
Advanced Automata Theory 2
Finite Automata

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Advanced Automata Theory 2 Finite Automata – p. 1

Repetition 1

Union:
L ∪H = {u : u ∈ L ∨ u ∈ H};
{00,01,02} ∪ {01,11,21} = {00,01,02,11,21};
{0,00,000} ∪ {00,000,0000} = {0,00,000,0000}.

Intersection:
L ∩H = {u : u ∈ L ∧ u ∈ H};
{0,00,000} ∩ {00,000,0000} = {00,000};
{00,01,02} ∩ {01,11,21} = {01}.

Set Difference:
L−H = {u : u ∈ L ∧ u /∈ H};
{00,01,02} − {01,11,21} = {00,02}.

Concatenation:
000 · 1122 = 0001122;
L ·H = {v ·w : v ∈ L ∧w ∈ H};
{0,00} · {1,2} = {01,001,02,002}.

Advanced Automata Theory 2 Finite Automata – p. 2

Repetition 2

Definition
L∗ = {ε} ∪ L ∪ L · L ∪ L · L · L ∪ . . .
= {w1 ·w2 · . . . ·wn : n ≥ 0 ∧w1,w2, . . . ,wn ∈ L};

L+ = L ∪ L · L ∪ L · L · L ∪ . . .
= {w1 ·w2 · . . . ·wn : n > 0 ∧w1,w2, . . . ,wn ∈ L}.

Examples
∅∗ = {ε}.
Σ∗ is the set of all words over Σ.
{0}∗ = {ε,0,00,000,0000, . . .}.
{00,01,10,11}∗ are all binary words of even length.

ε ∈ L+ iff ε ∈ L.

Notation
Often w∗ in place of {w}∗;
Often w · L in place of {w} · L.

Advanced Automata Theory 2 Finite Automata – p. 3

Repetition 3

Grammar (N,Σ,P,S) describes how to generate the words
in a language; the language L of a grammar consists of all
the words in Σ∗ which can be generated.

N: Non-terminal alphabet, disjoint to Σ.

S ∈ N is the start symbol.

P consists of rules l → r with each rule having at least one
symbol of N in the word l.

v ⇒ w iff there are x,y and rule l → r in P with v = xly and
w = xry. v ⇒∗ w: several such steps.

The grammar with N = {S}, Σ = {0,1} and
P = {S → SS,S → 0,S → 1} permits to generate all
nonempty binary strings.

S ⇒ SS ⇒ SSS ⇒ 0SS ⇒ 01S ⇒ 011.

Advanced Automata Theory 2 Finite Automata – p. 4

Repetition 4

Grammar (N,Σ,P,S) generating L.

CH0: No restriction. Generates all recursively enumerable
languages.

CH1 (context-sensitive): Every rule is of the form
uAw → uvw with A ∈ N, u,v,w ∈ (N ∪Σ)∗, v 6= ε.
Easier formalisation: If l → r is a rule then |l| ≤ |r|, that is, r
is at least as long as l.
Special rule for both in the case that ε ∈ L.

CH2 (context-free): Every rule is of the form A → w with
A ∈ N and w ∈ (N ∪Σ)∗.

CH3 (regular): Every rule is of the form A → wB or A → w

with A,B ∈ N and w ∈ Σ∗.

L is called context-sensitive / context-free / regular iff it can
be generated by a grammar of respective type.

Advanced Automata Theory 2 Finite Automata – p. 5

Multiples of 3

Check whether decimal number a1a2 . . . an is a multiple of 3.

Easy Algorithm
Scan through the word from a1 to an.
Maintain memory s.
Initialise s = 0.
For m = 1,2, . . . ,n Do

Begin Let s = s+ am modulo 3 End.
If s = 0

Then a1a2 . . . an is multiple of 3
Else a1a2 . . . an is not a multiple of 3.

Quiz 2.2: Test the algorithm on 1, 20, 304, 2913, 49121,
391213, 2342342, 123454321, 1231231233, 12345654321.

