Advanced Automata Theory 3 Combining Languages

> Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg

Theorem

- Let **L** be any language (subset of Σ^*).
- **L** is generated by a regular grammar \Leftrightarrow
- \mathbf{L} is generated by a regular expression \Leftrightarrow
- \mathbf{L} is recognised by a dfa \Leftrightarrow
- ${\bf L}$ is recognised by an nfa \Rightarrow
- L satisfies the Block Pumping Lemma \Rightarrow
- L satisfies the Pumping Lemma with bound \Rightarrow
- L satisfies the Pumping Lemma without bound.

The last three \Rightarrow cannot be inverted.

 $\{w : w \text{ does not start with 010 or } w \text{ has length } n^2 \text{ for some } n\}$ satisfies the Pumping Lemma with bound but not the Block Pumping Lemma.

 $\{\mathbf{w} : |\mathbf{w}| \text{ is not a power of } 2\}$ satisfies the Pumping Lemma without bound but not the one with bound.

If L is a regular set then there is a constant k such that for all strings u_0, u_1, \ldots, u_k with $u_1, u_2, \ldots, u_{k-1}$ not empty and $u_0u_1 \ldots u_k \in L$ there are i, j with $0 < i \leq j < k$ and

 $(\mathbf{u_0u_1}\ldots\mathbf{u_{i-1}})\cdot(\mathbf{u_iu_{i+1}}\ldots\mathbf{u_j})^*\cdot(\mathbf{u_{j+1}u_{j+2}}\ldots\mathbf{u_k})\subseteq \mathbf{L}.$

So if one splits a word in L into k + 1 parts then one can select some parts in the middle of the word which can be pumped.

Example: $\{1,2\}^* \cdot \{0\} \cdot \{1,2\}^* \cdot \{0\} \cdot \{1,2\}^*$ satisfies the Block Pumping Lemma with $\mathbf{k} = 4$; splitting a word in this language into $\mathbf{u}_0 \mathbf{u}_1 \mathbf{u}_2 \mathbf{u}_3 \mathbf{u}_4$, either \mathbf{u}_1 or \mathbf{u}_2 or \mathbf{u}_3 does not contain 0 and can be pumped.

Any nfa with **n** states can be replaced by a complete dfa with 2^n states. Alternatively one can use an incomplete dfa, which might reject input due to δ being undefined on some pair (q, a); such a dfa can be made using $2^n - 1$ states.

The bound 2^n for the size of the dfa is tight (except for the case that the alphabet is unary, say $\Sigma = \{0\}$).

Product Automata

Let $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and $(Q_2, \Sigma, \delta_2, s_2, F_2)$ be dfas which recognise L_1 and L_2 , respectively.

Consider $(\mathbf{Q_1} \times \mathbf{Q_2}, \Sigma, \delta_1 \times \delta_2, (\mathbf{s_1}, \mathbf{s_2}), \mathbf{F})$ with $(\delta_1 \times \delta_2)((\mathbf{q_1}, \mathbf{q_2}), \mathbf{a}) = (\delta_1(\mathbf{q_1}, \mathbf{a}), \delta_2(\mathbf{q_2}, \mathbf{a}))$. This automaton is called a product automaton and one can choose \mathbf{F} such that it recognises the union or intersection or difference of the respective languages.

Union: $\mathbf{F} = \mathbf{F_1} \times \mathbf{Q_2} \cup \mathbf{Q_1} \times \mathbf{F_2}$; Intersection: $\mathbf{F} = \mathbf{F_1} \times \mathbf{F_2} = \mathbf{F_1} \times \mathbf{Q_2} \cap \mathbf{Q_1} \times \mathbf{F_2}$; Difference: $\mathbf{F} = \mathbf{F_1} \times (\mathbf{Q_2} - \mathbf{F_2})$; Symmetric Difference: $\mathbf{F} = \mathbf{F_1} \times (\mathbf{Q_2} - \mathbf{F_2}) \cup (\mathbf{Q_1} - \mathbf{F_1}) \times \mathbf{F_2}$.

Example

Let the first automaton recognise the language of words in $\{0, 1, 2\}$ with an even number of 1s and the second automaton with an even number of 2s. Both automata have the accepting and starting state s and a rejection state t; they change between s and t whenever they see 1 or 2, respectively. Example of a product automaton.

