
to
c
,lo

f,lo
t

Advanced Automata Theory 7
Automatic Functions

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Advanced Automata Theory 7 Automatic Functions – p. 1



Repetition 1

Automaton (Q,Σ, δ, s,F) with Q,Σ, δ, s,F being defined as a
usual non-deterministic automaton but a different semantic
for dealing with infinite words.

Given an infinite word b0b1b2 . . . ∈ Σω, a run is a sequence
q0q1q2 . . . ∈ Qω of states such that q0 = s and
(qk,bk,qk+1) ∈ δ for all k. Let

U = {p ∈ Q : ∃∞k [qk = p]}

be the set of infinitely often visited states on this run. The
run is accepting iff U ∩ F 6= ∅. The Büchi automaton
accepts an ω-word iff it has an accepting run on this
ω-word, otherwise it rejects the ω-word.

Advanced Automata Theory 7 Automatic Functions – p. 2



Repetition 2

The following deterministic Büchi automaton accepts all
ω-words of reals between 0 and 1 which are not almost
always 9.

sstart t

9 0, 1, 2, 3, 4, 5, 6, 7, 8
9

0, 1, 2, 3, 4, 5, 6, 7, 8

Here a Büchi automaton is called deterministic iff for every
p ∈ Q and a ∈ Σ there is at most one q ∈ Q with
(p, a,q) ∈ δ; in this case one also writes δ(p, a) = q.

This automaton goes infinitely often through the accepting
state t iff there is infinitely often one of the digits
0,1,2,3,4,5,6,7,8 and therefore the word is not of the form
w9ω.

Advanced Automata Theory 7 Automatic Functions – p. 3



Repetition 3

Theorem [Büchi 1960]
The following are equvivalent for a language L of ω-words:
(a) L is recognised by a non-deterministic Büchi automaton;
(b) L = ∪m∈{1,...,n}AmBω

m for some n and 2n regular

languages A1,B1, . . . ,An,Bn.

Here Bω
m is the concatenation of infinitely many non-empty

strings from Bm.

Theorem [Büchi 1960]
There are ω-languages which are only recognised by a
non-deterministic Büchi automaton but not by a
deterministic one; for example, {0,1}∗ · {0}ω.

Advanced Automata Theory 7 Automatic Functions – p. 4



Repetition 4

Theorem [McNaughton 1966, Safra 1988]
The following conditions are equivalent for an ω-language L.
(a) L is recognised by a non-deterministic Büchi automaton;
(b) L is recognised by a deterministic Muller automaton;
(c) L is recognised by a non-deterministic Muller automaton.

Application
If a language L is recognised by a non-deterministic Büchi
automaton, so is its complement. There is an algorithm
which constructs from a Büchi automaton for L a Büchi
automaton for its complement. The number of states grows
exponentially.

Advanced Automata Theory 7 Automatic Functions – p. 5



Automatic Relations and Functions

Lexicographical Order
a1a2 . . . an <lex b1b2 . . .bm iff either the first string is a
proper prefix of the second or there is a k with
k ≤ n ∧ k ≤ m ∧ ak < bk ∧ ah = bh for all h with 1 ≤ h < k.

NUH <lex NUHS <lex NUS <lex SOC.

Algorithm
Processing inputs x,y symbol by symbol.
1. If x is exhausted and y not, then x <lex y, Halt.
2. If y is exhausted and x not, then y <lex x, Halt.
3. If x and y are exhausted, then x = y, Halt.
4. Read symbol a from x and b from y.
5. If a = b then go to 1.
6. If a < b then x <lex y else y <lex x. Halt.

Advanced Automata Theory 7 Automatic Functions – p. 6



More Formally

Use special symbol # to be returned from exhausted inputs.

Relation R ⊆ X×Y is automatic iff there is an automaton
reading both inputs at the same speed (one symbol per
cycle) such that (x,y) ∈ R iff the automaton is in an
accepting state after having read both, x and y, completely.

Similarly one can define that a relation of several
parameters is automatic.

A function f : X → Y is automatic iff the relation
{(x,y) : x ∈ dom(f) ∧ y = f(x)} is automatic.