Advanced Automata Theory 2 Finite Automata – p. 6

Finite Automaton

0start 1

2

0,3,6,9
1,4,7

2,5,8

2,5,8

0,3,6,9

1,4,7

1,4,7
2,5,8

0,3,6,9

Advanced Automata Theory 2 Finite Automata – p. 7

Automata Working Mod 7

Automaton ({0,1,2,3,4,5,6}, {0,1, . . . ,9}, δ,0, {0}) with δ
given as table.

q type δ(q, a) for a = 0 1 2 3 4 5 6 7 8 9

0 acc 0 1 2 3 4 5 6 0 1 2

1 rej 3 4 5 6 0 1 2 3 4 5

2 rej 6 0 1 2 3 4 5 6 0 1

3 rej 2 3 4 5 6 0 1 2 3 4

4 rej 5 6 0 1 2 3 4 5 6 0

5 rej 1 2 3 4 5 6 0 1 2 3

6 rej 4 5 6 0 1 2 3 4 5 6

δ(q, a) is the remainder of 10 ∗ q+ a by 7.
δ(0,568) = δ(δ(δ(0,5),6),8) = 1.

Advanced Automata Theory 2 Finite Automata – p. 8

Automaton as Program

function div257 begin

var a in {0,1,2,...,256};

var b in {0,1,2,3,4,5,6,7,8,9};

if exhausted(input) then reject;

read(b,input); a = b;

if b == 0 then

begin if exhausted(input)

then accept else reject end;

while not exhausted(input) do

begin read(b,input);

a = (a*10+b) mod 257 end;

if a == 0 then accept else reject end.

Automaton checks whether input is multiple of 257.
Automaton rejects leading 0s of decimal numbers.
Important: All variables can only store constantly many
pieces of information during the run of the automaton.

Advanced Automata Theory 2 Finite Automata – p. 9

Finite Automaton - Formal

A deterministic finite automaton (dfa) is given by a set Q of
states, the alphabet Σ used, the state-transition function δ
mapping Q×Σ to Q, the starting state s ∈ Q and a set
F ⊆ Q of final states.

On input a1a2 . . . an, one can associate to this input a
sequence q0q1q2 . . .qn of states of the finite automaton
with q0 = s and δ(qm, am+1) = qm+1 for all m < n. This
sequence is called the run of the dfa on this input.

A dfa accepts a word w iff its run on the input w ends in an
accepting state, that is, in a member of F. Otherwise the
dfa rejects the word w.

One can inductively extend δ to a function from Q×Σ∗ to Q

by letting δ(q, ε) = q and δ(q,wa) = δ(δ(q,w), a). So the dfa
accepts w iff δ(s,w) ∈ F.

Advanced Automata Theory 2 Finite Automata – p. 10

Exercise 2.6

Make a finite automaton for the program from the Slide 9.

Use Q = {s, z, r,q0,q1, . . . ,q256}.

Here s is the starting state, r is an always rejecting state
which is never left and z is the state which is reached after
reading the first 0. Furthermore, when the word is starting
with 1,2, . . . ,9, then the automaton should cycle between
the states q0,q1, . . . ,q256.

Describe when the automaton is in state qa and how the
states are updated on b. There is no need to write a table
for δ, it is sufficient to say how δ works in each relevant
case.

Advanced Automata Theory 2 Finite Automata – p. 11

Quiz 2.7

Let ({s, t}, {0,1,2}, δ, s, {t}) be a finite automaton with
δ(s, a) = t and δ(t, a) = s for all a ∈ {0,1,2}. Determine the
language of strings recognised by this automaton.

sstart t

0,1,2

0,1,2

Advanced Automata Theory 2 Finite Automata – p. 12

Regular Sets

Theorem 2.8
The following statements are equivalent for a language L.

(a) L is recognised by a deterministic finite automaton;

(b) L is generated by a regular expression;

(c) L is generated by a regular grammar.

Advanced Automata Theory 2 Finite Automata – p. 13

Block Pumping Lemma (Thm 2.9)

If L is a regular set then there is a constant k such that for
all strings u0,u1, . . . ,uk with u1,u2, . . . ,uk−1 not empty and
u0u1 . . .uk ∈ L there are i, j with 0 < i ≤ j < k and

(u0 . . .ui−1) · (ui . . .uj)
∗ · (uj+1 . . .uk) ⊆ L.

So if one splits a word in L into k+ 1 parts then one can
select some parts in the middle of the word and pump them.

Proof-Idea: Choose dfa and let k be two larger than number
of states. Let qh be the state after reading u0u1 . . .uh−1.
There are i, j+ 1 with qi = qj+1. Then after reading

u0 . . .ui−1, one is in state qi and can read as many copies
of ui . . .uj as one wants without changing the state. Thus

the state after reading the whole word is for all words in H

the same. So the selected blocks can be pumped up or
down.