Kleene Star

Assume $(\mathbf{Q}, \boldsymbol{\Sigma}, \delta, \mathbf{s}, \mathbf{F})$ is an nfa recognising L. Now L* is recognised by $(\mathbf{Q} \cup \{\mathbf{s}'\}, \boldsymbol{\Sigma}, \boldsymbol{\Delta}, \mathbf{s}', \{\mathbf{s}'\})$ where $\boldsymbol{\Delta} = \delta \cup \{(\mathbf{s}', \mathbf{a}, \mathbf{p}) : (\mathbf{s}, \mathbf{a}, \mathbf{p}) \in \delta\} \cup \{(\mathbf{p}, \mathbf{a}, \mathbf{s}) : (\mathbf{p}, \mathbf{a}, \mathbf{q}) \in \delta$ for some $\mathbf{q} \in \mathbf{F}\} \cup \{(\mathbf{s}', \mathbf{a}, \mathbf{s}') : \mathbf{a} \in \mathbf{L}\}.$

Concatenation

Assume $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and $(Q_2, \Sigma, \delta_2, s_2, F_2)$ are nfas recognising L_1 and L_2 with $Q_1 \cap Q_2 = \emptyset$ and assume $\varepsilon \notin L_2$. Now $(Q_1 \cup Q_2, \Sigma, \delta, s_1, F_2)$ recognises $L_1 \cdot L_2$ where $(p, a, q) \in \delta$ whenever $(p, a, q) \in \delta_1 \cup \delta_2$ or $(p \in F_1$ and $(s_2, a, q) \in \delta_2)$.

If L_2 contains ε then one can consider the union of L_1 and $L_1 \cdot (L_2 - \{\varepsilon\})$.

Example

 $L_1 \cdot L_2$ with $L_1 = \{00, 11\}^*$ and $L_2 = 2^*1^+0^+$.

Exercise 3.3

The previous slides give upper bounds on the size of the dfa for a union, intersection, difference and symmetric difference as n^2 states, provided that the original two dfas have at most n states.

Give the corresponding bounds for nfas: If L and H are recognised by nfas having at most n states each, how many states does one need at most for an nfa recognising (a) the union $L \cup H$, (b) the intersection $L \cap H$, (c) the difference L - H and (d) the symmetric difference $(L - H) \cup (H - L)$?

Give the bounds in terms of "linear", "quadratic" and "exponential". Explain the bounds.

Exercises Combining DFAs and NFAs

Exercise 3.4

Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Construct a (not necessarily complete) dfa recognising the language $\Sigma \cdot \{aa : a \in \Sigma\}^* \cap \{aaaaa : a \in \Sigma\}^*$. It is not needed to give a full table for the dfa, but a general schema and an explanation how it works.

Exercise 3.5

Make an nfa for the intersection of the following languages: $\{0, 1, 2\}^* \cdot \{001\} \cdot \{0, 1, 2\}^* \cdot \{001\} \cdot \{0, 1, 2\}^*; \\ \{001, 0001, 2\}^*; \{0, 1, 2\}^* \cdot \{00120001\} \cdot \{0, 1, 2\}^*.$

Exercise 3.6 Make an nfa for the union $L_0 \cup L_1 \cup L_2$ with $L_a = \{0, 1, 2\}^* \cdot \{aa\} \cdot \{0, 1, 2\}^* \cdot \{aa\} \cdot \{0, 1, 2\}^*$ for $a \in \{0, 1, 2\}$.

Exercise 3.7

Consider two context-free grammars with terminals Σ , disjoint non-terminals N_1 and N_2 , start symbols $S_1 \in N_1$ and $S_2 \in N_2$ and rule sets P_1 and P_2 which generate L and H, respectively. Explain how to form from these a new context-free grammar for (a) $L \cup H$, (b) $L \cdot H$ and (c) L^* .

Write down the context-free grammars for $\{0^n 1^{2n} : n \in \mathbb{N}\}$ and $\{0^n 1^{3n} : n \in \mathbb{N}\}$ and form the grammars for the the union, concatenation and star explicitly.

