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Repetition 1

0,3,6,9 0,3,6,9
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Repetition 2

Theorem

Let L be any language (subset of X*).

L is generated by a regular grammar <

L is generated by a regular expression <

L is recognised by a dfa <

L is recognised by an nfa =

L satisfies the Block Pumping Lemma =

L satisfies the Pumping Lemma with bound =
L satisfies the Pumping Lemma without bound.

The last three = cannot be inverted.

{w : w does not start with 010 or w has length n? for some
n} satisfies the Pumping Lemma with bound but not the
Block Pumping Lemma.

{w : |w| Iis not a power of 2} satisfies the Pumping Lemma
without bound but not the one with bound.
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Repetition 3

If L is a regular set then there is a constant k such that for
all strings ug, uy,...,ux With uy,us, ..., ux_; not empty and
upuy ...ux € Ltherearei,jwith0 <i<j < k and

(U.()U.l ce ui_l) ¥ (uiui+1 ce UJ)* . (uj+1uj+2 c. uk) C L.

So if one splits a word in L into k + 1 parts then one can
select some parts in the middle of the word which can be
pumped.

Example: {1,2}*- {0} - {1,2}*- {0} - {1,2}" satisfies the
Block Pumping Lemma with k = 4; splitting a word in this
language Into ugujusuguy, either u; or uz or ug does not
contain 0 and can be pumped.

Advanced Automata Theory 3 Combining Languages — p. 4



Repetition 4

Any nfa with n states can be replaced by a complete dfa
with 2" states. Alternatively one can use an incomplete dfa,
which might reject input due to 6 being undefined on some
pair (q,a); such a dfa can be made using 2™ — 1 states.

The bound 2™ for the size of the dfa is tight (except for the
case that the alphabet is unary, say > = {0}).
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Product Automata

Let (Ql, >, 01,81, Fl) and (Qz, >, 09,82, Fz) be dfas which
recognise L; and Ls, respectively.

Consider (Ql X Qao, 2,01 X 09, (Sl, Sz), F) with

(51 X 52)((0_[1, qz), a) — (51((]1, a), 52((]2, a)) This automaton
Is called a product automaton and one can choose F such
that it recognises the union or intersection or difference of
the respective languages.

Union: F = F; x Q2 U Q7 X Fs;

Intersection: F = F1 x Fo =F1 X Qz M Ql X Fa;

Difference: F = F; x (Q2 — F2);

Symmetric Difference: F = F1 x (Q2 — F2)U (Q1 — F1) x Fa.
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Example

Let the first automaton recognise the language of words in
{0, 1, 2} with an even number of 1s and the second
automaton with an even number of 2s. Both automata have
the accepting and starting state s and a rejection state t;
they change between s and t whenever they see 1 or 2,
respectively. Example of a product automaton.
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Kleene Star

Assume (Q, X, 9, s, F) is an nfa recognising L. Now L* is
recognised by (QU {s'}, X, A,s’,{s’'}) where
A=0U{(s,a,p):(s,a,p) €0}U{(p,a,s): (p,a,q) € for
someq <€ Ftu{(s',a,s'):a e L}.

0

start —
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Concatenation

Assume (Ql; >, 01,81, Fl) and (Qz, >, 09,82, Fz) are nfas
recognising L; and Ly with Q1 N Q2 = () and assume

e ¢ La. Now (Q1 U Q2, 32, 0,81, Fa) recognises Ly - Ly where
(p,a,q) € 6 whenever (p,a,q) € 41 Uz or (p € F1 and
(s2,a,q) € d2).

If Lo contains ¢ then one can consider the union of L; and
L1 . (Lz — {8})
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Example

Li-Lowith L; = {00, 1]_}>|< and Ly = 2*17T0T.
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Exercise 3.3

The previous slides give upper bounds on the size of the
dfa for a union, intersection, difference and symmetric
difference as n? states, provided that the original two dfas
have at most n states.

Give the corresponding bounds for nfas: If L and H are
recognised by nfas having at most n states each, how many
states does one need at most for an nfa recognising (a) the
union L U H, (b) the intersection L. N H, (c) the difference

L — H and (d) the symmetric difference (L — H)uU (H — L)?

Give the bounds in terms of “linear”, “quadratic” and
“exponential”. Explain the bounds.
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Exercises Combining DFAs and NFAs

Exercise 3.4

Let ¥ ={0,1,2,3,4,5,6,7,8,9}. Construct a (not
necessarily complete) dfa recognising the language

> -{aa:a€ X}*N{aaaaa:ac X}". Itis not needed to give
a full table for the dfa, but a general schema and an
explanation how it works.