Advanced Automata Theory 2 Finite Automata – p. 14

Block Pumping Lemma as a Game

Player Anke wants to show pumping condition is true;
Player Boris wants to show it is false.

1. Anke selects a pumping constant k ≥ 2.
2. Boris selects words u0,u1, . . . ,uk such that
u1,u2, . . . ,uk−1 are not empty and u0u1 . . .uk−1uk ∈ L;
if such words do not exist, Anke has won.
3. Anke chooses i, j with 1 ≤ i ≤ j ≤ k− 1.
4. Boris selects h ∈ N; note h = 0 possible.

5. If u0 . . .ui−1(ui . . .uj)
huj+1 . . .uk ∈ L

then Anke wins else Boris wins.

The language is block pumpable iff player Anke has a
winning strategy, that is, can play such that she always wins
the game; it is not block pumpable iff player Boris has a
winning strategy. The block pumping lemma says that all
regular sets are block pumpable, that is, for all regular sets
L, player Anke has a winning strategy.

Advanced Automata Theory 2 Finite Automata – p. 15

Example 2.10

{1,2}∗ · (0 · {1,2}∗ · 0 · {1,2}∗)∗: Satisfies Block Pumping
Lemma with k = 3.

If there are at least two inner blocks, either one of them
contains an even number of 0 or two neighbouring blocks
contain both an odd number of 0. Thus one can pump one
or two neighbouring inner blocks which have together an
even number of 0.

{u : u has a different number of 0s than 1s}: Does not
satisfy the Block Pumping Lemma with any k.

Consider 0k+11(k+1)!+k+1 and cut it in blocks such that each
inner block consists of a single 0. Thus the pump, whatever
it is, has h symbols with 1 ≤ h ≤ k and inserting (k+ 1)!/h
copies of the pump produces a word with as many 0 as 1.

Advanced Automata Theory 2 Finite Automata – p. 16

Sequence of Morse and Thue

Definition
An infinite sequence a0a1a2 . . . is square-free if and only if it
does not have a subword of the form ww and a0a1a2 . . . is
cube-free if and only if it does not have a subword of the
form www.

Theorem 2.12 [Morse and Thue]
The sequence given by a0 = 0, a2n = an, a2n+1 = 1− an is
an infinite binary cube-free sequence.
There is an infinite ternary square-free sequence.

There is no infinite binary square-free sequence: Such a
sequence cannot have the subwords 00 and 11, hence it
must alternate at every bit and start with 0101 or 1010.

Corollary
There are cube-free binary strings of every length.

Advanced Automata Theory 2 Finite Automata – p. 17

Block Pumping and Regularity

Theorem 2.11 [Ehrenfeucht, Parikh and Rozenberg]
If a language and its complement both satisfy the Block
Pumping Lemma then the language is regular.

Theorem 2.13
The following languages satisfy the Block Pumping Lemma
but are not regular:

• L = {w ∈ {0,1}∗ : w contains a cube or the length of w
is not a power of 10};

• H = {w ∈ {0,1,2}∗ : w contains a square or the length
of w is not a power of 10}.

The idea is based on the fact that when pumping, all the
long repetitions of the pump contain a square and a cube.
For small pumping, omitting the pump or repeating it once,
one uses the length-constraint to satisfy the Block Pumping
Lemma. Advanced Automata Theory 2 Finite Automata – p. 18

Quiz 2.14

Which of the following languages over Σ = {0,1,2,3}
satisfies the pumping-condition of the Block Pumping
Lemma:
(a) {00,111,22222}∗ ∩ {11,222,00000}∗∩

{22,000,11111}∗,
(b) {0m1n2o : m+ n+ o = 5555},
(c) {0m1n2o : m+ n = o+ 5555},
(d) {w : w contains more 1 than 0}?

Advanced Automata Theory 2 Finite Automata – p. 19

Exercises 2.15 and 2.16

Find the optimal block pumping constants for the following
languages.

Exercise 2.15
(a) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : at least one nonzero digit
a occurs in w at least three times};
(b) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : |w| = 255};
(c) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : the length |w| is not a
multiple of 6}.

Exercise 2.16
(a) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : w is a multiple of 25};
(b) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : w is not a multiple of 3};
(c) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : w is a multiple of 400}.

Advanced Automata Theory 2 Finite Automata – p. 20

Derivatives

Given a language L, let Lx = {y : x · y ∈ L} be the
derivative of L at x.