Example 3.8

The language $\{0\}^* \cdot \{1^n 2^n : n \in \mathbb{N}\}$ is context-free.

 $\begin{array}{l} \mbox{Grammar} (\{\mathbf{S},\mathbf{T}\},\{\mathbf{0},\mathbf{1},\mathbf{2}\},\mathbf{P},\mathbf{S}) \mbox{ with } \mathbf{P} \mbox{ be given by } \\ \mathbf{S} \rightarrow \mathbf{0S} |\mathbf{T}| \varepsilon \mbox{ and } \mathbf{T} \rightarrow \mathbf{1T2} | \varepsilon. \end{array}$

The language $\{0^n1^n : n \in \mathbb{N}\} \cdot 2^*$ is context-free.

 $L=\{0^n1^n2^n:n\in\mathbb{N}\}$ is not context-free but the intersection of the two above.

The complement of L is the union of $\{0^n1^m2^k : n < k\}$, $\{0^n1^m2^k : n > k\}$, $\{0^n1^m2^k : m < k\}$, $\{0^n1^m2^k : m > k\}$, $\{0^n1^m2^k : n < m\}$, $\{0^n1^m2^k : n > m\}$ and $\{0, 1, 2\}^* \cdot \{10, 20, 21\} \cdot \{0, 1, 2\}^*$.

Each of these languages is context-free. Grammar for the first of them: $S \rightarrow 0S2|S2|T2, T \rightarrow 1T|\varepsilon$. The union is also context-free. Hence L has a context-free complement.

Context-Free Intersects Regular

Theorem 3.9.

If L is context-free and H is regular then $L \cap H$ is context-free.

Construction.

Let (N, Σ, P, S) be a context-free grammar generating L with every rule being either $A \to w$ or $A \to BC$ with $A, B, C \in N$ and $w \in \Sigma^*$.

Let $(\mathbf{Q}, \mathbf{\Sigma}, \delta, \mathbf{s}, \mathbf{F})$ be a dfa recognising **H**.

Let $\mathbf{S'} \notin \mathbf{Q} \times \mathbf{N} \times \mathbf{Q}$ and make the following new grammar $(\mathbf{Q} \times \mathbf{N} \times \mathbf{Q} \cup {\mathbf{S'}}, \mathbf{\Sigma}, \mathbf{R}, \mathbf{S'})$ with rules \mathbf{R} :

 $\mathbf{S'} \rightarrow (\mathbf{s}, \mathbf{S}, \mathbf{q})$ for all $\mathbf{q} \in \mathbf{F}$;

 $(\mathbf{p},\mathbf{A},\mathbf{q})\to(\mathbf{p},\mathbf{B},\mathbf{r})(\mathbf{r},\mathbf{C},\mathbf{q})$ for all rules $\mathbf{A}\to\mathbf{B}\mathbf{C}$ in \mathbf{P} and all $\mathbf{p},\mathbf{q},\mathbf{r}\in\mathbf{Q};$

 $(\mathbf{p}, \mathbf{A}, \mathbf{q}) \rightarrow \mathbf{w}$ for all rules $\mathbf{A} \rightarrow \mathbf{w}$ in \mathbf{P} with $\delta(\mathbf{p}, \mathbf{w}) = \mathbf{q}$.

Exercises 3.10 and 3.11

Construct context-free grammars for the following intersections between the context-free set L of all words which contain as many 0 as 1 and a regular set. Here a grammar for L is

 $({\mathbf{S}}, {\mathbf{0}, \mathbf{1}}, {\mathbf{S} \to \mathbf{SS} | \varepsilon | \mathbf{0S1} | \mathbf{1S0}}, \mathbf{S}).$

Exercise 3.10

Give a context-free grammar for $L \cap \{00 \cdot 1^+\}^*$;

Exercise 3.11

Give a context-free grammar for $L \cap 0^* 1^* 0^* 1^*$.

Context-Sensitive and Concatenation

Let L_1 and L_2 be context-sensitive languages not containing ε . Let (N_1, Σ, P_1, S_1) and (N_2, Σ, P_2, S_2) be two context-sensitive grammars generating L_1 and L_2 , respectively, where $N_1 \cap N_2 = \emptyset$ and where each rule $l \rightarrow r$ satisfies $|l| \leq |r|$ and $l \in N_e^+$ for the respective $e \in \{1, 2\}$. Let $S \notin N_1 \cup N_2 \cup \Sigma$.

