
Advanced Automata Theory 3
Combining Languages

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Advanced Automata Theory 3 Combining Languages – p. 1

Repetition 1

0start 1

2

0,3,6,9
1,4,7

2,5,8

2,5,8

0,3,6,9

1,4,7

1,4,7
2,5,8

0,3,6,9

Advanced Automata Theory 3 Combining Languages – p. 2

Repetition 2

Theorem
Let L be any language (subset of Σ∗).
L is generated by a regular grammar ⇔
L is generated by a regular expression ⇔
L is recognised by a dfa ⇔
L is recognised by an nfa ⇒
L satisfies the Block Pumping Lemma ⇒
L satisfies the Pumping Lemma with bound ⇒
L satisfies the Pumping Lemma without bound.

The last three ⇒ cannot be inverted.

{w : w does not start with 010 or w has length n2 for some
n} satisfies the Pumping Lemma with bound but not the
Block Pumping Lemma.

{w : |w| is not a power of 2} satisfies the Pumping Lemma
without bound but not the one with bound.

Advanced Automata Theory 3 Combining Languages – p. 3

Repetition 3

If L is a regular set then there is a constant k such that for
all strings u0,u1, . . . ,uk with u1,u2, . . . ,uk−1 not empty and
u0u1 . . .uk ∈ L there are i, j with 0 < i ≤ j < k and

(u0u1 . . .ui−1) · (uiui+1 . . .uj)
∗ · (uj+1uj+2 . . .uk) ⊆ L.

So if one splits a word in L into k+ 1 parts then one can
select some parts in the middle of the word which can be
pumped.

Example: {1,2}∗ · {0} · {1,2}∗ · {0} · {1,2}∗ satisfies the
Block Pumping Lemma with k = 4; splitting a word in this
language into u0u1u2u3u4, either u1 or u2 or u3 does not
contain 0 and can be pumped.

Advanced Automata Theory 3 Combining Languages – p. 4

Repetition 4

Any nfa with n states can be replaced by a complete dfa
with 2n states. Alternatively one can use an incomplete dfa,
which might reject input due to δ being undefined on some
pair (q, a); such a dfa can be made using 2n − 1 states.

The bound 2n for the size of the dfa is tight (except for the
case that the alphabet is unary, say Σ = {0}).

Advanced Automata Theory 3 Combining Languages – p. 5

Product Automata

Let (Q1,Σ, δ1, s1,F1) and (Q2,Σ, δ2, s2,F2) be dfas which
recognise L1 and L2, respectively.

Consider (Q1 ×Q2,Σ, δ1 × δ2, (s1, s2),F) with
(δ1 × δ2)((q1,q2), a) = (δ1(q1, a), δ2(q2, a)). This automaton
is called a product automaton and one can choose F such
that it recognises the union or intersection or difference of
the respective languages.

Union: F = F1 ×Q2 ∪Q1 × F2;
Intersection: F = F1 × F2 = F1 ×Q2 ∩Q1 × F2;
Difference: F = F1 × (Q2 − F2);
Symmetric Difference: F = F1× (Q2−F2)∪ (Q1−F1)×F2.

Advanced Automata Theory 3 Combining Languages – p. 6

Example

Let the first automaton recognise the language of words in
{0,1,2} with an even number of 1s and the second
automaton with an even number of 2s. Both automata have
the accepting and starting state s and a rejection state t;
they change between s and t whenever they see 1 or 2,
respectively. Example of a product automaton.

(s, s)start (s, t)

(t, s) (t, t)

0 0

0 0

1

2

1

2 2

1

2

1

Advanced Automata Theory 3 Combining Languages – p. 7

Kleene Star

Assume (Q,Σ, δ, s,F) is an nfa recognising L. Now L∗ is
recognised by (Q ∪ {s′},Σ,∆, s′, {s′}) where
∆ = δ ∪ {(s′, a,p) : (s, a,p) ∈ δ} ∪ {(p, a, s) : (p, a,q) ∈ δ for
some q ∈ F} ∪ {(s′, a, s′) : a ∈ L}.

sstart

t

s′start s

t

0

1

1 0

1

10

0

1

1

1

10

Advanced Automata Theory 3 Combining Languages – p. 8

Concatenation

Assume (Q1,Σ, δ1, s1,F1) and (Q2,Σ, δ2, s2,F2) are nfas
recognising L1 and L2 with Q1 ∩Q2 = ∅ and assume
ε /∈ L2. Now (Q1 ∪Q2,Σ, δ, s1,F2) recognises L1 · L2 where
(p, a,q) ∈ δ whenever (p, a,q) ∈ δ1 ∪ δ2 or (p ∈ F1 and
(s2, a,q) ∈ δ2).