Theorem 2.19 [Myhill and Nerode].
A language L is regular iff L has only finitely many
derivatives.

If L has k derivatives, one can make a dfa by selecting
strings x1,x2, . . . ,xk representing the derivatives
Lx1

,Lx2
, . . . ,Lxk

and letting δ(xi, a) be the unique xj with

Lxj
= Lxia. A state xi is accepting iff ε ∈ Lxi

iff xi ∈ L.

Advanced Automata Theory 2 Finite Automata – p. 21

Example 2.21

Let L = 0∗1∗2∗. Now L0 = 0∗1∗2∗, L01 = 1∗2∗, L012 = 2∗

and L0121 = ∅. The corresponding automaton is the
following.

L0start L01

L012 L0121

0

1

2

1

2
0

2
0,1

0,1,2

Advanced Automata Theory 2 Finite Automata – p. 22

Example 2.22

Let L = {0n1n : n ∈ N}.

Then L0n = {0m1n+m : m ∈ N}.

The shortest string in L0n is 1n.

If n 6= n′ then L0n 6= L0n′ . Hence there are infinitely many

different derivatives.

The language L cannot be regular.

Advanced Automata Theory 2 Finite Automata – p. 23

Jaffe’s Pumping Lemma 2.23

Jaffe was the first to provide a form of the pumping lemma
which characterises the regular languages.

Lemma 2.23
A language L ⊆ Σ∗ is regular iff ∃k ∀x ∈ Σ∗∀y ∈ Σk ∃u,v,w
[v 6= ε and uvw = y and all h ∈ N satisfy Lxuvhw = Lxy].

Note that Lxuw = Lxy implies that every derivative of a

string of length k or more is equal to a shorter derivative.

Thus there are at most (|Σ|k − 1)/(|Σ| − 1) in the case
|Σ| > 1 and k in the case that |Σ| = 1 many derivatives and
therefore the language is regular by the Theorem of Myhill
and Nerode. The other direction is proven by looking at the
dfas.

Quiz. Jaffe’s Pumping Lemma as formulated here pumps at
the word end. Does the same lemma work when one
requires pumping at the word start? Advanced Automata Theory 2 Finite Automata – p. 24

Jaffe’s Pumping Lemma as a Game

Player Anke wants to show pumping condition is true;
Player Boris wants to show it is false.

1. Anke selects a pumping constant k.
2. Boris selects words x,y with |y| = k.
3. Anke splits word y into three parts u,v,w with y = uvw

and |v| ≥ 1.
4. Boris selects h ∈ N and word z.
5. If L(xuvhwz) = L(xyz) then Anke wins else Boris wins.

Player Anke has a winning strategy iff the pumping
condition of Jaffe’s Pumping Lemma is satisfied iff L is
regular. Note that above quantification over z allows to
check the derivative condition; that is, Lxy 6= Lxuvhw iff

player Boris can supply a z with L(xyz) 6= L(xuvhwz).

Advanced Automata Theory 2 Finite Automata – p. 25

Exercises 2.24 and 2.25

Exercise 2.24: Assume that the alphabet Σ has 5000

elements. Define a language L ⊆ Σ∗ such that Jaffe’s
Matching Pumping Lemma is satisfied with constant k = 3

while every deterministic finite automaton recognising L

has more than 5000 states. Prove your answer.

Exercise 2.25: Find a language which needs for Jaffe’s
Matching Pumping Lemma at least constant k = 100 and
can be recognised by a deterministic finite automaton with
100 states. Prove your answer.

Advanced Automata Theory 2 Finite Automata – p. 26

Corollary 2.26

Jaffe’s Pumping Lemma for members of L
If L is regular then there is a constant k such that for all

x ∈ Σ∗ and y ∈ Σk with xy ∈ L there are u,v,w with
y = uvw and v 6= ε such that, for all h ∈ N, Lxuvhw = Lxy.

Exercise 2.27: Show that L consisting of ε and all words

0n1m2k3 with n = m or k = 0 is context-free, not regular
and satisfies Corollary 2.26.

Exercise 2.28: If L satisfies Corollary 2.26 and H is regular,
does L ·H satisfy Corollary 2.26? Prove the answer.

Exercise 2.29: Call L prefix-free iff vw ∈ L and w 6= ε

always implies v /∈ L. If L is prefix-free and Lmi satisfies
Theorem 1.19 (a), does L then satisfy Corollary 2.26?