Exercise 3.5

Make an nfa for the intersection of the following languages:
{0,1,2}*-{001}-{0,1,2}*-{001}-{0,1,2}%;
{001,0001,2}*; {0,1,2}*- {00120001} - {0,1,2}*.

Exercise 3.6

Make an nfa for the union Ly U L; U Lo with
L,=1{0,1,2}*-{aa}-{0,1,2}*-{aa}-{0,1,2}" for
ac{0,1,2}.
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Exercise 3.7

Consider two context-free grammars with terminals X,
disjoint non-terminals N; and N, start symbols S; € N;
and S, € N2 and rule sets P; and Py which generate L. and
H, respectively. Explain how to form from these a new
context-free grammar for

(a) LUH,

(b) L - H and

(c) L*.

Write down the context-free grammars for {0®1%" : n € N}

and {0"1°" : n € N} and form the grammars for the the
union, concatenation and star explicitly.
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Example 3.8

The language {0}* - {1™2™ : n € N} is context-free.

Grammar ({S, T}, {0,1,2},P,S) with P be given by
S — 0S|T|e and T — 1T2|e.

The language {0"1™ : n € N} - 2* is context-free.

L = {0"1"2" : n € N} is not context-free but the intersection
of the two above.

The complement of L is the union of {0?1™2k : n < k},
for1™m2k . n > k}, {o"1™m2k : m < k}, {o"1™2% : m > k},
{o"1™m2k : n < m}, {0"1™2K : n > m} and
{0,1,2}*-{10,20,21} -{0,1,2}".

Each of these languages is context-free. Grammar for the

first of them: S — 0S2|S2|T2, T — 1T|e. The union is also
context-free. Hence L has a context-free complement.
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Context-Free Intersects Regular

Theorem 3.9.

If L is context-free and H is regularthen LN H is
context-free.

Construction.

Let (N, 3, P, S) be a context-free grammar generating L
with every rule being either A — w or A — BC with

A, B, CeNandw e X*,

Let (Q, X, 4,s,F) be a dfa recognising H.

Let S’ ¢ Q x N x Q and make the following new grammar
(Q x N x QU{S'}, X, R,S’) with rules R:

S’ — (s,S,q) forall q € F;

(p,A,q) — (p,B,r)(r,C,q) for all rules A — BC in P and

allp,q,r € Q;
(p,A,q) — w forall rules A — w in P with §(p, w) = q.
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Exercises 3.10 and 3.11

Construct context-free grammars for the following
intersections between the context-free set L of all words
which contain as many 0 as 1 and a regular set. Here a
grammar for L is

({S},{0,1}, {S — SS|¢[0S1[1S0}, S).

Exercise 3.10
Give a context-free grammar for L N {00 - 17 }*;

Exercise 3.11
Give a context-free grammar for L N 0*1*0*1*.
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Context-Sensitive and Concatenation

Let L, and L2 be context-sensitive languages not
containing . Let (Ny,3,P1,S1) and (N2, 3, P2, S2) be two
context-sensitive grammars generating L; and Lo,
respectively, where N1 NNy = () and where each rule 1 — r
satisfies |1| < |r| and 1 € N/ for the respective e € {1, 2}.
Let S ¢N1UN2UE.

Now (Nl U No U {S}, >, PiUPs U {S — 8182}, S) generates
L4 - Lo.

If veL;iandw c Lathen S = S1So =* vSy =* vw.
Furthermore, the first rule has to be S = S1S5 and from
then onwards, each rule has on the left side either 1 € N7
so that it applies to the part generated from S; or it has in
the left side 1 € N so that 1is in the part of the word
generated from S,. Hence every intermediate word z in the
derivation is of the form xy = z with S; =* X and So =*y.
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Context-Sensitive and Kleene-star

Let (N1,3,P1,S1) and (N2, 3, P2, S2) be context-sensitive
grammars for L — {e} with Ny "Ny =( and all rules 1 — r
satisfying |1| < |r| and 1 € N or 1 € N3, respectively. Let
S. S’ be symbols not in N; UN, U X.

Now consider (N; UNs U {S,S’}, X, P, S) where P contains
the rules S — S’|e and S’ — S1S2S"|S1S2 | S1 plus all rules
in P; UPs.

This grammar generates L*.

Exercise 3.14.
Construct a grammar for {01”2" : n > 0} . Try to keep it
small (use more intuition than algorithms).
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Context-Sensitive and Intersection

Theorem.
The intersection of two context-sensitive languages is
context-sensitive.

