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Languages

Language = Set of Strings over an Alphabet.
Alphabet Σ, for example Σ = {0,1,2}. Always finite.

Finite languages
L1 = ∅, no elements.
L2 = {ε}, set consisting of empty string.
L3 = {00,01,02,10,11,12,20,21,22}, all elements of
length 2.
L4 = {ε,0,00,000,0000}, all strings of 0s up to length 4.
L5 = {01,001,02,002}, all strings consisting of one or two
0s followed by a 1 or 2.
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Operations with Languages

Union:
L ∪H = {u : u ∈ L ∨ u ∈ H};
{00,01,02} ∪ {01,11,21} = {00,01,02,11,21};
{0,00,000} ∪ {00,000,0000} = {0,00,000,0000}.

Intersection:
L ∩H = {u : u ∈ L ∧ u ∈ H};
{0,00,000} ∩ {00,000,0000} = {00,000};
{00,01,02} ∩ {01,11,21} = {01}.

Set Difference:
L−H = {u : u ∈ L ∧ u /∈ H};
{00,01,02} − {01,11,21} = {00,02}.

Concatenation:
000 · 1122 = 0001122;
L ·H = {v ·w : v ∈ L ∧w ∈ H};
{0,00} · {1,2} = {01,001,02,002}.

Advanced Automata Theory 1 Chomsky Hierarchy and Grammars – p. 3



Kleene Star and Plus

Definition
L∗ = {ε} ∪ L ∪ L · L ∪ L · L · L ∪ . . .
= {w1 ·w2 · . . . ·wn : n ≥ 0 ∧w1,w2, . . . ,wn ∈ L};

L+ = L ∪ L · L ∪ L · L · L ∪ . . .
= {w1 ·w2 · . . . ·wn : n > 0 ∧w1,w2, . . . ,wn ∈ L}.

Examples
∅∗ = {ε}.
Σ∗ is the set of all words over Σ.
{0}∗ = {ε,0,00,000,0000, . . .}.
{00,01,10,11}∗ are all binary words of even length.

ε ∈ L+ iff ε ∈ L.

Notation
Often a∗ in place of {a}∗ and abc∗ in place of {ab} · {c}∗;
For single variable w, w∗ is {w}∗ and w · L is {w} · L.
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Regular Languages

Regular expressions are either finite sets listed by their
elements or obtained from other regular expressions by
forming the Kleene star, Kleene plus, union, intersection,
set-difference or concatenation.

A language is regular iff it can be described by a regular
expression.

Regular sets have many different regular expressions.

For example, {0,00} · {1,2} and {01,001,02,002} describe
the same set. Also 0∗ and (00)∗ ∪ 0 · (00)∗ describe the
same set.

Intersections and set difference are traditionally not used in
regular expressions, as they can be replaced by combining
other operations.

The complement of a language L is Σ∗ − L.
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Quiz

Which of the following regular expressions describe the
same set?

1. {00,000}+;

2. {000,0000}+;

3. 00 · 0∗;
4. 000 · 0∗;
5. {000,0000} ∪ (000000 · 0∗);
6. {00,01,02,10,11,12};

7. 0∗1∗2∗;

8. (0∗1∗2∗)∗;

9. ({0,1} · {0,1,2}∗) ∩ ({0,1,2} · {0,1,2}).
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Grammars

Grammar (N,Σ,P,S) describes how to generate the words
in a language; the language L of a grammar consists of all
the words in Σ∗ which can be generated.

N: Non-terminal alphabet, disjoint to Σ.

S ∈ N is the start symbol.

P consists of rules l → r with each rule having at least one
symbol of N in the word l.

v ⇒ w iff there are x,y and rule l → r in P with v = xly and
w = xry. v ⇒∗ w: none, one or many such steps.

The grammar with N = {S}, Σ = {0,1} and
P = {S → SS,S → 0,S → 1} permits to generate all
nonempty binary strings.