Advanced Automata Theory 2 Finite Automata – p. 27

Example 2.31

Assume that Σ has n elements, n > 0. Let L consist of all
strings which contain at least one symbol twice.

If ε ∈ Lx then Lx = Σ∗.

If ε /∈ Lx then Lx ∩Σ = {a : a occurs in x}.

There are 2n + 1 many derivatives of this type; for each
subset of Σ one derivative with Lx ∩Σ being that set
plus Σ∗.

These are also all the derivatives which exist. A dfa
recognising L needs at least 2n + 1 states.

Advanced Automata Theory 2 Finite Automata – p. 28

Non-Deterministic Finite Automaton

If (Q,Σ, δ, s,F) is a non-deterministic finite automaton (nfa)
then δ is a relation and not a function, that is, for q ∈ Q and
a ∈ Σ there can be several p ∈ Q with (q, a,p) ∈ δ.

A run of an nfa on a word a1a2 . . . an is a sequence
q0q1q2 . . .qn ∈ Q∗ such that q0 = s and
(qm, am+1, am+1) ∈ δ for all m < n.

If qn ∈ F then the run is “accepting” else the run is
“rejecting”.

The nfa accepts a word w iff it has an accepting run on w;
this is also the case if there exist other rejecting runs.

Advanced Automata Theory 2 Finite Automata – p. 29

Büchi’s Powerset Construction

Theorem 2.34
If L can be recognised by an nfa with m states then L can
be recognised by a dfa with 2m states.

Construction
Given (Q,Σ, δ, s,F), let Pow(Q) be the set of all subsets of
Q. For p̃ ⊆ Q, let

∆(p̃, a) = {q ∈ Q : ∃p ∈ p̃ [(p, a,q) ∈ δ]}.

The dfa (Pow(Q),Σ,∆, {s}, {p̃ : p̃ ∩ F 6= ∅}) recognises the
same language L.

Idea of Verification
Show that both automata have same acceptance behaviour
on words a1a2 . . . an by induction over word length.

Advanced Automata Theory 2 Finite Automata – p. 30

Example 2.35

Consider nfa ({s,q}, {0,1}, δ, s, {q}) with δ(s,0) = {s,q},
δ(s,1) = {s} and δ(q, a) = ∅ for all a ∈ {0,1}.

Then the corresponding dfa has the four states
∅, {s}, {q}, {s,q} where {q}, {s,q} are the final states and
{s} is the initial state. The transition function ∆ of the dfa is
given as

∆(∅, a) = ∅ for a ∈ {0,1},
∆({s},0) = {s,q}, ∆({s},1) = {s},
∆({q}, a) = ∅ for a ∈ {0,1},
∆({s,q},0) = {s,q}, ∆({s,q},1) = {s}.

This automaton can be further optimised: The states ∅ and
{q} are never reached, hence they can be omitted from the
dfa.

Advanced Automata Theory 2 Finite Automata – p. 31

Exponential Bound

The language from Example 2.31 has an nfa with n+ 2

states while a dfa needs 2n + 1 states; here for n = 4.

∅start

{1}{0} {2} {3}

#

0,1,2,3

0 1 2

3

1,2,3 0,2,3 0,1,3 0,1,2

0,1,2,3

0 1 2

3

Advanced Automata Theory 2 Finite Automata – p. 32

Exercises 2.36 and 2.37

Exercise 2.36
Consider the language {0,1}∗ · 0 · {0,1}n−1:
(a) Show that a dfa recognising it needs at least 2n states;
(b) Make an nfa recognising it with at most n+ 1 states;
(c) Made a dfa recognising it with exactly 2n states.

Exercise 2.37
Find a characterisation when a regular language L is
recognised by an nfa only having accepting states.
Examples of such languages are {0,1}∗, 0∗1∗2∗ and
{1,01,001}∗ · 0∗. The language {00,11}∗ is not a language
of this type.

Advanced Automata Theory 2 Finite Automata – p. 33

Set of Initial States

Assume that (Q,Σ, δ, I,F) has a set I of possible initial
states and an accepting run is any run starting in one
member of I and finishing in one member of F.

Exercise 2.39
Consider L = {w : some a ∈ Σ does not occur in w}.

Show that there is an nfa with an initial set of states which
recognises L using |Σ| states.