If L2 contains ε then one can consider the union of L1 and
L1 · (L2 − {ε}).

Advanced Automata Theory 3 Combining Languages – p. 9

Example

L1 · L2 with L1 = {00,11}∗ and L2 = 2∗1+0+.

s1start

r1

q1 s2

q2

r2

11

0 0
2

1

0

1

0

2

1

0

Advanced Automata Theory 3 Combining Languages – p. 10

Exercise 3.3

The previous slides give upper bounds on the size of the
dfa for a union, intersection, difference and symmetric

difference as n2 states, provided that the original two dfas
have at most n states.

Give the corresponding bounds for nfas: If L and H are
recognised by nfas having at most n states each, how many
states does one need at most for an nfa recognising (a) the
union L ∪H, (b) the intersection L ∩H, (c) the difference
L−H and (d) the symmetric difference (L−H) ∪ (H− L)?

Give the bounds in terms of “linear”, “quadratic” and
“exponential”. Explain the bounds.

Advanced Automata Theory 3 Combining Languages – p. 11

Exercises Combining DFAs and NFAs

Exercise 3.4
Let Σ = {0,1,2,3,4,5,6,7,8,9}. Construct a (not
necessarily complete) dfa recognising the language
Σ · {aa : a ∈ Σ}∗ ∩ {aaaaa : a ∈ Σ}∗. It is not needed to give
a full table for the dfa, but a general schema and an
explanation how it works.

Exercise 3.5
Make an nfa for the intersection of the following languages:
{0,1,2}∗ · {001} · {0,1,2}∗ · {001} · {0,1,2}∗;
{001,0001,2}∗; {0,1,2}∗ · {00120001} · {0,1,2}∗.

Exercise 3.6
Make an nfa for the union L0 ∪ L1 ∪ L2 with
La = {0,1,2}∗ · {aa} · {0,1,2}∗ · {aa} · {0,1,2}∗ for
a ∈ {0,1,2}.

Advanced Automata Theory 3 Combining Languages – p. 12

Exercise 3.7

Consider two context-free grammars with terminals Σ,
disjoint non-terminals N1 and N2, start symbols S1 ∈ N1

and S2 ∈ N2 and rule sets P1 and P2 which generate L and
H, respectively. Explain how to form from these a new
context-free grammar for
(a) L ∪H,
(b) L ·H and
(c) L∗.

Write down the context-free grammars for {0n12n : n ∈ N}

and {0n13n : n ∈ N} and form the grammars for the the
union, concatenation and star explicitly.

Advanced Automata Theory 3 Combining Languages – p. 13

Example 3.8

The language {0}∗ · {1n2n : n ∈ N} is context-free.

Grammar ({S,T}, {0,1,2},P,S) with P be given by
S → 0S|T|ε and T → 1T2|ε.

The language {0n1n : n ∈ N} · 2∗ is context-free.

L = {0n1n2n : n ∈ N} is not context-free but the intersection
of the two above.

The complement of L is the union of {0n1m2k : n < k},

{0n1m2k : n > k}, {0n1m2k : m < k}, {0n1m2k : m > k},

{0n1m2k : n < m}, {0n1m2k : n > m} and
{0,1,2}∗ · {10,20,21} · {0,1,2}∗.

Each of these languages is context-free. Grammar for the
first of them: S → 0S2|S2|T2,T → 1T|ε. The union is also
context-free. Hence L has a context-free complement.

Advanced Automata Theory 3 Combining Languages – p. 14

Context-Free Intersects Regular

Theorem 3.9.
If L is context-free and H is regular then L ∩H is
context-free.