S ⇒ SS ⇒ SSS ⇒ 0SS ⇒ 01S ⇒ 011.
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Examples

Example 1.7
At least three symbols, 0s followed by 1s, at least one 0 and
one 1.
N = {S,T}, Σ = {0,1}, startsymbol S, P has S → 0T1,
T → 0T, T → T1, T → 0, T → 1.

Example 1.8
All words with as many 0s as 1s.
N = {S}, Σ = {0,1}, S → SS|0S1|1S0|ε.
The symbol | separates alternatives.

Example 1.9
All words of odd length.
N = {S,T}, Σ = {0,1,2}, startsymbol S,
S → 0T|1T|2T|0|1|2, T → 0S|1S|2S.
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The Chomsky Hierarchy

Grammar (N,Σ,P,S) generating L.

CH0: No restriction. Generates all recursively enumerable
languages.

CH1 (context-sensitive): Every rule is of the form
uAw → uvw with A ∈ N, u,v,w ∈ (N ∪Σ)∗ and v = ε is
only possible if A = S and S does not occur on any right
side of a rule.

Easier formalisation: If l → r is a rule then |l| ≤ |r|, that is, r
is at least as long as l. Special rule (as above) for the case
that ε ∈ L.

CH2 (context-free): Every rule is of the form A → w with
A ∈ N and w ∈ (N ∪Σ)∗.

CH3 (regular): Every rule is of the form A → wB or A → w

with A,B ∈ N and w ∈ Σ∗.

L is called context-sensitive / context-free / regular iff it can
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Examples

Regular grammar for Example 1.7:
N = {S,T}, Σ = {0,1}, startsymbol S, S → 0S|00T|01T,
T → 1T|1.

Grammar for Example 1.8 is context-free.

Grammar for Example 1.9 is regular.

Example 1.13.
Context-Sensitive Grammar for {0n1n2n : n ∈ N}.
N = {S,T,U}, Σ = {0,1,2}, startsymbol S,
S → 012|0T12|ε, T → 0T1U|01U, U1 → 1U, U2 → 22.
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Regular Grammar ⇒ Expression

Regular grammar ({S,T}, {0,1,2,3},P,S) with
S → 0S|1T|2 and T → 0T|1S|3.
Let LS = {w : (S → w) ∈ P} = {2} and LT = {3}.
Let LS,S = {w : (S → wS) ∈ P} = {0}, LS,T = {1},

LT,S = {1}, LT,T = {0}.

Regular Expression:
(LS,S)

∗ ·(LS,T ·(LT,T)
∗ ·LT,S ·(LS,S)

∗)∗ ·(LS∪LS,T ·(LT,T)
∗ ·LT)

giving 0∗ · (10∗10∗)∗ · (2 ∪ 10∗3).

Equivalent expression:
(LS,S ∪ LS,T · (LT,T)

∗ · LT,S)
∗ · (LS ∪ LS,T · (LT,T)

∗ · LT)

giving (0 ∪ 10∗1)∗ · (2 ∪ 10∗3).
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Regular Expression ⇒ Grammar

Given ({0,1}∗ · 2 · {0,1}∗ · 2) ∪ {0,2}∗ ∪ {1,2}∗.
Choose Non-Terminals S,T,U,V,W with
LS = LT ∪ LV ∪ LW;
LT = {0,1}∗ · 2 · {0,1}∗ · 2 = {0,1}∗ · 2 · LU;
LU = {0,1}∗ · 2;
LV = {0,2}∗;
LW = {1,2}∗.
Grammar ({S,T,U,V,W}, {0,1,2},P,S) with these rules:
S → T|V|W,
T → 0T|1T|2U,
U → 0U|1U|2,
V → 0V|2V|ε,
W → 1W|2W|ε.
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Quiz 1.10 and 1.16

Quiz 1.10: Make a regular grammar for 0∗10∗10∗10∗10∗20∗.

Quiz 1.16: Consider the language L = {00,11,22} · {33}∗:
(a) Make a regular grammar for L;
(b) Make a regular grammar for H = L∗.
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The Pumping Lemma

Theorem 1.19 (a)
Let L be a regular language. There is a constant k such
that every w ∈ L with |w| > k equals to xyz with y 6= ε and
|xy| ≤ k and xy∗z ⊆ L.