Construction.
Let (N, X, Py, S) be grammars for L; and L. Now make a
new non-terminal set N = (N7 UX U {#}) x (Ng U X U {#})

with start symbol (3) and following types of rules:

(a) Rules to generate and manage space;

(b) Rules to generate a word v in the upper row;

(c) Rules to generate a word w in the lower row;

(d) Rules to convert a string from N into v provided that the
upper components and lower components of the string are
both v.
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Type of Rules

(@): (5) — (s) (%) for producing space; (3) (&) — (i) (c)
and (¢) () — (%) (&) for space management.

(b) and (c): For each rule in P4, for example, for

AB — CDE € Pq, and all symbols F, G, H, ... In

N2 U X U {#}, one has the corresponding rule

(M) () (7)) — (5)(2)(5)- Sorules in Py are simulated in
the upper half and rules in Py are simulated in the lower
half and they use up # if the left side is shorter than the

right one.

(d): Eachrule (2) — afor a € X is there to convert a

matching pair (2) from ¥ x X (a nonterminal) to a (a
terminal).
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Grammar for 0"1*2"* withn > 0O

Grammar L;: S — S2|0S1|01.
Grammar Lo: S — 0S|1S2|12.

Grammar for Intersection.
A, B, C stand for any members of {S,0,1, 2, #}.
N={(5): A,B€c{S,0,1,2,#}}.

Rules: (5) — (s) (2);

() (@)~ (B)(@); (@) () — (3)(&)

(2) () = ) (B): (2B ©) ~ Q) E) ()
(2) () = (2) ()3

(s)(2) = (0)(s): (s) (D) G) — (1) () (%)
(s)() = (1) (3);

(0) =0 (1) =1 (3) > 2
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Exercise 3.17

Consider the language L = {00} - {0,1,2,3}* U {1,2,3} -
{0,1,2,3}*uU{0,1,2,3}*-{02,03,13, 10, 20, 30,21, 31,32} -
{0,1,2,3}* U {e}u{01"23" : n € N},

Which versions of the Pumping Lemma does it satisfy:
e Regular Pumping Lemma (with / without bounds);
e Context-Free Pumping Lemma (with / without bounds);
e Block Pumping Lemma (for regular languages)?
Determine the exact position of L in the Chomsky hierarchy.
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Mirror Images

Define (ajas...a,)™ = a,...aza; as the mirror image of a
string. A word w with w = w™! s called a palindrome.

It follows from the definition of context-free and
context-sensitive, that if L is context-free / context-sensitive
so is L™. This can be achieved by replacing every rule

1 — r by 1™ — ymi,

For example, the mirror image of the language of the words
021°2+3 is given by language of the words 13220, While
L is generated by a context-free grammar with one
non-terminal S and rules S — 05111 |111, L™ is then
generated by a similar grammar with the rules

S — 111S0|111.
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Exercise 3.18

Recall that x™! is the mirror image of x, so

(01001)™ = 10010. Furthermore, L™ = {x™! : x € L}.
Show the following two statements:
(a) If an nfa with n states recognises L then there is also an

nfa with up to n + 1 states recognising L™,
(b) Find the smallest nfas which recognise L = 0*(1* U 2¥)

as well as L™,
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Palindromes

The members of the language {x € * : x = x™!} are called
palindromes. A palindrome is a word or phrase which looks
the same from both directions.

An example is the German name “OTTO?”; furthermore,
when ignoring spaces and punctuation marks, a famous
palindrome is the phrase “A man, a plan, a canal: Panama.’
This palindrome is due to Leigh Mercer (1893-1977).

The grammar with the rules S — aSalaalale with a ranging
over all members of 3 generates all palindromes; so for
> ={0,1,2} the rules of the grammar would be

S —+0S0|1S1|2S2|00|11|22]0|1|2]=.

The set of palindromes is not regular.
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Exercises 3.20-3.22

Exercise 3.20

Letw € {0,1,2,3,4,5,6,7,8,9}" be a palindrome of even
length and n be its decimal value. Prove that n is a multiple
of 11. Note that it is essential that the length is even, as for
odd length there are counter examples (like 111 and 202).

Exercise 3.21
Given a context-free grammar for a language L, is there

also one for L N L™!? If so, explain how to construct the
grammar; if not, provide a counter example where L is

context-free but L N L™! is not.

Exercise 3.22
Is the following statement true or false”? Prove your answer:

Given a language L, the language L N L™ equals to
{w e L:wis a palindrome}.
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Pumping Lemmas

Definition 3.24

Let PUMPg,, contain all languages whose large members
can be pumped somewhere (satisfy Corollary 1.20).

