Example: face detection in cameras
Example: optical character recognition

Sloppy handwriting

Sloppy handwriting
Basic Ideas: Definition

- Let \(S = \{ \omega_1, \omega_2 ... \omega_C \} \) be the set of pre-defined \(C \) classes
 - e.g. \{face, non-face\}, \{a,b,c,d ...\}

- Let \(x \) be the feature vector in \(\mathbb{R}^n \)

- Classifier is a function \(f : \mathbb{R}^n \rightarrow S \)
 - We say that a classifier assigns a class label to the feature vector (pattern)
Basic Ideas: Typical Image PR pipeline

Input image → Preprocessing → Feature extraction

Class label → Classification

Recognition

Training images → Preprocessing → Feature extraction

Database
3 Important Questions

- What features are best?
 - _domain________ knowledge
 - Ask the expert
 - Guess
 - Learn from training data

- Given features, how to design classifier?
 - What type of classifier?
 - How to find decision boundary?

- How good is the classifier?
 - How to evaluate performance?
What features to use?

Try height

- Idea: males are generally taller than females
- Therefore, a large value of height implies male
- How true is this?

Histogram of Male/Female Height
Boundary between 2 classes: \(x^* \)

Decision rule:
- If \(x < x^* \) then decide \(\text{Female} \)
- Else If \(x > x^* \) then decide \(\text{Male} \)
- Else flip a coin
Features

- Try both: height, weight

Decision boundary
2 features

- \(x = [\text{height, weight}]^T \)
- Decision boundary is a line
- Decision rule:
 - If \(x \) lies above line, then decide \textit{Male}
 - Else If \(x \) lies below line, then decide \textit{Female}
 - Else flip a coin

- But still some errors ...
More features?

- We might add other features that are not correlated with the ones we already have.
 - A precaution should be taken not to reduce the performance by adding such “noisy features”

- Ideally, the best decision boundary should be the one which provides an optimal performance such as in the following figure:
Perfect Decision Boundary?
However, our satisfaction is premature because the central aim of designing a classifier is to correctly classify *novel* input

Issue of generalization!
Non-linear boundary

Weight

Height

Female

Male
<table>
<thead>
<tr>
<th>Feature</th>
<th>Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edges</td>
<td>Bayes’ classifier</td>
</tr>
<tr>
<td>Color</td>
<td>Support Vector Machine (SVM)</td>
</tr>
<tr>
<td>Shape</td>
<td>Artificial Neural Network (ANN)</td>
</tr>
<tr>
<td>Texture</td>
<td>k-nearest neighbor (kNN)</td>
</tr>
<tr>
<td>Histogram of Oriented Gradients (HOG)</td>
<td>Decision Tree</td>
</tr>
<tr>
<td>Local Binary Pattern (LBP)</td>
<td>Adaboost</td>
</tr>
<tr>
<td>Wavelets</td>
<td>Bayesian Network</td>
</tr>
</tbody>
</table>
Theoretically Optimal Classifier

BAYES’ CLASSIFIER
Suppose you have no observation

- How to classify?
- You only know the prior probabilities, e.g. males in population = 50.85%

Decision rule with only the prior information

- Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2
Now suppose you observed X

How to classify?

Bayes’ classifier says:

$$\omega^* = \arg \max_{\omega_j} P(\omega_j \mid x)$$

That is, assign x to label ω_j such that $P(\omega_j \mid x)$ is largest among all $P(\omega_i \mid x)$

Maximum A Posteriori
Bayes’ Classifier

Bayes’ Rule:

\[P(A | B) = \frac{P(B | A) \times P(A)}{P(B)} \]

So

\[\omega^* = \arg \max_{\omega_j} P(\omega_j | x) \]

\[= \arg \max_{\omega_j} \frac{P(x | \omega_j) \cdot P(\omega_j)}{P(x)} \]

\[= \arg \max_{\omega_j} P(x | \omega_j) \cdot P(\omega_j) \]
Likelihood: learn from training data

a.k.a. class-conditional probability
Maximum A Posteriori
Special case

- Equal priors

 \[P(\omega_1) = P(\omega_2) = \cdots = P(\omega_C) = \frac{1}{C} \]

- Then

 \[\omega^* = \underset{\omega_j}{\text{arg max}} P(x \mid \omega_j) \cdot P(\omega_j) \]

 Maximum Likelihood
Special case: only 2 classes

- Decide ω_1 if $P(\omega_1 | x) > P(\omega_2 | x)$; otherwise decide ω_2

Alternatively:

- Decide ω_1 if $g(x) > 0$
 otherwise decide ω_2

- Where $g(x) = P(\omega_1 | x) - P(\omega_2 | x)$

 - $g(x)$ is called a **Discriminant Function**
Let \(\{\omega_1, \omega_2, \ldots, \omega_c\} \) be the set of \(C \) classes.

