LONGYUN DING, On equivalence relations generated by Schauder bases.
School of mathematical sciences, Nankai University, Tianjin 300071, China.
E-mail: dinglongyun@gmail.com.

In this talk, a notion of Schauder equivalence relation R^N/L is introduced, where L is a linear subspace of \mathbb{R}^N and the unit vectors $e_n = (0, 0, \cdots, 0, 1, 0, \cdots)$ form a Schauder basis of L. The main theorem is to show that the following conditions are equivalent:

1. the unit vector basis is boundedly complete;
2. L is F_σ in \mathbb{R}^N;
3. R^N/L is Borel reducible to R^N/ℓ_∞.

We show that Schauder equivalence relation generalized by any basis of ℓ_2 is Borel bireducible to R^N/ℓ_2 itself, but it is not true for bases of c_0 or ℓ_1. Furthermore, among all Schauder equivalence relations generated by sequences in c_0, we find the minimum and the maximum elements with respect to Borel reducibility.

We also show that R^N/ℓ_p is Borel reducible to R^N/J iff $p \leq 2$, where J is James’ space.