Advanced Automata Theory 7 Automatic Functions – p. 7



Convolution

Relations can be translated into singular sets using
convolution.

Convolution has combined characters of matching positions
in the words with # used for exhausted words (# is not in
the alphabet).

conv(00110,0123456789) =
(

0
0

)(

0
1

)(

1
2

)(

1
3

)(

0
4

)(

#
5

)(

#
6

)(

#
7

)(

#
8

)(

#
9

)

.

Now one can formalise automaticity of a relation using a
convolution.

For example, a ternary relation R of words over Σ is
automatic iff the set {conv(x,y, z) : (x,y, z) ∈ R} is regular.

Advanced Automata Theory 7 Automatic Functions – p. 8



Example

Let Σ = {0,1}.

Then {conv(x,y) : x,y ∈ Σ∗ ∧ |x| = |y|} is the set

{
(

0
0

)

,
(

0
1

)

,
(

1
0

)

,
(

1
1

)

}∗ or, more general, (Σ×Σ)∗.

Quiz
Which relations are coded by the sets

{
(

0
0

)

,
(

1
1

)

}∗ · {
(

#
0

)

,
(

#
1

)

}+

and

{
(

0
0

)

,
(

0
1

)

,
(

1
0

)

,
(

1
1

)

}∗ · {
(

#
0

)

,
(

#
1

)

}∗

and

{
(

0
0

)

,
(

0
1

)

,
(

1
0

)

,
(

1
1

)

}∗ · {
(

#
0

)

,
(

#
1

)

} · {
(

#
0

)

,
(

#
1

)

}∗ ?

Advanced Automata Theory 7 Automatic Functions – p. 9



Automaton comparing string length

sstart r

(

0
0

)

,
(

0
1

)

,
(

1
0

)

,
(

1
1

)

(

0
#

)

,
(

1
#

)

,
(

#
0

)

,
(

#
1

)

(

0
#

)

,
(

1
#

)

,
(

#
0

)

,
(

#
1

)

Automaton processes strings correctly when it is the
convolution of two binary strings.

Advanced Automata Theory 7 Automatic Functions – p. 10



Lexicographic Order as AR

For binary alphabet {0,1}, the following automaton
recognises lexicographic ordering.

x = ystart

x > y

x < y

(

0
0

)

,
(

1
1

)

(

0
1

)

,
(

#
0

)

,
(

#
1

)

(

1
0

)

,
(

0
#

)

,
(

1
#

)

(

a
b

)

(

a
b

)

Here
(

a
b

)

on an arrow means that the automaton always

goes this way.
Advanced Automata Theory 7 Automatic Functions – p. 11



Automatic Functions

An automatic relation R ⊆ X×Y defines a function f iff
∀x∀y [f(x) = y ⇔ (x,y) ∈ R].

For example, f(x) = x01 has the graph {
(

0
0

)

,
(

1
1

)

}∗ ·
(

#
0

)(

#
1

)

.

Quiz. Consider the following expressions:

• {
(

0
0

)

,
(

0
1

)

,
(

1
0

)

,
(

1
1

)

}∗ ·{
(

0
0

)

,
(

1
1

)

}·({
(

#
0

)

,
(

#
1

)

}∗∪{
(

0
#

)

,
(

1
#

)

}∗),

• {
(

0
1

)

,
(

1
0

)

}∗ · ({ε} ∪ {
(

2
#

)

} · {
(

0
#

)

,
(

1
#

)

,
(

2
#

)

}∗),

• {
(

0
0

)

,
(

1
0

)

,
(

2
0

)

, . . . ,
(

9
0

)

}∗.

Which of these three relations define functions? What are
the domains and ranges of these functions?

