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Types of Infinite Games

Survival Game: Anke and Boris move alternately in an
infinite graph (V,E) where Anke starts in node s ∈ V.
Anke wins play in game (V,E, s) if the play is infinite and
Boris wins if the play if it is finite and ends in a deadend
where players cannot go on.

Update Game: Game (V,E, s,W) played on finite graph
(V,E) with starting node s and special nodes W.
Anke wins play in game if the play is infinite and every node
in W is visited infinitely often. Boris wins if there is a node
w in W visited only finitely often.

Büchi Game: Game (V,E, s,W) played on finite graph
(V,E) with starting node s and special nodes W.
Anke wins play in game if the play is infinite and some node
in W is visited infinitely often. Boris wins if no node in W is
visited infinitely often.
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Repetition 2

0start 1 2 3 4 5

6 7 8 9

Boris has a memoryless winning strategy for the player.

Nodes 0 1 2 3 4 5 6 7 8 9

Boris’ Moves - 2 3 5 5 - 1 2 6 8

Half-moves remaining

when Boris’ turn - 3 7 1 1 0 - - 5 -

Half-moves remaining

when Anke’s turn 8 8 2 6 - 0 4 - - -
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Repetition 3

There is an algorithm which can check which player wins a
survival game (when playing optimally).

Let f(v,Anke) = f(v,Boris) = 0 for nodes without
successor.
Let f(v,Anke) = n for least n with f(w,Boris) < n for all
successors w of v.
Let f(v,Boris) = n for least n with f(w,Anke) < n for some
successor w of v.
Let f(v,p) = ∞ whenever ¬f(v,p) ≤ 2 ∗ |V|.

If f(s,Anke) = ∞ then Anke has winning strategy by
moving from each node v with f(v,Anke) = ∞ to a
successor w with f(w,Boris) = ∞.
If f(s,Anke) < ∞ then Boris has winning strategy by
moving from each node v with f(v,Boris) < ∞ to a
successor w with f(w,Anke) < f(v,Boris).
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Repetition 4

sstart t

u

Anke has a winning strategy for this update game but no
memoryless one.
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Repetition 5

0start 1 2 3 4

Node 0 1 2 3 4

Anke’s Move 0 2 2 4 4

If maxval is even and one can always go from n to n and to
min{maxval,n+ 1} and to 0 then Anke has a winning
strategy for this parity game.
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Sets of Infinite Sequences

Real Numbers have no finite representation; infinite words
might a way to represent them.

b0b1b2 . . . ∈ {0,1,2,3,4,5,6,7,8,9}ω can be used to

represent the sum over all bk · 10−k−1 which permits to
represent all real numbers between 0 and 1.

Wanted: Unique representation where only one of
0018999999999 . . . and 00190000000 . . . appears.

Goal: Make automaton which recognises those decimal
strings which have some digit different from 9 infinitely
often.
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Büchi Automaton

Automaton (Q,Σ, δ, s,F) with Q,Σ, δ, s,F being defined as a
usual non-deterministic automaton but a different semantic
for dealing with infinite words.

Given an infinite word b0b1b2 . . . ∈ Σω, a run is a sequence
q0q1q2 . . . ∈ Qω of states such that q0 = s and
(qk,bk,qk+1) ∈ δ for all k. Let

U = {p ∈ Q : ∃∞k [qk = p]}

be the set of infinitely often visited states on this run. The
run is accepting iff U ∩ F 6= ∅. The Büchi automaton
accepts an ω-word iff it has an accepting run on this
ω-word, otherwise it rejects the ω-word.
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Example of Automaton

The following deterministic Büchi automaton accepts all
ω-words of reals between 0 and 1 which are not almost
always 9.

sstart t

9 0, 1, 2, 3, 4, 5, 6, 7, 8
9

0, 1, 2, 3, 4, 5, 6, 7, 8

Here a Büchi automaton is called deterministic iff for every
p ∈ Q and a ∈ Σ there is at most one q ∈ Q with
(p, a,q) ∈ δ; in this case one also writes δ(p, a) = q.

This automaton goes infinitely often through the accepting
state t iff there is infinitely often one of the digits
0,1,2,3,4,5,6,7,8 and therefore the word is not of the form
w9ω.
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Deterministic Büchi Automata

Exercise 6.2
Make a deterministic Büchi automaton which recognises
the language L of all ω-words in {0,1,2}ω which contain all
three digits infinitely often.