Construction.
Let (N,Σ,P,S) be a context-free grammar generating L

with every rule being either A → w or A → BC with
A,B,C ∈ N and w ∈ Σ∗.

Let (Q,Σ, δ, s,F) be a dfa recognising H.

Let S′ /∈ Q×N×Q and make the following new grammar
(Q×N×Q ∪ {S′},Σ,R,S′) with rules R:
S′ → (s,S,q) for all q ∈ F;
(p,A,q) → (p,B, r)(r,C,q) for all rules A → BC in P and
all p,q, r ∈ Q;
(p,A,q) → w for all rules A → w in P with δ(p,w) = q.

Advanced Automata Theory 3 Combining Languages – p. 15

Exercises 3.10 and 3.11

Construct context-free grammars for the following
intersections between the context-free set L of all words
which contain as many 0 as 1 and a regular set. Here a
grammar for L is

({S}, {0,1}, {S → SS|ε|0S1|1S0},S).

Exercise 3.10
Give a context-free grammar for L ∩ {00 · 1+}∗;

Exercise 3.11
Give a context-free grammar for L ∩ 0∗1∗0∗1∗.

Advanced Automata Theory 3 Combining Languages – p. 16

Context-Sensitive and Concatenation

Let L1 and L2 be context-sensitive languages not
containing ε. Let (N1,Σ,P1,S1) and (N2,Σ,P2,S2) be two
context-sensitive grammars generating L1 and L2,
respectively, where N1 ∩N2 = ∅ and where each rule l → r

satisfies |l| ≤ |r| and l ∈ N+
e for the respective e ∈ {1,2}.

Let S /∈ N1 ∪N2 ∪Σ.

Now (N1 ∪N2 ∪ {S},Σ,P1 ∪P2 ∪ {S → S1S2},S) generates
L1 · L2.

If v ∈ L1 and w ∈ L2 then S ⇒ S1S2 ⇒∗ vS2 ⇒∗ vw.
Furthermore, the first rule has to be S ⇒ S1S2 and from
then onwards, each rule has on the left side either l ∈ N+

1

so that it applies to the part generated from S1 or it has in

the left side l ∈ N+
2 so that l is in the part of the word

generated from S2. Hence every intermediate word z in the
derivation is of the form xy = z with S1 ⇒∗ x and S2 ⇒∗ y.

Advanced Automata Theory 3 Combining Languages – p. 17

Context-Sensitive and Kleene-star

Let (N1,Σ,P1,S1) and (N2,Σ,P2,S2) be context-sensitive
grammars for L− {ε} with N1 ∩N2 = ∅ and all rules l → r

satisfying |l| ≤ |r| and l ∈ N+
1 or l ∈ N+

2 , respectively. Let

S,S′ be symbols not in N1 ∪N2 ∪Σ.

Now consider (N1 ∪N2 ∪ {S,S′},Σ,P,S) where P contains
the rules S → S′|ε and S′ → S1S2S

′ |S1S2 |S1 plus all rules
in P1 ∪P2.

This grammar generates L∗.

Exercise 3.14.
Construct a grammar for {0n1n2n : n > 0}+. Try to keep it
small (use more intuition than algorithms).

Advanced Automata Theory 3 Combining Languages – p. 18

Context-Sensitive and Intersection

Theorem.
The intersection of two context-sensitive languages is
context-sensitive.

Construction.
Let (Nk,Σ,Pk,S) be grammars for L1 and L2. Now make a
new non-terminal set N = (N1 ∪Σ ∪ {#})× (N2 ∪Σ ∪ {#})

with start symbol
(

S
S

)

and following types of rules:

(a) Rules to generate and manage space;
(b) Rules to generate a word v in the upper row;
(c) Rules to generate a word w in the lower row;
(d) Rules to convert a string from N into v provided that the
upper components and lower components of the string are
both v.

Advanced Automata Theory 3 Combining Languages – p. 19

Type of Rules

(a):
(

S
S

)

→
(

S
S

)(

#
#

)

for producing space;
(

A
B

)(

#
C

)

→
(

#
B

)(

A
C

)

and
(

A
C

)(

B
#

)

→
(

A
#

)(

B
C

)

for space management.