Show that every complete dfa recognising L needs 2|Σ|

states; here complete means that the dfa never gets stuck.

Advanced Automata Theory 2 Finite Automata – p. 34

Regular Grammar to NFA

Given a regular grammar over alphabet Σ.

While there is A → w with w ∈ Σ+, replace rule by
A → wC,C → ε for new non-terminal C.
While there is A → vwB with v,w ∈ Σ+, replace rule by
A → vC,C → wB for new non-terminal C.
Fix now the so normalised grammar as (N,Σ,P,S).

NFA is given as (N,Σ, δ,S,F) with

δ(A, a) = {B ∈ N : A ⇒∗ aB};

F = {B ∈ N : B ⇒∗ ε}.

The NFA recognises the same language which the given
grammar generates.

Advanced Automata Theory 2 Finite Automata – p. 35

Exercises 2.44 and 2.45

Exercise 2.44. Let the regular grammar
({S,T}, {0,1,2},P,S) with the rules P being S → 01T|20S,
T → 01|20S|12T. Construct a non-deterministic finite
automaton recognising the language generated by this
grammar.

Exercise 2.45. Consider the regular grammar
({S}, {0,1,2,3,4,5,6,7,8,9},P,S) where the rules in P are
all rules of the form S → aaaaaS for some digit a and the
rule S → ε and let L be the language generated by this
grammar. What is the minimum number of states of a
non-deterministic finite automaton recognising this
language L? What is the trade-off of the nfa compared to
the minimal dfa for the same language L? Prove the
answers.

Advanced Automata Theory 2 Finite Automata – p. 36

Characterisation of Regular Sets

Corollary 2.46
The following conditions are equivalent for a language L:

(a) L is generated by a regular expression;

(b) L is generated by a regular grammar;

(c) L is recognised by a dfa;

(d) L is recognised by a nfa;

(e) L and Σ∗ − L satisfy the Block Pumping Lemma;

(f) L satisfies Jaffe’s Matching Pumping Lemma;

(g) L has only finitely many derivatives (Theorem of Myhill
and Nerode).

Advanced Automata Theory 2 Finite Automata – p. 37

Sizes of Expressions versus NFAs

Example 2.47. L =
⋃

m<n({0,1}
m · {1} · {0,1}∗ · {10m}) can

be written down in O(n2) symbols as a regular expression
but the corresponding dfa has at least 2n states: if
x = a0a1 . . . an−1 then 10m ∈ Lx iff x10m ∈ L iff
a0a1 . . . an−110

m ∈ L iff am = 1. Thus for x = a0a1 . . . an−1

and y = b0b1 . . .bn−1, it holds that Lx = Ly iff

∀m < n [10m ∈ Lx ⇔ 10m ∈ Ly] iff ∀m < n [am = bm] iff
x = y. Thus the language L has at least 2n derivatives and
therefore a dfa for L needs at least 2n states.

Theorem 2.48. Ln = {0p1}+ ∩ {0p2}+ ∩ . . . ∩ {0pn}+ has a
regular expression which can be written down with

approximately O(n2 log(n)) symbols if one can use
intersection. However, every nfa recognising Ln has at least
2n states and every regular expression for Ln only using
union, concatenation and Kleene star needs at least 2n

symbols.
Advanced Automata Theory 2 Finite Automata – p. 38

Exercises 2.50 and 2.51

Exercise 2.50
Assume that a regular expression uses lists of finite sets,
Kleene star, union and concatenation and assume that this
expression generates at least two words. Prove that the
second-shortest word of the language generated by σ is at
most as long as σ. Either prove it by structural induction or
by an assumption of contradiction as in the proof before;
both methods are nearly equivalent.

Exercise 2.51
Is Exercise 2.50 also true if one permits Kleene plus in
addition to Kleene star in the regular expressions? Either
provide a counter example or adjust the proof. In the case
that it is not true for the bound |σ|, is it true for the bound
2|σ|? Again prove that bound or provide a further counter
example.

