x Property) <> Class

V1, c2 : Class; p : Property e (c1,p) toClass ¢; &<
Y a1, az : Resource ® a; € instances(c1) < ((a1, a2) € sub_val(p) = az € instances(cz))

hasValue : (Class x Property) <> Resource

YV c: Class; p : Property; r : Resource ®
(¢, p) hasValue r < {r} = sub_val(p)( instances(c) |)

hasClass : (Class x Property) < Class

Y c1 : Class; p: Property; ca : Class ® (c1,p) hasClass c; &
Y z : instance(cy) ® sub_val(p)( {z} | N instances(c2) # &

cardinality : (Class x Property) -+ N

YV c: Class; p: Property; n:N e
((e,p),n) € cardinality < V z : instance(c) @ #(sub_val(p)( {z} ) =n

50

Property Relationships

subPropertyOf : Property <> Property

V pl,p2 : Property e pl subPropertyOf p2 < sub_val(pl) C sub_val(p2)

samePropertyAs : Property <> Property

V pl,p2 : Property e pl samePropertyAs p2 < sub_val(pl) = sub_val(p2)

inverseOf : Property <> Property

V pl,p2 : Property e pl inverseOf p2 < sub_val(pl) = (sub_val(p2))~

UniqueProperty : P Property

V p : Property; z, vy, z : Resource ® p € UniqueProperty <
((z,y) € sub_val(p) A (z,2) € sub_val(p) = y=z)

51




Imported in Z/EVES

\begin{zsection}{daml2z}{toolkit}

\begin{zed}
[Resource]
\begin{axdef}
\end{zed}
subClass0f: Class \rel Class
where
\begin{axdef} \
\forall c_1, c_2: Class @
Class: \power Resource . .
c_1 \inrel{subClass0f} c_2 \iff\\
\end{axdef}
instances(c_1) \subseteq instances(c_2)
end{axdef
\begin{axdef} \end{ }
Property: \power Resource
\where
Class \cap Property = \{\}
\end{axdef}
52

Checking Military Plan Ontology Experience

e Singapore DSO has developed an information extraction engine which has been
used to generate military plan ontologies (in DAML) from military formation
and plan (in natural language).

e A military ontology is made up of the following four main ingedients.

— A set of military operations and tasks, which define the logic order, type ,
and phases of a military campaign.

— A set of military units, which are the participants of the military operations
and tasks,

— A set of geographic locations, where such operations take place and
— A set of time points for constraining the timing of such operations.
e We have developed an auto transformation tool that takes DAML document

and produces Z specifications, then we use Z/EVES tool to check the type
errors and ontology consistency issues.

e Checking beyond web ontology (e.g. one military unit assigned two different
tasks at the same time period)

53




A Real Military Case Study Statistics

Items Numbers
Resources 138
Operations, tasks, phases 56
Units 47
Geographic areas 35
Statements (in RDF) 592
Transformed Axiomatic Defs (in Z) | 138
Transformed Predicates (in Z) 410
Type errors 22
DAML related ontology errors 0
errors beyound DAML 2
54

Checking Semantic Web through Alloy

Alloy overview

Alloy (developed at MIT by D. Jackson’s group) is a structural modelling language
based on first-order logic.

Signature: A signature (sig) paragraph introduces a basic type and a collection
of relation (called field) in it along with the types of the fields and constraints
on their value. A signature may inherit fields and constraints from another
signature.

Function: A function (fun) captures behaviour constraints. It is a parameterized
formula that can be “applied” elsewhere,

Fact: Fact (fact) constrains the relations and objects. A fact is a formula that
takes no arguments and need not to be invoked explicitly; it is always true.

Assertion: An assertion (assert) specifies an intended property. It is a formula
whose correctness needs to be checked, assuming the facts in the model.

55




DAML semantic encoding in Alloy

module DAMLOIL

The semantic models for DAML (for DAML+OIL) are encoded in the module
DAMLOIL.

e Resource
sig Resource {}
e Property

disj sig Property extends Resource

{sub_val: Resource —> Resource}

e subClassOf
fun subClassOf (csup, csub: Class)

{csub.instances in csup.instances}

56

DAML to Alloy Transformation

DAML parser

DAMLHDIL Tava Alloy Program
Ontology _." application ‘—.

Message Alloy
Analyzer

57




DAML to Alloy Transformation

e DAML class transformation

C € daml_class

static disj sig C extends Class{}

A daml_class C will be transformed into a scalar C, constrained to be an
elements of the signature Class.

e DAML property transformation

P € daml_property

static disj sig P extends Property{}

A daml property p will be transformed into a scalar P, constrained to be an
elements of the signature Property.

... (further detail see a technical paper presentation at FM’03)

58

Summary and Future Work

e Semantic Web
v' good support for automation, collaboration, extension and integration
x less expressive and no systematic design process for web ontology/agents
e Formal Specifications
v expressive, diverse and can be combined effectively
x weak in linking various methods for collaborative design
e Approaches
v Semantic Web environment for linking various formalisms (FME’02)
v' Extracting web ontologies systematically from Z specifications (ICFEM’02)
v’ Checking Semantic Web through Alloy (FM’03)
e Vision:
(?) lightweight meta integrator

(?) formal specification languages as semantic web languages

59