Advanced Automata Theory 7 Automatic Functions – p. 12



Exercise 7.6

Which of the following relations are automatic (where xk is
the k-th symbol of x = x1x2 . . .xn and |x| = n):

• R1(x,y, z) ⇔ ∀k ∈ {1,2, . . . ,min{|x|, |y|, |z|}} [xk =
yk ∨ xk = zk ∨ yk = zk];

• R2(x,y, z) ⇔ |x|+ |y| = |z|;

• R3(x, z) ⇔ ∃y [|x|+ |y| = |z|];

• R4(x,y, z) ⇔ ∃k ∈ {1,2, . . . ,min{|x|, |y|, |z|}} [xk = yk =
zk];

• R5(x,y, z) ⇔ ∃i, j,k [xi = yj = zk];

• R6(x,y) ⇔ y = 012 · x · 012.

Give a short explanations why certain relations are
automatic or not; it is not needed to construct the
corresponding automata by explicit tables or diagrammes.

Advanced Automata Theory 7 Automatic Functions – p. 13



Theorem 7.7

Theorem
If a relation or function is first-order definable from
automatic parameters then it is automatic.

Example
Length-lexicographic ordering:

x <ll y ⇔ |x| < |y| ∨ (|x| = |y| ∧ x <lex y).

Length-lexicographic successor:

y = Succ(x) ⇔ x <ll y ∧ ∀z [z <ll x ∨ z = x ∨ z = y ∨ y <ll z].

Range R of a function f with domain D:

y ∈ R ⇔ ∃x [x ∈ D ∧ y = f(x)].

Advanced Automata Theory 7 Automatic Functions – p. 14



Exercise 7.9: Automatic Family

A family Le of sets with a regular index set I is automatic iff
{conv(e,x) : x ∈ Le} is a regular set.

The set D = {x : ∃e ∈ I [x ∈ Le]} is regular.

Show that the following relations are also automatic.

• {(i, j) ∈ I× I : Li = Lj};

• {(i, j) ∈ I× I : Li ⊆ Lj};

• {(i, j) ∈ I× I : Li ∩ Lj = ∅};

• {(i, j) ∈ I× I : Li ∩ Lj is infinite}.

Show this by showing that the corresponding relations are
first-order definable from given automatic relations. You can
use for the fourth the length-lexicographic order in the
first-order definition.

Advanced Automata Theory 7 Automatic Functions – p. 15



Example 7.10

Let (N,Σ,P,S) be a grammar and
R = {(x,y) ∈ (N ∪Σ)∗ × (N ∪Σ)∗ : x ⇒ y} be the set of all
pairs of words where y can be derived from x in one step.
The relation R is automatic.

Furthermore, for each fixed n, the relation
{(x,y) : ∃z0, z1, . . . , zn [x = z0 ∧ y = zn ∧ z0 ⇒ z1 ∧ z1 ⇒
z2 ∧ . . . ∧ zn−1 ⇒ zn]} of all pairs of words such that y can
be derived from x in exactly n steps is automatic.

Similarly, the relation of all (x,y) such that y can be derived
from x in at most n steps is automatic.

Advanced Automata Theory 7 Automatic Functions – p. 16



Remark 7.11

The relation ⇒∗ is usually not automatic for a non-regular
grammar, even if the language generated is regular.

The grammar ({S}, {0,1,2}, {S → SS|0|1|2},S) generating
all non-empty words over {0,1,2}. Consider a derivation

S ⇒∗ S01m2S ⇒∗ 0k1m2n. If ⇒∗ would be automatic, then
also the set

R = {conv(S01m2S,0k1m2n) : k > 1,m > 0,n > 1}.

Use pumping lemma and choose n = h+ 4, m = h,
k = h+ 4 for h much larger than the pumping constant.
Then for every r the string

(

S
0

)(

0
0

)(

1
0

)c(1
0

)dr(1
0

)h−c−d(2
0

)(

S
0

)(

#
1

)h(#
2

)h+4

is in R, where c ≥ 0, d > 0 and h− c− d ≥ 0 are some

parameters. For the given r, the substring 01h+(r−1)d2

becomes 01h2 in the derivation, impossible for r 6= 1.
Advanced Automata Theory 7 Automatic Functions – p. 17



Deriverability in Regular Grammars

However, the relation ⇒∗ is regular in the case that the
grammar (N,Σ,P,S) used is regular.

