▶ LONGYUN DING, On equivalence relations generated by Schauder bases. School of mathematical sciences, Nankai University, Tianjin 300071, China.

E-mail: dinglongyun@gmail.com.

In this talk, a notion of Schauder equivalence relation $\mathbb{R}^{\mathbb{N}}/L$ is introduced, where L is a linear subspace of $\mathbb{R}^{\mathbb{N}}$ and the unit vectors $e_n = (0, 0, \dots, 0, \stackrel{n}{1}, 0, \dots)$ form a Schauder basis of L. The main theorem is to show that the following conditions are equivalent:

(1) the unit vector basis is boundedly complete;

(2) L is F_{σ} in $\mathbb{R}^{\mathbb{N}}$;

(3) $\mathbb{R}^{\mathbb{N}}/L$ is Borel reducible to $\mathbb{R}^{\mathbb{N}}/\ell_{\infty}$. We show that Schauder equivalence relation generalized by any basis of ℓ_2 is Borel bireducible to $\mathbb{R}^{\mathbb{N}}/\ell_2$ itself, but it is not true for bases of c_0 or ℓ_1 . Furthermore, among all Schauder equivalence relations generated by sequences in c_0 , we find the minimum and the maximum elements with respect to Borel reducibility.

We also show that $\mathbb{R}^{\mathbb{N}}/\ell_p$ is Borel reducible to $\mathbb{R}^{\mathbb{N}}/J$ iff $p \leq 2$, where J is James' space.