Tighter versions will be shown later.

Corollary 1.20.
If L is an infinite regular language then almost all words of
L can be brought into the form xyz with y 6= ε and xy∗z ⊆ L.

Example
L = 0110·{2,3}∗∪001100·{22,33}∗·11∪0011001100·{2,3}.
Then constant k is 11.
If w ∈ L and |w| > 11 then there are at least two
occurrences of 2,3 in w.
So split w into xyz such that y is the first block of two digits
from 2,3 occurring in w. Then xy∗z ⊆ L.
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Pumping Lemma 1.19 (a) as a Game

Player Anke wants to show pumping condition is true;
Player Boris wants to show it is false.

1. Anke selects a pumping constant k.
2. Boris selects a word z ∈ L with |z| ≥ k; if such a word
does not exist, Anke has won.
3. Anke splits word z into three parts u,v,w with z = uvw

such that |v| ≤ k and |v| ≥ 1.
4. Boris selects h ∈ N; note that h = 0 is possible.

5. If uvhw ∈ L then Anke wins else Boris wins.

The language L satisfies the pumping condition (“L
satisfies the pumping lemma”) iff Anke can play for the
given L the game such that she always wins, that is, iff
Anke has a winning strategy for the above game.

The Pumping Lemma says that whenever L is regular then
Anke has a winning strategy for the game above.
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Structural Induction

To show that all regular sets satisfy the Pumping Lemma,
one does the following.

Show that H satisfies the Pumping Lemma for all finite H.

Show that if H satisfies the Pumping Lemma, so does H∗.

Show that if H1,H2 satisfy the Pumping Lemma, so does
H1 ·H2.

Show that if H1,H2 satisfy the Pumping Lemma, so does
H1 ∪H2.

Other operations (intersection, set difference) can be
ignored, as one can make all regular languages without
using them.
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How to Prove these Items

Finite Sets: Choose constant larger than longest word; so
no word applies to be pumped.

Kleene Star: Pumping Constant c remains the same. Given
w1w2 . . .wn ∈ H∗, either w1 is shorter than c and can be
repeated or w1 is longer than c and one can pump inside
w1.

Concatenation: If H1,H2 have pumping constants c1, c2,
then consider v ·w longer than c1 + c2. Either v is longer
than c1 or w is longer than c2. That one of v,w which
overshoots the length can be pumped.

Union: The pumping constant of the union is the maximum
of the given constants. Any word u ∈ H1 ∪H2 longer than
this maximum can be pumped, as the pumped versions
xy∗z is a subset of either H1 or H2, respectively, and
therefore also a subset of the union.
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Pumping Position and Length

Examples 1.25
Let L = {w ∈ {0,1}∗ : w has as many 0s as 1s}.

Satisfies Pumping-Lemma Without Constraint on
Pumping-Position and Length (Corollary 1.20).

Given w ∈ {0,1}∗ − {0}∗ − {1}∗. Then w = xyz with
y ∈ {01,10}.

If w ∈ L then xy∗z ⊆ L.

Does not Satisfy Pumping Lemma with Constraint on
Pumping-Position and Length (Theorem 1.19 (a)).

Let k be the pumping constant and consider 0k+11k+1.
Pumping before position k expands or reduces the number
of 0s without adjusting the number of 1s the same way.
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Context-Free Languages

Pumping-Lemma for Context-Free Languages (Thm 1.19 (b))
Assume that L is a context-free language. Then there is a
constant k such that for all u ∈ L with |u| > k there is a
representation vwxyz of u with |wxy| ≤ k and w 6= ε ∨ y 6= ε
and vwnxynz ∈ L for all n ∈ N.

Applications
Showing that certain languages are not context-free or
regular.

L = {u : u is a decimal number where every digit appears
as often as the other digits}.
This language is not context-free.