Now $(N_1\cup N_2\cup \{S\}, \Sigma, P_1\cup P_2\cup \{S\to S_1S_2\}, S)$ generates $L_1\cdot L_2.$

If $v \in L_1$ and $w \in L_2$ then $S \Rightarrow S_1S_2 \Rightarrow^* vS_2 \Rightarrow^* vw$. Furthermore, the first rule has to be $S \Rightarrow S_1S_2$ and from then onwards, each rule has on the left side either $l \in N_1^+$ so that it applies to the part generated from S_1 or it has in the left side $l \in N_2^+$ so that l is in the part of the word generated from S_2 . Hence every intermediate word z in the derivation is of the form xy = z with $S_1 \Rightarrow^* x$ and $S_2 \Rightarrow^* y$.

Context-Sensitive and Kleene-star

Let (N_1, Σ, P_1, S_1) and (N_2, Σ, P_2, S_2) be context-sensitive grammars for $L - \{\varepsilon\}$ with $N_1 \cap N_2 = \emptyset$ and all rules $l \to r$ satisfying $|l| \leq |r|$ and $l \in N_1^+$ or $l \in N_2^+$, respectively. Let S, S' be symbols not in $N_1 \cup N_2 \cup \Sigma$.

Now consider $(N_1 \cup N_2 \cup \{S, S'\}, \Sigma, P, S)$ where P contains the rules $S \to S'|\varepsilon$ and $S' \to S_1S_2S' | S_1S_2 | S_1$ plus all rules in $P_1 \cup P_2$.

This grammar generates L^* .

Exercise 3.14.

Construct a grammar for $\{0^n1^n2^n : n > 0\}^+$. Try to keep it small (use more intuition than algorithms).

Context-Sensitive and Intersection

Theorem.

The intersection of two context-sensitive languages is context-sensitive.

Construction.

Let (N_k, Σ, P_k, S) be grammars for L_1 and L_2 . Now make a new non-terminal set $N = (N_1 \cup \Sigma \cup \{\#\}) \times (N_2 \cup \Sigma \cup \{\#\})$

with start symbol $\binom{S}{S}$ and following types of rules:

- (a) Rules to generate and manage space;
- (b) Rules to generate a word \mathbf{v} in the upper row;
- (c) Rules to generate a word w in the lower row;
- (d) Rules to convert a string from N into v provided that the upper components and lower components of the string are both v.

Type of Rules

(a): $\binom{\mathbf{S}}{\mathbf{S}} \to \binom{\mathbf{S}}{\mathbf{S}} \binom{\#}{\#}$ for producing space; $\binom{\mathbf{A}}{\mathbf{B}} \binom{\#}{\mathbf{C}} \to \binom{\#}{\mathbf{B}} \binom{\mathbf{A}}{\mathbf{C}}$ and $\binom{\mathbf{A}}{\mathbf{C}} \binom{\mathbf{B}}{\#} \to \binom{\mathbf{A}}{\#} \binom{\mathbf{B}}{\mathbf{C}}$ for space management.

(b) and (c): For each rule in P_1 , for example, for $AB \rightarrow CDE \in P_1$, and all symbols F, G, H, \ldots in $N_2 \cup \Sigma \cup \{\#\}$, one has the corresponding rule $\binom{A}{F}\binom{B}{G}\binom{\#}{H} \rightarrow \binom{C}{F}\binom{D}{G}\binom{E}{H}$. So rules in P_1 are simulated in the upper half and rules in P_2 are simulated in the lower half and they use up # if the left side is shorter than the right one.

(d): Each rule $\binom{a}{a} \rightarrow a$ for $a \in \Sigma$ is there to convert a matching pair $\binom{a}{a}$ from $\Sigma \times \Sigma$ (a nonterminal) to a (a terminal).