(b) and (c): For each rule in P1, for example, for
AB → CDE ∈ P1, and all symbols F,G,H, . . . in
N2 ∪Σ ∪ {#}, one has the corresponding rule
(

A
F

)(

B
G

)(

#
H

)

→
(

C
F

)(

D
G

)(

E
H

)

. So rules in P1 are simulated in

the upper half and rules in P2 are simulated in the lower
half and they use up # if the left side is shorter than the
right one.

(d): Each rule
(

a
a

)

→ a for a ∈ Σ is there to convert a

matching pair
(

a
a

)

from Σ×Σ (a nonterminal) to a (a

terminal).

Advanced Automata Theory 3 Combining Languages – p. 20

Grammar for 0n1n2n with n > 0

Grammar L1: S → S2|0S1|01.
Grammar L2: S → 0S|1S2|12.

Grammar for Intersection.
A,B,C stand for any members of {S,0,1,2,#}.

N = {
(

A
B

)

: A,B ∈ {S,0,1,2,#}}.

Rules:
(

S
S

)

→
(

S
S

)(

#
#

)

;
(

A
B

)(

#
C

)

→
(

#
B

)(

A
C

)

;
(

A
C

)(

B
#

)

→
(

A
#

)(

B
C

)

;
(

S
A

)(

#
B

)

→
(

S
A

)(

2
B

)

;
(

S
A

)(

#
B

)(

#
C

)

→
(

0
A

)(

S
B

)(

1
C

)

;
(

S
A

)(

#
B

)

→
(

0
A

)(

1
B

)

;
(

A
S

)(

B
#

)

→
(

A
0

)(

B
S

)

;
(

A
S

)(

B
#

)(

C
#

)

→
(

A
1

)(

B
S

)(

C
2

)

;
(

A
S

)(

B
#

)

→
(

A
1

)(

B
2

)

;
(

0
0

)

→ 0;
(

1
1

)

→ 1;
(

2
2

)

→ 2.

Advanced Automata Theory 3 Combining Languages – p. 21

Deriving 001122

(

S
S

)

⇒∗
(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)

⇒
(

S
S

)(

2
#

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)

⇒∗

(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)(

2
#

)

⇒
(

S
S

)(

2
#

)(

#
#

)(

#
#

)(

#
#

)(

2
#

)

⇒∗

(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

0
S

)(

S
#

)(

1
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

0
S

)(

S
#

)(

#
#

)(

1
#

)(

2
#

)(

2
#

)

⇒
(

0
S

)(

0
#

)(

1
#

)(

1
#

)(

2
#

)(

2
#

)

⇒
(

0
0

)(

0
S

)(

1
#

)(

1
#

)(

2
#

)(

2
#

)

⇒
(

0
0

)(

0
0

)(

1
S

)(

1
#

)(

2
#

)(

2
#

)

⇒
(

0
0

)(

0
0

)(

1
1

)(

1
S

)(

2
2

)(

2
#

)

⇒
(

0
0

)(

0
0

)(

1
1

)(

1
S

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

0
0

)(

1
1

)(

1
1

)(

2
2

)(

2
2

)

⇒∗ 001122.

Advanced Automata Theory 3 Combining Languages – p. 22

Exercise 3.17

Consider the language L = {00} · {0,1,2,3}∗ ∪ {1,2,3} ·
{0,1,2,3}∗ ∪ {0,1,2,3}∗ · {02,03,13,10,20,30,21,31,32} ·
{0,1,2,3}∗ ∪ {ε} ∪ {01n2n3n : n ∈ N}.

Which versions of the Pumping Lemma does it satisfy:

• Regular Pumping Lemma (with / without bounds);

• Context-Free Pumping Lemma (with / without bounds);

• Block Pumping Lemma (for regular languages)?

Determine the exact position of L in the Chomsky hierarchy.

Advanced Automata Theory 3 Combining Languages – p. 23

Mirror Images

Define (a1a2 . . . an)
mi = an . . . a2a1 as the mirror image of a

string. A word w with w = wmi is called a palindrome.

It follows from the definition of context-free and
context-sensitive, that if L is context-free / context-sensitive

so is Lmi. This can be achieved by replacing every rule

l → r by lmi → rmi.