L = {3n7n : n ∈ {1,2,3, . . .}}.
This language is context-free but not regular.
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Pumping Lemma 1.19 (b) as a Game

Player Anke wants to show pumping condition is true;
Player Boris wants to show it is false.

1. Anke selects a pumping constant k.
2. Boris selects a word u ∈ L with |u| ≥ k; if such a word
does not exist, Anke has won.
3. Anke splits word z into five parts v,w,x,y, z with
u = vwxyz such that |wxy| ≤ k and |w| ≥ 1.
4. Boris selects h ∈ N; note that h = 0 is possible.

5. If vwhxyhz ∈ L then Anke wins else Boris wins.

The language L satisfies the pumping condition (“L
satisfies the pumping lemma”) iff Anke can play for the
given L the game such that she always wins, that is, iff
Anke has a winning strategy for the above game.

The Pumping Lemma says that whenever L is context-free
then Anke has a winning strategy for the game above.
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Primes

Example 1.24
The set L = {0p : p is a prime} is not context-free.

Let k be the pumping constant and p be a prime number
larger than k.

Now 0p = vwxyz with wy 6= ε and vwrxyrz ∈ L for all r.

Let q = |wy|, note that q > 0.

Now vwp+1xyp+1z ∈ L and has length p+ p ∗ q.

This is p ∗ (1+ q) and is not a prime.

Hence 0p+p∗q /∈ L, a contradiction to the Pumping Lemma.

So L does not satisfy the Pumping Lemma for context-free
languages.
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Theorem 1.26

Let L ⊆ {0}∗.
The following conditions are equivalent for L.

1. L is regular;

2. L is context-free;

3. L satisfies the Pumping Lemma for regular languages;

4. L satisfies the Pumping Lemma for context-free
languages.

However, the bound on the length of the pumped word is
necessary. The set {0p : p is not a power of two} satisfies
the Pumping Lemma without that bound.
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Proof of Theorem 1.26

One shows the following: If a language L ⊆ {0}∗ satisfies
the context-free pumping lemma then it is regular.

Let k1,k2, . . . ,kℓ be the possible lengthes of wy when

pumping vwxyz as vwhxyhz for all h ∈ N. As there is only

one symbol, one can write these words as vxz(wy)h. Now
one can unify to a single pumping length k = k1 · k2 · . . . · kℓ.

Let F be the finite set of u with u · {0k}∗ 6⊆ L.

Now L satisfies for almost all h ∈ N, if 0h ∈ L then 0h+k ∈ L.

Let G = {u ∈ {0}∗ : u · {0k}∗ ⊆ L and ∀v ∈ L [u 6= v · 0k]}.
Note that G contains for each remainder ℓ < k at most one
u with |u|%k = ℓ.

So l has a regular expression of the form F ∪G · {0h}∗,
where G is the finite set from above and F is the finite set of
u ∈ L with u · {0k}∗ 6⊆ L. Thus L is regular.
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Other directions

Clearly a regular set is context-free and furthermore
satisfies the regular pumping lemma; a set which is either
context-free or satisfies the regular pumping lemma, then
also satisfies the context-free pumping lemma.

Now consider L = {0p : p > 0 and p is not a power of 2}.
Assume now that 0p is given with p neither a power of 2 nor

p ≤ 3. If p is a multiple of 3 and p ≥ 6, then 0p−3 · {000}∗ is

a regular subset of L. If p = 2i + j with 0 < j < 2i and

j 6= 2i−1 then p− 2i−1 is neither a power of 2 nor any

number of the form p+ (h− 1) · 2i−1 is a power of 2 where
h ∈ N is arbitrary. Thus one can choose the pump as of

length 2i−1. Thus for all 0p ∈ L except the shortest one 03,
pumping up and down is both possible. So the pumping
lemma without a bound on the length of the pump is
satisfied.
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Exercise 1.27

Exercise
Let L = {0n1n2n : n ∈ N},

H = {0n1m : n2 ≤ m ≤ 2n2} and

K = {0n1m2k : n ·m = k}.

Show that these languages are not context-free using the
Pumping Lemma for context-free languages.