Grammar for $0^n 1^n 2^n$ with n > 0

Grammar L_1 : $S \rightarrow S2|0S1|01$. Grammar L₂: $S \rightarrow 0S|1S2|12$. Grammar for Intersection. A, B, C stand for any members of $\{S, 0, 1, 2, \#\}$. $N = \{ \begin{pmatrix} A \\ B \end{pmatrix} : A, B \in \{ S, 0, 1, 2, \# \} \}.$ Rules: $\binom{\mathbf{S}}{\mathbf{S}} \rightarrow \binom{\mathbf{S}}{\mathbf{S}} \binom{\#}{\#};$ $\binom{\mathbf{A}}{\mathbf{B}}\binom{\#}{\mathbf{C}} \rightarrow \binom{\#}{\mathbf{B}}\binom{\mathbf{A}}{\mathbf{C}}; \binom{\mathbf{A}}{\mathbf{C}}\binom{\mathbf{B}}{\#} \rightarrow \binom{\mathbf{A}}{\#}\binom{\mathbf{B}}{\mathbf{C}};$ $\binom{\mathbf{S}}{\mathbf{A}}\binom{\#}{\mathbf{B}} \to \binom{\mathbf{S}}{\mathbf{A}}\binom{\mathbf{2}}{\mathbf{B}}; \binom{\mathbf{S}}{\mathbf{A}}\binom{\#}{\mathbf{B}}\binom{\#}{\mathbf{C}} \to \binom{\mathbf{0}}{\mathbf{A}}\binom{\mathbf{S}}{\mathbf{B}}\binom{\mathbf{1}}{\mathbf{C}};$ $\binom{\mathbf{S}}{\mathbf{A}}\binom{\#}{\mathbf{B}} \rightarrow \binom{\mathbf{0}}{\mathbf{A}}\binom{\mathbf{1}}{\mathbf{B}};$ ${A \choose S} {B \choose \#} \to {A \choose 0} {B \choose S}; {A \choose S} {B \choose \#} {C \choose \#} \to {A \choose 1} {B \choose S} {C \choose 2};$ $\binom{\mathbf{A}}{\mathbf{S}}\binom{\mathbf{B}}{\#} \rightarrow \binom{\mathbf{A}}{\mathbf{1}}\binom{\mathbf{B}}{\mathbf{2}};$ $inom{0}{0}
ightarrow 0; inom{1}{1}
ightarrow 1; inom{2}{2}
ightarrow 2.$

Deriving 001122

Exercise 3.17

Consider the language $\mathbf{L} = \{\mathbf{00}\} \cdot \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}^* \cup \{\mathbf{1}, \mathbf{2}, \mathbf{3}\} \cdot \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}^* \cup \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}^* \cdot \{\mathbf{02}, \mathbf{03}, \mathbf{13}, \mathbf{10}, \mathbf{20}, \mathbf{30}, \mathbf{21}, \mathbf{31}, \mathbf{32}\} \cdot \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}^* \cup \{\varepsilon\} \cup \{\mathbf{01^n 2^n 3^n} : \mathbf{n} \in \mathbb{N}\}.$

Which versions of the Pumping Lemma does it satisfy:

- Regular Pumping Lemma (with / without bounds);
- Context-Free Pumping Lemma (with / without bounds);
- Block Pumping Lemma (for regular languages)?

Determine the exact position of L in the Chomsky hierarchy.

Mirror Images

Define $(a_1a_2...a_n)^{mi} = a_n...a_2a_1$ as the mirror image of a string. A word w with $w = w^{mi}$ is called a palindrome.

It follows from the definition of context-free and context-sensitive, that if L is context-free / context-sensitive so is L^{mi} . This can be achieved by replacing every rule $l \rightarrow r$ by $l^{mi} \rightarrow r^{mi}$.

For example, the mirror image of the language of the words $0^n 1^{3n+3}$ is given by language of the words $1^{3n+3}0^n$. While L is generated by a context-free grammar with one non-terminal S and rules $S \rightarrow 0S111 | 111$, L^{mi} is then generated by a similar grammar with the rules $S \rightarrow 111S0 | 111$.