Exercise 6.3
Make a deterministic Büchi automaton which accepts an
ω-word from {0,1,2}ω iff it contains at least two digits
infinitely often.

Exercise 6.4
Make a deterministic Büchi automaton with three states
which accepts all ω-words in which at least six of the usual
ten digits occur infinitely often and which rejects all ω-words
in which only one digit occurs infinitely often. There is no
requirement what the automaton does on other ω-words.
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Power of Non-Determinism

Let L contain all ω-words which from some point onwards
have only 9s, so L = {0,1,2,3,4,5,6,7,8,9}∗ · 9ω. Then
some non-deterministic Büchi automaton recognises L.

sstart t u

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

9 0, 1, 2, 3, 4, 5, 6, 7, 8
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Limitation of Determinism

No deterministic Büchi automaton recognises the language
L from the last slide.

So assume by way of contradiction that
(Q, {0,1,2,3,4,5,6,7,8,9}, δ, s,F) would recognise L.
Now one searches inductively for strings of the form
σ0, σ1, . . . ∈ 09∗ such that δ(s, σ0σ1 . . . σn) ∈ F for all n.

If all σn can be found
then σ0σ1 . . . is a sequence which infinitely many 0

accepted by the Büchi automaton
else there is an n such that the sequence σ0σ1 . . . σn−109

ω

is not accepted by the Büchi automaton although it is in L.
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Quiz

What problem arises at the usual product automaton
construction for languages L ∪H and L ∩H of ω-words,
given determistic Büchi automata recognising L and H.

Let U = {u1,u2, . . . ,un} be a finite set of words. Is the set
of all ω-words containing each of the above words infinitely
often as a subword recognised by a deterministic Büchi
automaton?
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Product Automaton

Assume that (QL,Σ, δL, sL,FL) recognises L and
(QH,Σ, δH, sH,FH) recognises H.

Now let Q = QL ×QH × {10,01,11} and for each
(qL,qH) ∈ QL ×QH and a ∈ Σ let
δ((qL,qH, r), a) = (δL(qL, a), δH(qH, a), r′) where r′ = r if
qL /∈ FL and qH /∈ FH and r′ = FL(qL)FH(qH) if at least
one of these bits is 1.

For the union, (qL,qH, r) ∈ F if either qL ∈ FL or qH ∈ FH.
For the intersection, (qL,qH, r) ∈ F iff qL ∈ FL and the
second bit or r is 1 or qH ∈ FH and the first bit of r is 1.

The start state is (sL, sH,11); note that the initial value of r
is irrelevant.
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Example of Intersection

L is the set of all ω-words containing infinitely many even
digits.

H is the set of all ω-words containing infinitely often either 0
or 5.

Büchi Automaton for L consists of two states sL, tL where
the automaton goes to tL iff it has just seen an even digit
and to sL iff it has just seen an odd digit. FL = {tL}.

Büchi Automaton for H consits of two states sH, tH where
the automaton goes to tH iff it has just seen 0 or 5 and to
sH otherwise. FH = {tH}.

Intersection L ∩H contains all ω-words where infinitely
many even digits and also infinitely many digits from 0,5
appear in the ω-word.
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The Intersection Automaton

Product automaton has states from
{sL, tL} × {sH, tH} × {01,10,11}.

How to determine the successor of (qL,qH, r) on input a.

Let r′ = r for (sL, sH, r), r′ = 10 for (tL, sH, r), r′ = 01 for
(sL, tH, r) and r′ = 11 for (tL, tH, r).
δ((qL,qH, r),0) = (tL, tH, r′); δ((qL,qH, r),5) = (sL, tH, r′);
δ((qL,qH, r), a) = (tL, sH, r′) for a ∈ {2,4,6,8};
δ((qL,qH, r), a) = (sL, sH, r′) for a ∈ {1,3,7,9}.

Starting state is (sL, sH,11).