For every A,B ∈ N, let LA,B = {w ∈ Σ∗ : A ⇒∗ wB} and

LA = {w ∈ Σ∗ : A ⇒∗ w}. All sets LA and LA,B are regular.

Note that the concatenation of regular languages is regular.

Now {conv(x,y) : x ⇒∗ y} is the union of all sets
{conv(vA,vwB) : v ∈ Σ∗,w ∈ LA,B} and

{conv(vA,vw) : v ∈ Σ∗,w ∈ LA} with A,B ∈ N;
this union is a regular set.

Advanced Automata Theory 7 Automatic Functions – p. 18



Exercise 7.12

Exercise
Let R be an automatic relation over Σ∗ ∪ Γ∗ such that
whenever (v,w) ∈ R then |v| ≤ |w| and let L be the set of
all words x ∈ Σ∗ for which there exists a sequence
y0,y1, . . . ,ym ∈ Γ∗ with y0 = ε, (yk,yk+1) ∈ R for all k < m

and (ym,x) ∈ R. Note that ε ∈ L iff (ε, ε) ∈ R.

Show that L is context-sensitive.

Comment
The converse direction is also true, as one could take a
grammar for L− {ε} where each rule v → w satisfies

|v| ≤ |w| and either v,w ∈ N+ or

|v| = |w| ∧ v ∈ N+ ∧w ∈ Σ+. Then (x,y) ∈ R if either

x,y ∈ N+ ∧ x ⇒ y or x ∈ N+ ∧ y ∈ Σ+ ∧ (x ⇒∗ y by rules
making non-terminals to terminals) or (x,y) = (ε, ε) ∧ ε ∈ L.

Advanced Automata Theory 7 Automatic Functions – p. 19



Context-Sensitive Languages

Theorem [Immerman and Szelepcsényi 1987]
The complement of a context-sensitive language is
context-sensitive.

Representation of Σ∗ − L

The complent of L will be represented by an automatic
relation R such that (v,w) ∈ R ⇒ |v| ≤ |w| and x ∈ L iff
∃ℓ∃d0,d1, . . . ,dℓ [d0 = ε ∧ (d0,d1) ∈ R ∧ (d1,d2) ∈
R ∧ . . . ∧ (dℓ−1,dℓ) ∈ R ∧ (dℓ,x) ∈ R].

Proof-Method: Nondeterministic Counting
If i strings can be derived in ℓ steps then one can
non-deterministically check which string y can be derived in
i+ 1 steps and count their number j.

Advanced Automata Theory 7 Automatic Functions – p. 20



Basic Algorithm

1. For any x ∈ Σ∗, try to verify x /∈ L as follows;
2. Let u be the length-lexicographically largest string in

(N ∪Σ)|x|;
3. Let i = Succll(ε);
4. For ℓ = ε to u Do Begin
5. Let j = ε;
6. For all y ≤ll u Do Begin
7. Derive words w1,w2, . . . ,wi non-deterministically in
length-lexicographic order in up to ℓ steps each and check:
8. If some wm satisfies wm ⇒ y or wm = y then let
j = Succll(j);
9. If some wm satisfies wm = x or wm ⇒ x then abort
computation (as x ∈ L); End (of For-Loop 6);
10. Let i = j; let j = ε; End (of For-Loop 4);
11. If the algorithm has not been aborted then x /∈ L.

Advanced Automata Theory 7 Automatic Functions – p. 21



Refined Algorithm I

1: Choose an x ∈ Σ+ and initial all other variables as ε;

2: Let u = (maxll(N ∪Σ))|x|;

3: Let i = Succll(ε) and ℓ = ε;

4: While ℓ <ll u Do Begin

5: Let j = ε;

6: Let y = ε;

7: While y <ll u Do Begin
8: Let y = Succll(y);
9: h = ε and w = ε;
10: While h <ll i Do Begin

11: Nondeterministically replace w by w′ with
w <ll w

′ ≤ll u;
12: Let v = S;
13: Let k = ε;