Let \(\lambda_{ij} \) be the loss incurred for deciding \(\omega_i \) when the class is \(\omega_j \).
Then Bayes’ rule that minimizes risk (expected loss) is:

\[
\text{if } \frac{P(x \mid \omega_1)}{P(x \mid \omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)}
\]

Then decide \(\omega_1 \)

Otherwise decide \(\omega_2 \)

Note: right-hand side independent of input \(x \)

Note: if \(\lambda_{21} = \lambda_{12} = 1 \) and \(\lambda_{11} = \lambda_{22} = 0 \), then MAP!
Prior face detector

- Using ANN, by Sung Kah Kay (MIT), and also by Henry Rowley (CMU)
Three major contributions/phases of the algorithm:

- Feature extraction
- Classification using boosting
- Multi-scale detection algorithm

Feature extraction and feature evaluation.

- Rectangular features are used, with a new image representation their calculation is very fast.

Classifier training and feature selection using a slight variation of a method called AdaBoost.

A combination of simple classifiers is very effective.

Features

- Four basic types.
 - They are easy to calculate.
 - The white areas are subtracted from the black ones.
 - A special representation of the sample called the integral image makes feature extraction faster.

Images of different types A, B, C, D, and corresponding feature extraction results.
Features are extracted from sub windows of a sample image.

- The base size for a sub window is 24 by 24 pixels.
- Each of the four feature types are scaled and shifted across all possible combinations

In a 24 pixel by 24 pixel sub window there are ~160,000 possible features to be calculated.
Boosting with Single Feature Perceptrons

- Viola-Jones version of Boosting:
 - “simple” (weak) classifier = single-feature perceptron
 - see last slide
 - With K features (e.g., K = 160,000) we have 160,000 different single-feature perceptrons

- At each stage of boosting
 - given reweighted data from previous stage
 - Train all K (160,000) single-feature perceptrons
 - Select the single best classifier at this stage
 - Combine it with the other previously selected classifiers
 - Reweight the data
 - Learn all K classifiers again, select the best, combine, reweight
 - Repeat until you have T classifiers selected

- Hugely computationally intensive
 - Learning K perceptrons T times
 - E.g., K = 160,000 and T = 1000
At each stage we select the best classifier on the current iteration and combine it with the set of classifiers learned so far.

How are the classifiers combined?
- Take the weight*feature for each classifier, sum these up, and compare to a threshold (very simple)
- Boosting algorithm automatically provides the appropriate weight for each classifier and the threshold
- This version of boosting is known as the AdaBoost algorithm
- Some nice mathematical theory shows that it is in fact a very powerful machine learning technique
Reduction in Error as Boosting adds Classifiers

Slides from Prof. Padhraic Smyth, UC Irvine
Useful Features Learned byBoosting

Slides from Prof. Padhraic Smyth, UC Irvine
Basic classifier operates on 24 x 24 subwindows

Scaling:
- Scale the detector (rather than the images)
- Features can easily be evaluated at any scale
- Scale by factors of 1.25

Location:
- Move detector around the image (e.g., 1 pixel increments)

Final Detections
- A real face may result in multiple nearby detections
- Postprocess detected subwindows to combine overlapping detections into a single detection
In paper, 24x24 images of faces and non faces (positive and negative examples).
Sample results using the Viola-Jones Detector

- Notice detection at multiple scales
More Detection Examples
Practical implementation

- Details discussed in Viola-Jones paper

- Training time = weeks (with 5k faces and 9.5k non-faces)

- Final detector has 38 layers in the cascade, 6060 features

- 700 Mhz processor:
 - Can process a 384 x 288 image in 0.067 seconds (in 2003 when paper was written)
Pattern Recognition or Classification means assigning class label to input pattern. Choosing features is an art! Given the right features, many classifiers work equally well. Some classifiers require long learning time. Evaluating a classifier on a test set is an important part of determining its performance.
Books

- Pattern Classification, 2nd Ed., R. Duda, P. Hart, D. Stork, 2000
 - http://www.cs.cmu.edu/~tom/mlbook.html