F contains all nodes of form (tL,qH,x1) and of form
(qL, tH,1x). Here qL,qH are any states in the
corresponding automata and x is any bit 0 or 1.
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Exactly Two out of Ten Digits

Consider the following automaton Bi,j with i 6= j.

sstart qi,j ri,j ti,j

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 j i

i, j i j

i, j

Now make a central starting node s connected to cycles of
three nodes qi,j, ri,j, ti,j for all pairs of distinct digits i, j as in

the example above. The nodes ti,j are the only accepting
ones.
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Product Automata Exercises

Exercise 6.11: Construct deterministic Büchi automata for
the language Lab of all ω-word which do not contain the
subword ab anywhere. Then construct the intersection
automaton for L01 ∩ L23; the alphabet is {0,1,2,3}.

Exercise 6.12: Construct a deterministic Büchi automaton
for the language Hab of all ω-words which in which the
subword ab occurs infinitely often. Then construct the
intersection via a product automaton for H01 ∩H23; the
alphabet is {0,1,2,3}.

Exercise 6.13: Construct a deterministic Büchi automaton
with four states for H01 ∪H23 with Hab as in Exercise 6.12.
This automaton does not need to be of the form of a
product automaton. The alphabet is {0,1,2,3}.
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Characterising Languages

Theorem 6.14 [Büchi 1960]
The following are equvivalent for a language L of ω-words:
(a) L is recognised by a non-deterministic Büchi automaton;
(b) L = ∪m∈{1,...,n}AmBω

m for some n and 2n regular

languages A1,B1, . . . ,An,Bn.

Here Bω
m is the concatenation of infinitely many non-empty

strings from Bm.
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Direction One

Assume that non-deterministic Büchi automaton
(Q,Σ, δ, s,F) recognises L. Assume that
F = {p1,p2, . . . ,pn}, let Am the set of all words on which,
from starting state s the automaton can end up at pm and
let Bm the set of all nonempty words on which the
automaton can go from pm to pm.

If an ω-word is in L then the Büchi automaton has a run on
it which goes infinitely often through one pm.
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Direction Two

Assume that L = A1 ·B
ω
1 ∪A2 ·B

ω
2 ∪ . . . ∪Am ·Bω

n. Assume

that each language Am is recognised by the nfa
(N2m−1,Σ, δ2m−1, s2m−1,F2m−1) and each language
Bm ∪ {ε} is recognised by the nfa (N2m,Σ, δ2m, s2m,F2m).

Now let N0 = {s0} ∪N1 ∪N2 ∪ . . . ∪N2n where all these
sets are consisdered to be disjoint. The start symbol of the
new automaton is s0.

Furthermore, let δ0 be δ1 ∪ δ2 ∪ . . . ∪ δ2n plus the following
transitions for each a ∈ Σ: first, (s0, a,q) if there is an m

such that (s2m−1, a,q) ∈ δ2m−1; second, (s0, a,q) if there is
an m such that ε ∈ Am and (s2m, a,q) ∈ δ2m; third,
(s0, a, s2m) if a ∈ Am; fourth, (q, a, s2m), if there are m and
p ∈ F2m−1 with q ∈ N2m−1 and (q, a,p) ∈ δ2m−1; fifth,
(q, a, s2m), if there are m and p ∈ F2m with q ∈ N2m and
(q, a,p) ∈ δ2m.
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Continuation

Now {s2, s4, s6, . . . , s2n} is the set F0 of the final states of
the Büchi automaton (N0,Σ, δ0, s0,F0). That is, this Büchi
automaton accepts an ω-word iff there is a run of the
automaton which goes infinitely often through a node of the
form s2m; by the way how δ0 is defined, this is equivalent to
saying that the given ω-word is in Am ·Bω

m.
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6.15: Muller automata

A Muller automaton (Q,Σ, δ, s,G) consists of a set of states
Q, an alphabet Σ, a transition relation δ, a starting state s

and a set G of subsets of Q. A run of the Muller automaton
on an ω-word b0b1b2 . . . ∈ Σω is a sequence q0q1q2 . . . with
q0 = s and (qk,bk,qk+1) ∈ δ for all k. A run of the Muller
automaton is accepting iff the set U of infinitely often visited
states satisfies U ∈ G. The Muller automaton accepts the
ω-word b0b1b2 . . . iff it has an accepting run on it.