Exercise 3.18

Recall that \mathbf{x}^{mi} is the mirror image of \mathbf{x} , so $(\mathbf{01001})^{mi} = \mathbf{10010}$. Furthermore, $\mathbf{L}^{mi} = {\mathbf{x}^{mi} : \mathbf{x} \in \mathbf{L}}$. Show the following two statements: (a) If an nfa with \mathbf{n} states recognises \mathbf{L} then there is also an nfa with up to $\mathbf{n} + \mathbf{1}$ states recognising \mathbf{L}^{mi} . (b) Find the smallest nfas which recognise $\mathbf{L} = \mathbf{0}^*(\mathbf{1}^* \cup \mathbf{2}^*)$ as well as \mathbf{L}^{mi} .

Palindromes

The members of the language $\{x \in \Sigma^* : x = x^{mi}\}$ are called palindromes. A palindrome is a word or phrase which looks the same from both directions.

An example is the German name "OTTO"; furthermore, when ignoring spaces and punctuation marks, a famous palindrome is the phrase "A man, a plan, a canal: Panama." This palindrome is due to Leigh Mercer (1893-1977).

The grammar with the rules $S \rightarrow aSa|aa|a|\varepsilon$ with a ranging over all members of Σ generates all palindromes; so for $\Sigma = \{0, 1, 2\}$ the rules of the grammar would be $S \rightarrow 0S0 | 1S1 | 2S2 | 00 | 11 | 22 | 0 | 1 | 2 | \varepsilon$.

The set of palindromes is not regular.

Exercises 3.20-3.22

Exercise 3.20

Let $w \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^*$ be a palindrome of even length and n be its decimal value. Prove that n is a multiple of 11. Note that it is essential that the length is even, as for odd length there are counter examples (like 111 and 202).

Exercise 3.21

Given a context-free grammar for a language L, is there also one for $L \cap L^{mi}$? If so, explain how to construct the grammar; if not, provide a counter example where L is context-free but $L \cap L^{mi}$ is not.

Exercise 3.22

Is the following statement true or false? Prove your answer: Given a language L, the language $L \cap L^{mi}$ equals to $\{w \in L : w \text{ is a palindrome}\}.$

Pumping Lemmas

Definition 3.24

Let **PUMP**_{sw} contain all languages whose large members can be pumped somewhere (satisfy Corollary 1.20). Let **PUMP**_{st} contain all languages whose large members can be pumped near start (satisfy Theorem 1.19 (a)). Let **PUMP**_{bl} contain all languages which satisfy the block pumping lemma (Theorem 2.9).

Proposition 3.25

The classes $\mathbf{PUMP_{sw}}$ and $\mathbf{PUMP_{st}}$ are closed under union, concatenation, Kleene star and Kleene Plus.

For $PUMP_{st}$ this was proven in Theorem 1.19 (a) and the proof also works with minor modifications for $PUMP_{sw}$.

Example 3.26

Let $L = \{0^h 1^k 2^m 3^n : h = 0 \text{ or } k = m = n\}$ and $H = \{00\} \cdot \{1\}^* \cdot \{2\}^* \cdot \{3\}^*.$

Both languages are in PUMP_{sw} and PUMP_{st} and H is regular. For pumping, one just pumps the first symbol. If it is 0 then it can be multiplied or removed; in the case that all 0 get removed, one has the regular language $\{1\}^* \cdot \{2\}^* \cdot \{3\}^*$; if the first symbol is in $\{1, 2, 3\}$ then the word is in $\{1\}^* \cdot \{2\}^* \cdot \{3\}^*$ and pumping the first letter does not change the membership in the language.

The intersection of L and H is the language $\{0^21^n2^n3^n : n \in \mathbb{N}\}$ which does not satisfy any of the pumping lemma's given in class; in particular $(L \cap H) \notin PUMP_{sw}$ and $(L \cap H) \notin PUMP_{st}$.

More Results

Proposition 3.27

If L is in $PUMP_{sw}$ or $PUMP_{bl}$, then also L^{mi} is in the respective class.

Example

The language $\{u \in \{0, 1, 2\}^* : u \text{ contains a square}\}$ is in $PUMP_{sw}$ and $PUMP_{st}$, but its complement is not.