Advanced Automata Theory 7 Automatic Functions – p. 22



Refined Algorithm II

14: While (v 6= w) ∧ (k <ll ℓ) Do Begin
15: Nondeterministically replace (k,v) by (k′,v′)

with k <ll k
′ and v ⇒ v′ End (of While in 14);

16: If v 6= w Then abort the computation;
17: If w = x or w ⇒ x Then abort the computation;
18: If w 6= y and w 6⇒ y

19: Then Let h = Succll(h)
20: Else Let h = i

21: End (of While in 10);

22: If w = y or w ⇒ y Then j = Succll(j)
23: End (of While in 7);

24: Let i = j;

25: Let ℓ = Succll(ℓ) End (of While in 4);

26: If the algorithm has not yet aborted Then generate x;

Advanced Automata Theory 7 Automatic Functions – p. 23



Exercise 7.14

Algorithm
Generate all nonempty strings which do not have as length
a power of 2.

1. Guess x ∈ Σ+; Let y = 0;
2. If |x| = |y| then abort;
3. Let z = y;
4. If |x| = |y| then generate x and halt;
5. Remove last 0 in z;
6. Let y = y0;
7. If z = ε then goto 2 else goto 4.

Make an R using the subset of Γ∗ consisting of
conv(line,x,y, z). R should have rules mapping ε to
possible outcomes of line 1 (before line 2), updates from
line to line and final moves producing the output from line 4.

Advanced Automata Theory 7 Automatic Functions – p. 24



Additional Exercises

Let x = a0a1a2 . . . an ∈ {0,1,2}n represent the natural
number

∑

m≤n am · 3m. Construct for these ternary function

dfas which recognise the graphs of the following automatic
functions (as convolutions of input and output), the dfas
need only to be correct on inputs of the form of a
convolution.

7.15: x 7→ x+ 1.

7.16: x 7→ x+ x+ x+ x.

7.17: x 7→ x+ x+ 1.

7.18: x 7→ 3n+1 − x− 1.

7.19: x 7→ (x− a0)/3+ 3n · a0.

7.20: x 7→ Even(x) ({0,1}-valued function).

Advanced Automata Theory 7 Automatic Functions – p. 25



Models of Computation

Hartmanis and Simon (1974) showed that machines whose
registers are natural numbers and which can add and
compare and subtract in unit time define the same class of
polynomial time as other mechanisms (like Turing
machines). Floyd and Knuth (1990) showed that such
machines can multiply and divide in linear time.

Definition 7.21. A register machine has natural number (or
integer) registers and can compare these, add these and
subtract these. Furthermore, the machine can do
conditional and nonconditional jumps and do input and
output with registers, either by read/write or by function call
and return.

Advanced Automata Theory 7 Automatic Functions – p. 26



Example 7.22 and Exercise 7.23

1. Function Product(x,y);
2. v = 1; w = 1; z = 0; If x = 0 Then Return(0);
3. If v > x Then Goto 4 Else v = v + v; Goto 3;
4. x = x+ x; z = z+ z; w = w +w;
5. If x ≥ v Then z = z+ y; x = x− v;
6. If w < v Then Goto 4;
7. Return(z).

Exercise 7.23.
Compute Remainder(x,y) of x divided by y in linear time
with a register machine.

Advanced Automata Theory 7 Automatic Functions – p. 27



Polynomial Time and Space

Theorem 7.24 [Hartmanis and Simon 1974].
Register machines which can add and compare define the
same class of “polynomial time” as Turing machines;
additional bit-wise operations do not increase the
computational power; however both additional bit-wise
operations and multiplication allow to solve PSPACE
problems in polynomial time.

Theorem 7.25 [Hartmanis and Simon 1974].
Register machines which add and compare in unit time and
which keep for some constant k the values of the registers

below rk (where r is the largest input) can decide a
language L iff L is deterministically context-sensitive.

Similarly one can characterise polynomial space. Here
register-values s have to satisfy log(s) < p(log(r)) for some

polynomial p and log(r) = min{k ∈ N : 2k ≥ r}.
Advanced Automata Theory 7 Automatic Functions – p. 28



Complexity and Automatic Functions

In suitable representation (see Exercises 7.15-7.20),
addition, subtraction, comparison and bitwise Boolean
operations are all automatic. Thus one considers register
machines which allow any automatic function to update the
registers and membership in any regular set to be tested for
conditional branching, so the above machines of Hartmanis
and Simon are special cases. Note that multiplication is not
automatic.