A Muller automaton is deterministic iff the relation δ is a
function, that is, for each p ∈ Q and a ∈ Σ there is at most
one q ∈ Q with (p, a,q) ∈ δ.
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Example

The language of all ω-words of the form w9ω is recognised
by the deterministic Muller automaton
({s, t}, {0,1,2,3,4,5,6,7,8,9}, δ, s, {{s}}),
where δ(s, a) = t for a < 9, δ(s,9) = s and δ(t, a) = s for all a.

The following diagramme illustrates the Muller automaton:

sstart t G = {{s}}

9
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

0, 1, 2, 3, 4, 5, 6, 7, 8
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Deterministic Muller Automata

Exercise 6.16
Make a deterministic Muller automaton recognising the
complement of the language L from Exercise 6.2. That is,
the Muller automaton should accept all ω-words in which
one or two of the digits 0,1,2 occur only finitely often.

Exercise 6.17
Make a deterministic Muller automaton with alphabet
{0,1,2} which recognises the language of all ω-words for
which there is an even number of ab ∈ {01,12,20} which
occurs infinitely often as a subword in the ω-word.

Exercise 6.18
Make a deterministic Muller automaton with alphabet
{0,1,2} which recognises the language of all ω-words for
which there are no ab ∈ {21,10,02} which occur infinitely
often as a subword in the ω-word.
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Characterisations

Theorem 6.19 [McNaughton 1966, Safra 1988]
The following conditions are equivalent for an ω-language L.
(a) L is recognised by a non-deterministic Büchi automaton;
(b) L is recognised by a deterministic Muller automaton;
(c) L is recognised by a non-deterministic Muller automaton.

Application
If a language L is recognised by a non-deterministic Büchi
automaton, so is its complement. There is an algorithm
which constructs from a Büchi automaton for L a Büchi
automaton for its complement. The number of states grows
exponentially.
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Exponential Blow-Up

Exercise 6.21
Consider Lh = {b0b1b2 . . . ∃

∞m [bm = bm+h]} over
alphabet {0,1,2}. Make a non-deterministic Büchi
automaton and a deterministic Muller automaton to
recognise Lh and a non-deterministic Büchi automaton to
recognise the complement of Lh. How many states do
these automata have?
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Infinitely Often Occurring Symbols

Exercise 6.22
Let h = |Σ| and let L be any language where for each
ω-word α the membership of α in L only depends on the set
of symbols which appears infinitely often in α. Show that
there is a deterministic Muller automaton with h states
recognising L.

Exercise 6.23
Let L contain all ω-words α ∈ Σω for which at least half of
the symbols in Σ occurs infinitely often.
(a) Make a deterministic Büchi automaton recognising L

with up to 2|Σ|−1 states.
(b) Make a non-deterministic Büchi automaton recognising

L with up to |Σ|2/2+ 2 states.
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Other Automata

Rabin and Streett automata are automata of the form
(Q,Σ, δ, s,Ω) where Ω is a set of pairs (E,F) of subsets of
Q and a run on an ω-word b0b1b2 . . . is a sequence
q0q1q2 . . . with q0 = s and (qn,bn,qn+1) ∈ δ for all n. For a
Rabin automaton, a run is accepting iff the set
U = {p ∈ Q : ∃∞n [p = qn]} of infinitely often visited nodes
satisfies U ∩ E 6= ∅ and U ∩ F = ∅ for a pair (E,F) ∈ Ω; for a
Streett automaton a run is accepting iff U satisfies
(U ∩ E 6= ∅ or U ∩ F = ∅) for all (E,F) ∈ Ω.

If an ω-language L is recognised by a complete
deterministic Rabin automaton (Q,Σ, δ, s,Ω) then its
complement is recognised by the deterministic Streett
automaton (Q,Σ, δ, s, {(F,E) : (E,F) ∈ Ω}).
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Example 6.25

Assume that an automaton with states Q = {q0,q1, . . . ,q9}
on seeing digit d goes into state qd. Then the condition Ω

consisting of all pairs (Q− {qd}, {qd}) produces an Rabin
automaton which accepts iff some digit d appears only
finitely often in a given ω-word.