For example, the mirror image of the language of the words

0n13n+3 is given by language of the words 13n+30n. While
L is generated by a context-free grammar with one

non-terminal S and rules S → 0S111 |111, Lmi is then
generated by a similar grammar with the rules
S → 111S0 |111.

Advanced Automata Theory 3 Combining Languages – p. 24

Exercise 3.18

Recall that xmi is the mirror image of x, so

(01001)mi = 10010. Furthermore, Lmi = {xmi : x ∈ L}.
Show the following two statements:
(a) If an nfa with n states recognises L then there is also an

nfa with up to n+ 1 states recognising Lmi.
(b) Find the smallest nfas which recognise L = 0∗(1∗ ∪ 2∗)

as well as Lmi.

Advanced Automata Theory 3 Combining Languages – p. 25

Palindromes

The members of the language {x ∈ Σ∗ : x = xmi} are called
palindromes. A palindrome is a word or phrase which looks
the same from both directions.

An example is the German name “OTTO”; furthermore,
when ignoring spaces and punctuation marks, a famous
palindrome is the phrase “A man, a plan, a canal: Panama.”
This palindrome is due to Leigh Mercer (1893-1977).

The grammar with the rules S → aSa|aa|a|ε with a ranging
over all members of Σ generates all palindromes; so for
Σ = {0,1,2} the rules of the grammar would be
S → 0S0 |1S1 |2S2 |00 |11 |22 |0 |1 |2 | ε.

The set of palindromes is not regular.

Advanced Automata Theory 3 Combining Languages – p. 26

Exercises 3.20-3.22

Exercise 3.20
Let w ∈ {0,1,2,3,4,5,6,7,8,9}∗ be a palindrome of even
length and n be its decimal value. Prove that n is a multiple
of 11. Note that it is essential that the length is even, as for
odd length there are counter examples (like 111 and 202).

Exercise 3.21
Given a context-free grammar for a language L, is there

also one for L ∩ Lmi? If so, explain how to construct the
grammar; if not, provide a counter example where L is

context-free but L ∩ Lmi is not.

Exercise 3.22
Is the following statement true or false? Prove your answer:

Given a language L, the language L ∩ Lmi equals to
{w ∈ L : w is a palindrome}.

Advanced Automata Theory 3 Combining Languages – p. 27

Pumping Lemmas

Definition 3.24
Let PUMPsw contain all languages whose large members
can be pumped somewhere (satisfy Corollary 1.20).
Let PUMPst contain all languages whose large members
can be pumped near start (satisfy Theorem 1.19 (a)).
Let PUMPbl contain all languages which satisfy the block
pumping lemma (Theorem 2.9).

Proposition 3.25
The classes PUMPsw and PUMPst are closed under
union, concatenation, Kleene star and Kleene Plus.

For PUMPst this was proven in Theorem 1.19 (a) and the
proof also works with minor modifications for PUMPsw.

Advanced Automata Theory 3 Combining Languages – p. 28

Example 3.26

Let L = {0h1k2m3n : h = 0 or k = m = n} and
H = {00} · {1}∗ · {2}∗ · {3}∗.

Both languages are in PUMPsw and PUMPst and H is
regular. For pumping, one just pumps the first symbol. If it
is 0 then it can be multiplied or removed; in the case that all
0 get removed, one has the regular language
{1}∗ · {2}∗ · {3}∗; if the first symbol is in {1,2,3} then the
word is in {1}∗ · {2}∗ · {3}∗ and pumping the first letter does
not change the membership in the language.

The intersection of L and H is the language

{021n2n3n : n ∈ N} which does not satisfy any of the
pumping lemma’s given in class; in particular
(L ∩H) /∈ PUMPsw and (L ∩H) /∈ PUMPst.

Advanced Automata Theory 3 Combining Languages – p. 29

More Results

Proposition 3.27

If L is in PUMPsw or PUMPbl, then also Lmi is in the
respective class.

Example
The language {u ∈ {0,1,2}∗ : u contains a square} is in
PUMPsw and PUMPst, but its complement is not.

Exercise 3.28
Show that PUMPbl is closed under union and
concatenation. Furthermore, show that the language
L = {v3w4 : v,w ∈ {0,1,2}∗ and if v,w are both
square-free then |v| 6= |w| or v = w} is in PUMPbl while

L+ and L∗ are not.