For this model, there are languages recognisable in
logarithmic time which cannot be recognised in logarithmic
time with a normal register machine, for example the

question whether a binary number is of the form 22
m

for
some m. Another one is whether a ternary number has
equal amount of 1 and 2.

Advanced Automata Theory 7 Automatic Functions – p. 29



Comparing Number of 1 and 2

Example 7.26
Algorithm to check whether input u has as many 1 as 2.
While number of 1 and 2 are both nonzero and either both
even or both odd Do Begin
Replace every second 1 by 0;
Replace every second 2 by 0 End.
If at end of while-loop there are either no 1 and no 2 or
exactly one of each 1 and 2

Then accept Else reject.

122112211122

120012001020

120000001020

120000000000 Accept

Computation needs O(n) steps on normal register machine.

Advanced Automata Theory 7 Automatic Functions – p. 30



Constantly Many Steps

Theorem 7.27. If a register machine with automatic update
functions decides a language L in constantly many steps
then the set L is regular.

Reason: Let the full memory be the convolution of all
registers with current line number. There are automatic
functions which compute the full memory after step k+ 1

from the full memory after step k. Furthermore, the set of
all full-memories which give a direct acceptance or rejection
in the next step is regular. As concatenation of automatic
functions is an automatic function, one can for each k

compute from the input in one step the full memory after
step k. Thus one can compute in one step the full memory
on which acceptance / rejection is based and evaluate it.
Thus the set of accepted inputs is regular.

Advanced Automata Theory 7 Automatic Functions – p. 31



P and NP and PSPACE

For a register machine with automatic functions to update
the registers and automatic relations to check conditions,
the following holds.

• A language L is in P iff such a register machine can
decide membership in polynomially many steps.

• A language L is in NP iff such a register machine can
nondeterministically recognise membership in poly time.

• A language L is in PSPACE iff such a register machine
can deterministically check membership where through
the whole run-time all registers are bounded
polynomially in size of the longest input.

Example 7.29. The set of palindromes needs Ω(n)
operations for deterministic or nondeterministic
memberhsip checking. The set of nonpalindromes can be
recognised nondeterministically in O(log(n)) operations.

Advanced Automata Theory 7 Automatic Functions – p. 32



Further Homeworks

Exercise 7.30. Construct a register machine with automatic
updates and tests which computes in time O(log(n)) a
binary representation of the length n of the input string.

Exercise 7.31. Construct a register machine with automatic
updates and tests which computes in time Poly(log(n))
from a decimal representation of the inputs the sum of the
digits as a decimal number.

Exercise 7.32. Construct a register machine which unit
operations being addition, comparison and subtraction
which computes the sum of the decimal digits of an input in
linear time.

Exercise 7.33. Prove that every algorithm which can
compute the square of the input number x on a register
machine which adds, subtracts and compares needs time
Ω(n), where n = log(x).

Advanced Automata Theory 7 Automatic Functions – p. 33


	Repetition 1
	Repetition 2
	Repetition 3
	Repetition 4
	Automatic Relations and Functions
	More Formally
	Convolution
	Example
	Automaton comparing string length
	Lexicographic Order as AR
	Automatic Functions
	Exercise 7.6
	Theorem 7.7
	Exercise 7.9: Automatic Family
	Example 7.10
	Remark 7.11
	Deriverability in Regular Grammars
	Exercise 7.12
	Context-Sensitive Languages
	Basic Algorithm
	Refined Algorithm I
	Refined Algorithm II
	Exercise 7.14
	Additional Exercises
	Models of Computation
	Example 7.22 and Exercise 7.23
	Polynomial Time and Space
	Complexity and Automatic Functions
	Comparing Number of 1 and 2
	Constantly Many Steps
	P and NP and PSPACE
	Further Homeworks