Assume that an automaton with states
Q = {s,q0,q1, . . . ,q9} can go on any digit from s to any
state; furthermore, in state qd, it stays on d in this state and
returns on all other digits to s. Let E = {q0,q1, . . . ,q9} and
F = {s} and Ω = {(E,F)}. This Rabin automaton accepts
all ω-words where exactly one digit occurs infinitely often.
The corresponding Streett automaton uses E = ∅ and
F = {s}.
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Exercises

Quiz
Give an algorithm to translate a Büchi automaton into a
Streett automaton.

Exercise 6.27
Assume that for an ω-language Lk there is a Street
automaton (Qk,Σ, sk, δk,Ωk). Prove that then there is a
Streett automaton for L1 ∩ L2 with states Q1 ×Q2, start
state (s1, s2), transition relation δ1 × δ2 and an Ω containing
|Ω1|+ |Ω2| pairs. Explain how Ω is constructed.
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Alternating Büchi Automata

Definition. Anke and Boris decide on moves in afa
(Q,Σ, δ, s,F) while processing an ω-word w. Three
possibilities for pairs (q, a) of states q and symbols a:

• (q, a) → r: Next state is r;

• (q, a) → r ∨ p: Anke picks r or p;

• (q, a) → r ∧ p: Boris picks r or p.

The afa accpets an ω-word w iff Anke has a winning
strategy to ensure that the game always goes infinitely
often through states from F.

Example. Q = {p,q, r}; Σ = {0,1}; language ({0}∗ · {1})ω.

state type 0 1

p start, rejecting p ∧ q ∧ r q ∨ r

q accepting p ∧ q ∧ r p ∨ r

r accepting p ∧ q ∧ r p ∨ q
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Büchi Automata and Games

Example 6.30: Assume a Büchi Game (G,E, s,W) is given.
Now one can construct a Büchi AFA as follows: The set G
is the state set, the alphabet is {Anke,Boris}. Assume that
for a node q the outgoing edges to nodes p1,p2, . . . ,pk.
Then the AFA has the following transitions:
δ(q,Anke) = p1 ∨ p2 ∨ . . . ∨ pk;
δ(q,Boris) = p1 ∧ p2 ∧ . . . ∧ pk.
So the input tells which player selects the next move. The
accepting states of the Büchi AFA are those in W.

Now Anke has a winning strategy for the game (G,E, s,W)
iff the Büchi AFA accepts (AnkeBoris)ω.

Exercise 6.31: Given a Büchi game (G,E, s,W), construct
a deterministic Büchi automaton which reads plays
(sequences of nodes visited by alternating moves of Anke
and Boris) and which accepts iff all moves in the play are
possible and Anke wins the play.
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Exercises 6.32-6.33

Exercise 6.32: Given a Büchi game (G,E, s,W), a
nondeterministic Büchi automaton is using the states
G∪ {0} with W ∪ {0} being accepting and the input is every
second node of a play, so if the play is s q1 q2 q3 q4 . . . then
Anke does the moves to q1,q3,q5, . . . and Boris to
q2,q4,q6, . . .; now the game is that Anke reads q2k with
q0 = s and if one cannot go from the current state q2k−1 to
q2k then Anke moves to 0 else Anke moves to a successor
node of q2k which is called q2k+1. From 0, one can only
move to 0 (independently of the input).

Show that Anke has a winning strategy for the Büchi game
iff the so constructed nondeterministic finite automaton
accepts all halfplays as described here.

Exercise 6.33: Construct the above Büchi automaton for the
Büchi game with G = {1,2,3,4}, s = 1, W = {2,3} and E =
{(1,1), (1,2), (1,3), (1,4), (2,2), (2,1), (3,3), (3,1), (4,4)}.
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What to Learn for the Examination

Please revise Chapters 1-6.
Learn the three lower levels of the Chomsky hierarchy:
regular, context-free, context-sensitive.
Which of these is closed under union, intersection,
complement and concatenation? (Context-sensitive
languages are closed under complement, but the proof is
not needed for the midterm.) Learn how to modify the
corresponding grammars and also how counter example
could look like.
Train making dfas, nfas, regular expressions and grammars
for various sample languages. Learn the pumping lemmas.
Revise finite and infinite games on finite graphs and the
automata for languages of ω-words.
Do the Selftests in the Lecture Notes at the end of Chapters
3 and 6.

Read lecture notes on http://www.comp.nus.edu.sg/˜fstephan/.
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