Exercise 3.28

Show that $\mathbf{PUMP_{bl}}$ is closed under union and concatenation. Furthermore, show that the language $\mathbf{L} = \{\mathbf{v3w4}: \mathbf{v}, \mathbf{w} \in \{0, 1, 2\}^* \text{ and if } \mathbf{v}, \mathbf{w} \text{ are both}$ square-free then $|\mathbf{v}| \neq |\mathbf{w}| \text{ or } \mathbf{v} = \mathbf{w}\}$ is in $\mathbf{PUMP_{bl}}$ while \mathbf{L}^+ and \mathbf{L}^* are not.

Theorem 3.29 If \mathbf{L},\mathbf{H} are in $\mathbf{PUMP_{bl}}$ so is $\mathbf{L}\cap\mathbf{H}.$

Proof of Theorem 3.29

Assume that L, H are block pumpable with constant c. Let c' be so large that if one colours the pairs of a set of c' elements with two colours then this set has a monochromatic subset with at least c elements.

Let a word $\mathbf{x} \in \mathbf{L} \cap \mathbf{H}$ with a set I of c' breakpoints be given.

If a pair of breakpoints $\mathbf{i}, \mathbf{j} \in \mathbf{I}$ split \mathbf{x} into $\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w}$ such that $\mathbf{u} \cdot \mathbf{v}^* \cdot \mathbf{w} \subseteq \mathbf{L}$ then let the colour be white else let the colour be red.

There is a monochromatic subset J of I containing at least c breakpoints. By choice of c, a pair of the breakpoints must have white colour and by choice of J, all pairs have. Furthermore, one pair must also split x into $\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w}$ with $\mathbf{u} \cdot \mathbf{v}^* \cdot \mathbf{w} \subseteq \mathbf{H}$. Now $\mathbf{u} \cdot \mathbf{v}^* \cdot \mathbf{w} \subseteq \mathbf{L} \cap \mathbf{H}$ and $\mathbf{L} \cap \mathbf{H}$ is in PUMP_{bl} with constant c'.

Example

Let L be all words with even number of 1 and H all words with odd number of 2. L, H are in $PUMP_{bl}$ with constant 3. Now c' = 6.

The word 00(a)01(b)1012(c)2(d)1121(e)00(f)00202 has six breakpoints and is in $L\cap H.$

A pair of breakpoints is white iff an even number of 1 is in between. (a, e), (a, f), (b, c), (b, d), (c, d), (e, f) are white pairs. The set $\{(b), (c), (d)\}$ is monochromatic, all of its pairs are white.

Among the white pairs, (\mathbf{b}, \mathbf{d}) and (\mathbf{e}, \mathbf{f}) satisfy that they split the word into $\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w}$ with $\mathbf{u} \cdot \mathbf{v}^* \cdot \mathbf{w} \subseteq \mathbf{H}$.

Now $0001 \cdot (10122)^* \cdot 11210000202 \subseteq L \cap H$.

Additional Exercises

A language is called linear iff it has a grammar where every rule is either of the form $A \rightarrow u$ or of the form $A \rightarrow vBw$; here A, B are nonterminals and u, v, w are terminal words.

Exercise 3.30

Show that the intersection of a linear language and a regular language is linear.

Exercise 3.31

A linear grammar is called balanced iff for every rule of the form $A \rightarrow vBw$ it holds that |v| = |w| and a language is called balanced linear iff it is generated by a balanced linear grammar. Is the intersection of two balanced linear languages again balanced linear? Prove the answer.

Exercise 3.32

Provide an example of a language which is linear but not balanced linear. Prove the answer.

Exercises

In the following, one considers regular expressions consisting of the symbol L of palindromes over $\{0, 1, 2\}$ and the mentioned operations. What is the most difficult level in the hierarchy "regular, linear, context-free, context-sensitive" such expressions can generate. It can be used that $\{10^i10^j10^k1 : i \neq j, i \neq k, j \neq k\}$ is not context-free.

Exercise 3.33: Expressions containing ${\bf L}$ and \cup and finite sets.

Exercise 3.34: Expressions containing L and \cup and \cdot and Kleene star and finite sets.

Exercise 3.35: Expressions containing L and \cup and \cdot and \cap and Kleene star and finite sets.

Exercise 3.36: Expressions containing L and \cdot and set difference and Kleene star and finite sets.