Theorem 3.29
If L,H are in PUMPbl so is L ∩H.

Advanced Automata Theory 3 Combining Languages – p. 30

Proof of Theorem 3.29

Assume that L,H are block pumpable with constant c. Let
c′ be so large that if one colours the pairs of a set of c′

elements with two colours then this set has a
monochromatic subset with at least c elements.

Let a word x ∈ L ∩H with a set I of c′ breakpoints be given.

If a pair of breakpoints i, j ∈ I split x into u · v ·w such that
u · v∗ ·w ⊆ L then let the colour be white else let the colour
be red.

There is a monochromatic subset J of I containing at least
c breakpoints. By choice of c, a pair of the breakpoints must
have white colour and by choice of J, all pairs have.
Furthermore, one pair must also split x into u · v ·w with
u · v∗ ·w ⊆ H. Now u · v∗ ·w ⊆ L ∩H and L ∩H is in
PUMPbl with constant c′.

Advanced Automata Theory 3 Combining Languages – p. 31

Example

Let L be all words with even number of 1 and H all words
with odd number of 2. L,H are in PUMPbl with constant 3.
Now c′ = 6.

The word 00(a)01(b)1012(c)2(d)1121(e)00(f)00202 has six
breakpoints and is in L ∩H.

A pair of breakpoints is white iff an even number of 1 is in
between. (a, e), (a, f), (b, c), (b,d), (c,d), (e, f) are white
pairs. The set {(b), (c), (d)} is monochromatic, all of its
pairs are white.

Among the white pairs, (b,d) and (e, f) satisfy that they split
the word into u · v ·w with u · v∗ ·w ⊆ H.

Now 0001 · (10122)∗ · 11210000202 ⊆ L ∩H.

Advanced Automata Theory 3 Combining Languages – p. 32

Additional Exercises

A language is called linear iff it has a grammar where every
rule is either of the form A → u or of the form A → vBw;
here A,B are nonterminals and u,v,w are terminal words.

Exercise 3.30
Show that the intersection of a linear language and a
regular language is linear.

Exercise 3.31
A linear grammar is called balanced iff for every rule of the
form A → vBw it holds that |v| = |w| and a language is
called balanced linear iff it is generated by a balanced linear
grammar. Is the intersection of two balanced linear
languages again balanced linear? Prove the answer.

Exercise 3.32
Provide an example of a language which is linear but not
balanced linear. Prove the answer.

Advanced Automata Theory 3 Combining Languages – p. 33

Exercises

In the following, one considers regular expressions
consisting of the symbol L of palindromes over {0,1,2} and
the mentioned operations. What is the most difficult level in
the hierarchy “regular, linear, context-free, context-sensitive”
such expressions can generate. It can be used that

{10i10j10k1 : i 6= j, i 6= k, j 6= k} is not context-free.

Exercise 3.33: Expressions containing L and ∪ and finite
sets.

Exercise 3.34: Expressions containing L and ∪ and · and
Kleene star and finite sets.

Exercise 3.35: Expressions containing L and ∪ and · and ∩
and Kleene star and finite sets.

Exercise 3.36: Expressions containing L and · and set
difference and Kleene star and finite sets.

Advanced Automata Theory 3 Combining Languages – p. 34

	Repetition 1
	Repetition 2
	Repetition 3
	Repetition 4
	Product Automata
	Example
	Kleene Star
	Concatenation
	Example
	Exercise 3.3
	Exercises Combining DFAs and NFAs
	Exercise 3.7
	Example 3.8
	Context-Free Intersects Regular
	Exercises 3.10 and 3.11
	Context-Sensitive and Concatenation
	Context-Sensitive and Kleene-star
	Context-Sensitive and Intersection
	Type of Rules
	Grammar for $
edy 0^n1^n2^n$ with $
edy n>0$
	Deriving 001122
	Exercise 3.17
	Mirror Images
	Exercise 3.18
	Palindromes
	Exercises 3.20-3.22
	Pumping Lemmas
	Example 3.26
	More Results
	Proof of Theorem 3.29
	Example
	Additional Exercises
	Exercises