Let PUMPg; contain all languages whose large members
can be pumped near start (satisfy Theorem 1.19 (a)).

Let PUMPy,; contain all languages which satisfy the block
pumping lemma (Theorem 2.9).

Proposition 3.25
The classes PUMP,,, and PUMP; are closed under
union, concatenation, Kleene star and Kleene Plus.

For PUMPg; this was proven in Theorem 1.19 (a) and the
proof also works with minor modifications for PUMPyy,.

Advanced Automata Theory 3 Combining Languages — p. 28



Example 3.26

Let L = {0P1%2™32 : h =0 ork = m = n} and

H = {00} - {1} - {2}" - {3}".

Both languages are in PUMPs,, and PUMPg and H is
regular. For pumping, one just pumps the first symbol. If it
Is 0 then it can be multiplied or removed; in the case that all
0 get removed, one has the regular language

{1} {2} - {3} if the first symbol is in {1, 2, 3} then the
word isin {1}* - {2}* - {3}* and pumping the first letter does
not change the membership in the language.

The intersection of L and H is the language
{0217223" : n ¢ N} which does not satisfy any of the
pumping lemma’s given in class; in particular
(LNH) ¢ PUMPg, and (L NH) ¢ PUMPy;.
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More Results

Proposition 3.27
If L is in PUMP,,, or PUMPy,, then also L™! is in the
respective class.

Example
The language {u € {0,1,2}" : u contains a square} is in
PUMPs,, and PUMPyg;, but its complement is not.

Exercise 3.28

Show that PUMPy,; is closed under union and
concatenation. Furthermore, show that the language
L={v3w4:v,we {0,1,2}* and if v,w are both
square-free then |v| # |w| or v = w} is in PUMPy,; while
L™ and L* are not.

Theorem 3.29
If L,H are in PUMPy,; sois L N H.
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Proof of Theorem 3.29

Assume that L, H are block pumpable with constant c. Let
¢’ be so large that if one colours the pairs of a set of ¢’
elements with two colours then this set has a
monochromatic subset with at least ¢ elements.

Let a word x € L 1 H with a set I of ¢’ breakpoints be given.

If a pair of breakpoints i, j € I split x into u - v - w such that
u-v*.-w C L then let the colour be white else let the colour
be red.

There is a monochromatic subset J of I containing at least
c breakpoints. By choice of c, a pair of the breakpoints must
have white colour and by choice of J, all pairs have.
Furthermore, one pair must also split x into u - v - w with

u- v wCH Nowu - v - wCLNHandLNnHIisIn
PUMPy, with constant ¢'.
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Example

Let L be all words with even number of 1 and H all words
with odd number of 2. L, H are in PUMP4,; with constant 3.
Now ¢’ = 6.

The word 00(a)01(b)1012(c)2(d)1121(e)00(f)00202 has six
breakpoints and is in L N H.

A pair of breakpoints is white iff an even number of 1 is in
between. (a,e), (a,f), (b,c), (b,d), (c,d), (e, f) are white
pairs. The set {(b), (c), (d)} iIs monochromatic, all of its
pairs are white.

Among the white pairs, (b,d) and (e, f) satisfy that they split
thewordintou-v-wwithu-v*-w C H.

Now 0001 - (10122)* - 11210000202 C L N H.
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Additional Exercises

A language is called linear iff it has a grammar where every
rule is either of the form A — u or of the form A — vBw;
here A, B are nonterminals and u, v, w are terminal words.

Exercise 3.30
Show that the intersection of a linear language and a
regular language is linear.

Exercise 3.31

A linear grammar is called balanced iff for every rule of the
form A — vBw it holds that |v| = |w| and a language is
called balanced linear iff it is generated by a balanced linear
grammar. Is the intersection of two balanced linear
languages again balanced linear? Prove the answer.

Exercise 3.32
Provide an example of a language which is linear but not
balanced linear. Prove the answer.
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Exercises

In the following, one considers regular expressions
consisting of the symbol L of palindromes over {0,1,2} and
the mentioned operations. What is the most difficult level in
the hierarchy “regular, linear, context-free, context-sensitive”
such expressions can generate. It can be used that

{10'10910%1 : i # j,i # k,j # k} is not context-free.

Exercise 3.33: Expressions containing L and U and finite
sets.

Exercise 3.34: Expressions containing L and U and - and
Kleene star and finite sets.

Exercise 3.35: Expressions containing L and U and - and N
and Kleene star and finite sets.

Exercise 3.36: Expressions containing L and - and set
difference and Kleene star and finite sets.
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