Comment
For L this is a classical result and standard exercise in the
field. This example often comes up and it is useful to
remember it. It will be used in varied form for various further
results. This exercise is mainly for students new to theory.
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Exercise 1.28-1.30

Construct grammars for the following languages over the
alphabet {0,1}:

Exercise 1.28: A context-sensitive grammar for {10n1 : n is
a power of three}.

Exercise 1.29: A context-sensitive grammar for {10n1 : n is
a non-trivial product}.

Exercise 1.30: A context-free language for
{uvw : |u| = |v| = |w| and u 6= w}.
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Exercises 1.31-1.33

Let F(L) be the set of all permutations of words in L, so
F({0,00,011}) = {0,00,011,101,110}.

Exercise 1.31: For which levels of the Chomsky hierarchy is
there a regular L such that F(L) takes exactly the given
level? Provide the languages and explain why they are on
that level.

Exercise 1.32: Consider the following weaker version of the
Pumping Lemma: Almost all words u ∈ L can be split into
u = vwxyz such that wy 6= ε and ∀n ∈ N [vwnxynz ∈ L].
Provide a regular language L such that F(L) satisfies this
weaker version of the pumping Lemma but neither the
context-free Pumping Lemma nor Corollary 1.20.

Exercise 1.33: Let L = {0n1m2k : n 6= m ∨ n 6= k ∨m 6= k}.
Show that L satisfies Corollary 1.20 with pump length 1? If
H satisfies Corollary 1.20 with pump length 1, does so F(H)?
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Exercises 1.34-1.36

Exercise 1.34: Let G(L) = {vw : wv ∈ L and v,w ∈ Σ∗}.
Provide all levels of the Chomsky hierarchy for which there
is an L such that G(L) is regular.

Exercise 1.35: Let L = {w ∈ {0,1,2,3}∗ : if a < b then b

occurs more frequently than a}. What is the exact level of L
in the Chomsky hierarchy? Use grammars and pumping
lemmas to prove the result.

Exercise 1.36: Let L be given by the grammar ({S}, {0,1},
{S → 01S|01,S0 → 0S,S1 → 1S,0S → S0,1S → S1},S)
Determine the level of L in the Chomsky hierarchy and
determine all words up to length 6 in L. Explain which
words L contains.

Advanced Automata Theory 1 Chomsky Hierarchy and Grammars – p. 28



Exercises 1.37-1.39

Exercise 1.37: Construct context-free grammars for the sets

L = {0n1m2k : n < m ∨m < k},

H = {0n1m2n+m : n,m ∈ N} and K = {w ∈ {0,1,2}∗ : w
has a subword of the form 20n1n2 for some n > 0 or w = ε}.
Which of the versions of the Pumping Lemma (Theorem
1.19 (a), 1.19 (b), Corollary 1.20) do L,H,K satisfy?

Exercise 1.38: Let L = {0h1i2j3k : (h 6= i and j 6= k) or
(h 6= k and i 6= j)} be given. Construct a context-free
grammar for L and determine which of versions of the
Pumping Lemma L satisfies.

Exercise 1.39: Consider the linear grammar
({S}, {0,1,2,3}, {S → 00S|S1|S2|3},S) and construct for the
language L generated by the grammar the following: a
regular grammar for L and a regular expression for L.
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Grammars and Growth

For the following exercises, let f(n) be the number of words
w ∈ L with |w| < n. To answer the questions, either
construct a grammar witnessing that such an L exists or
prove that it cannot exist.

Exercise 1.40
Is there a context-free language L with f(n) = ⌊√n⌋?
Exercise 1.41
Is there a regular L with f(n) = n(n+ 1)/2?

Exercise 1.42
Is there a context-sensitive L with f(n) = nn, where 00 = 0?

Exercise 1.43
Is there a regular L with f(n) = (3n − 1)/2+ ⌊n/2⌋?
Exercise 1.44
Is there a regular L with f(n) = ⌊n/3⌋+ ⌊n/2⌋?
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