Advanced Automata Theory 2 Finite Automata – p. 39

Example 2.52

Ehrenfeucht and Zeiger’s Exponential Gap
Let Σ = {1,2, . . . ,n} × {1,2, . . . ,n}. A complete dfa with
n+ 1 states recognises the set of all sequences of the form
(1, a1), (a1, a2), (a2, a3), . . . , (am−1, am) for any numbers
a1, a2, . . . , am. Ehrenfeucht and Zeiger showed that any

regular expression for this language needs at least 2n−1

symbols.
If one would permit intersection, this gap would not be there
for this example, as one could write

({(a,b) · (b, c) : a,b, c ∈ {1,2, . . . ,n}}∗ · (ε ∪ {(a,b) :
a,b ∈ {1,2, . . . ,n}})) ∩
({(a,b) : a,b ∈ {1,2, . . . ,n}} · {(a,b) · (b, c) : a,b, c ∈
{1,2, . . . ,n}}∗ · (ε ∪ {(a,b) : a,b ∈ {1,2, . . . ,n}}))

to obtain the desired expression whose size is polynomial
in n.

Advanced Automata Theory 2 Finite Automata – p. 40

Exercises 2.53-2.54

Exercise 2.53.
Assume that an nfa of k states recognises a language L.
Show that the language does then satisfy the Block
Pumping Lemma with constant k+ 1, that is, given any
words u0,u1, . . . ,uk,uk+1 such that their concatenation
u0u1 . . .ukuk+1 is in L then there are i, j with
0 < i < j ≤ k+ 1 and

u0u1 . . .ui−1(uiui+1 . . .uj−1)
∗ujuj+1 . . .uk+1 ⊆ L.

Exercise 2.54.
Given numbers n,m with n > m > 2, provide an example of
a regular language where the Block pumping constant is
exactly m and where every nfa needs at least n states.

Advanced Automata Theory 2 Finite Automata – p. 41

Find Small NFAs

Let n be the size of the alphabet Σ and assume n ≥ 2

(2.59: n ≥ 3). Determine size of the smallest dfa in
dependence of n and construct good small dfa and nfa for
the smallest allowed n.

Exercise 2.55. H = {vawa : v,w ∈ Σ∗, a ∈ Σ}.

Exercise 2.56. I = {ua : u ∈ (Σ− {a})∗, a ∈ Σ}.

Exercise 2.57. J = {abuc : a,b ∈ Σ,u ∈ Σ∗, c ∈ {a,b}}.

Exercise 2.58. K = {avbwc : a,b, c ∈ Σ,v,w ∈ Σ∗,
c /∈ {a,b}}.

Exercise 2.59. L = {w : ∃ a,b ∈ Σ [w ∈ {a,b}∗]}.

Advanced Automata Theory 2 Finite Automata – p. 42

Jaffe’s Pumping Lemma

For these exercises, Σ = {0}.

Exercise 2.60
Show that an nfa for {0000000}∗ ∪ {00000000}∗ needs only
16 states while Jaffe’s pumping lemma has constant 56.

Exercise 2.61
Generalise the idea of Exercise 2.60 to show that there is a
family Ln of languages such that an nfa for Ln can be

constructed with O(n3) states while Jaffe’s pumping lemma
needs a constant of at least 2n. Provide the family of the Ln

and explain why it satisfies the corresponding bounds.

Exercise 2.62
Determine the constant of Jaffe’s pumping lemma and
determine the sizes of the minimal nfa and dfa for
({00} · {00000}) ∪ ({00}∗ ∩ {000}∗).

Advanced Automata Theory 2 Finite Automata – p. 43

	Repetition 1
	Repetition 2
	Repetition 3
	Repetition 4
	Multiples of 3
	Finite Automaton
	Automata Working Mod 7
	Automaton as Program
	Finite Automaton - Formal
	Exercise 2.6
	Quiz 2.7
	Regular Sets
	Block Pumping Lemma (Thm 2.9)
	Block Pumping Lemma as a Game
	Example 2.10
	Sequence of Morse and Thue
	Block Pumping and Regularity
	Quiz 2.14
	Exercises 2.15 and 2.16
	Derivatives
	Example 2.21
	Example 2.22
	Jaffe's Pumping Lemma 2.23
	Jaffe's Pumping Lemma as a Game
	Exercises 2.24 and 2.25
	Corollary 2.26
	Example 2.31
	Non-Deterministic Finite Automaton
	B"uchi's Powerset Construction
	Example 2.35
	Exponential Bound
	Exercises 2.36 and 2.37
	Set of Initial States
	Regular Grammar to NFA
	Exercises 2.44 and 2.45
	Characterisation of Regular Sets
	Sizes of Expressions versus NFAs
	Exercises 2.50 and 2.51
	Example 2.52
	Exercises 2.53-2.54
	Find Small NFAs
	Jaffe's Pumping Lemma

